首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
In September 1988, a series of acoustic propagation experiments were conducted in the Hudson Canyon area. These included synthetic aperture experiments in which a source transmitting a set of four pure tones was towed toward/away from a vertical array of 24 receivers. Data obtained at 50 Hz during one of the synthetic aperture experiments are used to obtain a model for the compressional wave speed profile in the bottom using a modal inverse method. This model is further refined using 175 Hz data. The ability of the inferred model to predict the field at 50 Hz and higher frequencies is examined  相似文献   

2.
In this paper, we address the problem of detecting an inhomogeneity in shallow water by observing changes in the acoustic field as the inhomogeneity passes between an acoustic source and vertical line array of receivers. A signal processing scheme is developed to detect the perturbed field in the presence of the much stronger primary source signal, and to estimate such parameters as the time when the inhomogeneity crosses the source-receiver path, its velocity, and its size. The effectiveness of incoherent, coherent, and partially coherent spatial processing of the array signals is evaluated using models and data obtained from experiments in a lake. The effect of different bottom types is also considered, and it is shown that partially coherent processing can have a significant advantage depending on the bottom type. Estimates of the minimum input signal-to-noise ratios (SNRs) for which the diffracted signal can be observed are presented.  相似文献   

3.
研究由一振动体的部分边界测量数据再构振动体内部场的逆问题。提出基于偏微分方程控制方法的一种算法 ,并证明原用于处理散射问题的 Null- field method可用来求解优化问题的随伴问题。  相似文献   

4.
The ocean acoustic tomographic (OAT) approach to sound speed field estimation is generalized to include a variety of sources of information of interest such as an oceanographic model of the sound speed field, direct local sound speed measurements, and a full field acoustic propagation model as well as measurements. The inverse problem is presented as a four-dimensional field estimation problem using a variational approach commonly used in oceanographic data assimilation. The current OAT approach is shown to be a special case of the general framework. The matched-field tomography (MFT) approach is also discussed within this context. A simple implementation of this novel approach is then investigated in the absence of a suitable oceanographic model, and acoustic propagation is accounted for using a standard parabolic equation model. The inverse equations derived are validated numerically through a simple inversion example, and some issues on environmental mismatch and computations are discussed. The developments then provide a basic framework for ongoing data-model melding in acoustically focused oceanographic sampling (AFOS) network  相似文献   

5.
The self-starter is improved using the operator of the split-step Pade solution. In addition to providing greater stability and being applicable closer to the source, the improved self-starter is an efficient forward model for geoacoustic inversion. It is necessary to solve only O(10) tridiagonal systems of equations to obtain the acoustic field on a vertical array located O(10) wavelengths from a source. This experimental configuration is effective for geoacoustic inverse problems involving unknown parameters deep in the ocean bottom. For problems involving depth-dependent acoustic parameters, the improved self-starter can be used to solve nonlinear inverse problems involving O(10) unknown sediment parameters in less than a minute on the current generation of workstations  相似文献   

6.
A conceptual framework in which the model-based, space-time acoustic signal processing procedure known as matched field processing (MFP) can be handled in a consistent manner is established. A framework for strong-signal MFP based on standard statistical estimation theory, in which MFP is regarded as essentially an estimation problem in the strong-signal regime, is developed. In the weak-signal case, the necessary requirement of detection dictates that MFP then be considered a joint detection-estimation task. It is demonstrated that, generally, MFP is essentially a space-time processing problem rather than simply an array processing (spatial processing only) procedure. An overview of the processing schemes used to date in MFP is given, showing how these methods relate to the optimal space-time structure. Weak-signal detection and estimation scenarios relevant to MFP are then noted. Present methods for dealing with the inherent instability of MFP algorithms (mismatch) are discussed. The current status of MFP is summarized, and recommendations for future research are made  相似文献   

7.
Matched-fieId inversion (MFI) undertakes to estimate the geometric and geoacoustic parameters in an ocean acoustic scenario by matching acoustic field data recorded at hydrophone array with numerical calculations of the field. The model which provides the best fit to the data is the estimate of the actual experimental scenario. MFI provides a comparatively inexpensive method for estimating ocean bottom parameters over an extensive area. The basic components of the inversion process are a sound propagation model and matching (minimization) algorithm. Since a typical MFI problem requires a large number of computationally intensive sound propagation calculations, both of these components have to be efficient. In this study, a hybrid inversion algorithm which uses a parabolic equation propagation model and combines the downhill simplex algorithm with genetic algorithms is introduced. The algorithm is demonstrated on synthetic range-dependent shallow-water data generated using the parabolic equation propagation model. The performance for estimating the model parameters is compared for realistic signal-to-noise ratios in the synthetic data  相似文献   

8.
研究由一振动体的部分边界测量数据再构振动体内部场的逆问题.提出基于偏微分方程控制方法的一种算法,并证明原用于处理散射问题的Null-field method 可用来求解优化问题的随伴问题.  相似文献   

9.
The treatment of acoustic energy forward scattered from the sea surface, which is modeled as a random communications scatter channel, is the basis for developing an expression for the time-dependent coherence function across a vertical receiving array. The derivation of this model uses linear filter theory applied to the Fresnel-corrected Kirchhoff approximation in obtaining an equation for the covariance function for the forward-scattered problem. The resulting formulation is used to study the dependence of the covariance on experimental and environmental factors. The modeled coherence functions are then formed for various geometrical and environmental parameters and compared to experimental data  相似文献   

10.
A series of narrowband acoustic transmissions may be combined into an equivalent broadband signal - with a corresponding increase in resolution in the time domain. This procedure is called synthetic bandwidth processing. If ray methods are used in combination with inverse theory to determine the otacoustic properties of bottom sediments, the increased time resolution aids in the identification of arrivals which are closely spaced in time. This, in turn, permits improved estimates of the spatial distribution of properties and more accurate otacoustic models. Signal processing techniques and guidelines for synthesizing multioctave broadband pulse-like signals are presented. Also described is the instrumentation used to implement the technique in real ocean environments  相似文献   

11.
The paper discusses an inversion method that allows the rapid determination of in situ geoacoustic properties of the ocean bottom without resorting to large acoustic receiving apertures, synthetic or real. The method is based on broad-band waterborne measurements and modeling of the waveguide impulse response between a controlled source and a single hydrophone. Results from Yellow Shark '94 experiments in Mediterranean shallow waters using single elements of a vertical array are reviewed, inversion of the bottom parameters is performed with an objective function that includes the processing gain of a model-based matched filter (MBMF) receiver relative to the conventional matched filter. The MBMF reference signals incorporate waveguide Green's functions for known geometry and water column acoustic model and hypothesized bottom geoacoustic models. The experimental inversion results demonstrated that, even for complex environmental conditions, a single transmission of a broad-band (200-800 Hz) coded signal received at a single depth and a few hundred forward modeling runs were sufficient to correctly resolve the bottom features. These included the sound speed profile, attenuation, density, and thickness of the top clay sediment layer, and sound speed and attenuation of the silty clay bottom. Exhaustive parameter search proved unequivocally the low-ambiguity and high-resolution properties of the MBMF-derived objective. The single-hydrophone results compare well with those obtained under identical conditions from matched-field processing of multitone pressure fields sampled on the vertical array. Both of these results agree with expectations from geophysical ground truth. The MBMF has been applied successfully to a field of advanced drifting acoustic buoys on the Western Sicilian shelf, demonstrating the general applicability of the inversion method presented  相似文献   

12.
采用场匹配处理法反演层系介质参数,在匹配处理前先对层系模型参数进行预估。参数预估将大大地减少匹配运算时间。模拟实验的反演结果与取样实测结果相当符合  相似文献   

13.
This paper presents the results of a perturbative inverse approach applied to the range-dependent acoustic data provided as part of the Geoacoustic Inversion Techniques Workshop. The method is based on the Hankel transform relationship between complex-pressure field data measured on a horizontal array and the depth-dependent Green's function for a horizontally stratified medium. The input data to the inversion algorithm are discrete values of horizontal wavenumbers estimated for locally range-independent subapertures of the acoustic data. Inversion results are presented with emphasis placed on inverting for compressional wave speed as a function of both range and depth in the bottom.  相似文献   

14.
Sound from an airborne source travels to a receiver beneath the sea surface via a geometric path that is most simply described using ray theory, where the atmosphere and the sea are assumed to be isospeed sound propagation media separated by a planar surface (the air-sea interface). This theoretical approach leads to the development of a time-frequency model for the signal received by a single underwater acoustic sensor and a time-delay model for the signals received by a pair of spatially separated underwater acoustic sensors. The validity of these models is verified using spatially averaged experimental data recorded from a linear array of hydrophones during various transits of a turboprop aircraft. The same approach is used to solve the inverse time-frequency problem, that is, estimation of the aircraft's speed, altitude, and propeller blade rate given the observed variation with time of the instantaneous frequency of the received signal. Similarly, the inverse time-delay problem is considered whereby the speed and altitude of the aircraft are estimated using the differential time-of-arrival information from each of two adjacent pairs of widely spaced hydrophones (with one hydrophone being common to each pair). It is found that the solutions to each of the inverse problems provide reliable estimates of the speed and altitude of the aircraft, with the inverse time-frequency method also providing an estimate that closely matches the actual propeller blade rate  相似文献   

15.
数值不稳定性长期困扰着声反演方法的应用.避免该问题的方法之一是进行冲激响应提取的预处理,由冲激响应反演实验材料的各层反射系数序列,重建特性阻抗剖面.该文采用不同反卷积的方法提取冲激响应,反演阻抗剖面,并就精度及运算时间进行详细比较,反演结果与实测及手册数值相当吻合.  相似文献   

16.
In the context of the recent Maritime Rapid Environmental Assessment/Blue Planet 2007 sea trial (MREA/BP07), this paper presents a range-resolving tomography method based on ensemble Kalman filtering of full-field acoustic measurements, dedicated to the monitoring of environmental parameters in coastal waters. The inverse problem is formulated in a state–space form wherein the time-varying sound-speed field (SSF) is assumed to follow a random walk with known statistics and the acoustic measurements are a nonlinear function of the SSF and the bottom properties. The state–space form enables a straightforward implementation of a nonlinear Kalman filter, leading to a data assimilation problem. Surface measurements augment the measurement vector to constrain the range-dependent structure of the SSF. Realistic scenarios of vertical slice shallow-water tomography experiments are simulated with an oceanic model, based on the MREA/BP07 experiment. Prior geoacoustic inversion on the same location gives the bottom acoustic properties that are input to the propagation model. Simulation results show that the proposed scheme enables the continuous tracking of the range-dependent SSF parameters and their associated uncertainties assimilating new measurements each hour. It is shown that ensemble methods are required to properly manage the nonlinearity of the model. The problem of the sensitivity to the vertical array (VA) configuration is also addressed.   相似文献   

17.
A time domain synthetic reflection seismogram is detailed and, as a limiting condition on this model, the analytic reflection impulse response for a one-dimensional lossless acoustic medium with piecewise continuous acoustic impedance is obtained. This analytic impulse response solution, in the structure of a sum of terms by order of reflection, provides insight to some of the poorly understood aspects of acoustic reflections from stratified and smoothly varying media as may be encountered in shallow marine sediments and elsewhere. It offers as well an approach for the inverse problem of extracting acoustic impedance profiles from reflection response data, though other effects (such as wavefront spreading, dispersive and absorptive attenuation, and wavelet broadening attendant with pulse propagation through a medium) need to be accommodated.  相似文献   

18.
This paper applies a full-field technique to invert bottom sound profile and bottom reflectivity from simulated acoustic data in a shallow water environment. Bottom sound-speed profile and bottom reflectivity have been traditionally estimated using seismic reflection/refraction techniques when acoustic ray paths and travel time can be identified and measured from the data. However, in shallow water, the many multipaths due to bottom reflection/refraction make such identification and measurement rather difficult. A full-field inversion technique is presented here that uses a broad-band source and a vertical array for bottom sound-speed and reflectivity inversion. The technique is a modified matched field inversion technique referred to as matched beam processing. Matched beam processing uses conventional beamforming processing to transform the field data into the beam domain and correlate that with the replica field also in the beam domain. This allows the analysis to track the acoustic field as a function of incident/reflected angle and minimize contamination or mismatch due to sidelobe leakage  相似文献   

19.
A standard inverse problem in underwater acoustics is the reconstruction of the ocean subbottom structure (e.g., the density and sound speed profiles) from an aperture- and bandlimited knowledge of the reflection coefficient. In this paper we describe an inverse solution method due to Candel et al. [12] which is based on the scattering of acoustic plane waves by a one-dimensional inhomogeneous medium. As a consequence of applying the forward scattering approximation to a local wave representation of the acoustic field, they obtain an expression for the reflection coefficient in the form of a nonlinear Fourier transform of the logarithmic derivative of the local admittance. Inversion of this integral transform enables the recovery of the admittance profile via the numerical integration of two first-order differential equations which require as reflection data a single impulse response of the medium. Separate recovery of both the density and sound speed profiles requires two impulse responses for two different grazing angles. In this case, four differential equations need to be integrated instead of two. To illustrate the capability of the method, we present numerical reconstructions which are based on synthetic reflection data for a geoacoustic model that represents the acoustic properties of the surficial sediments for a site in the Hatteras Abyssal Plain.  相似文献   

20.
This paper deals with the basic modeling problem in underwater acoustics that is the characterization of the channel between a transmitter and a receiver. The problem is analyzed here using an array of sensors that receive PSK signals emitted by several sources. Data come from an experiment realized by a physical system situated in the Mediterranean Sea. In order to identify the multipath channel, we need to access the propagation time delay and the angle of arrival of each propagation ray. However, many of these acoustic ray paths are too close to be separated by classic processing methods (matched filter, beamforming, etc.); new methods with better resolution must be applied in order to analyze the experimental signals and to determine their arrival time on the array of sensors. After a presentation of this problem, we will first discuss high-resolution methods that are usually applied in the localization problem; we will then focus on wavelet packet analysis which provides good results by improving the temporal resolution of acoustic signals  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号