首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
Middle to late Holocene alluvium, identified as Quaternary alluvial unit 4 (Qa4), along Kanab Creek in southern Utah, USA was dated using optically stimulated luminescence (OSL) on quartz sand, and by radiocarbon dating of detrital charcoal. Entrenchment beginning in 1882 AD created arroyo walls that expose up to 35 m of the Qa4 alluvium. The stratigraphy and sedimentology suggest that fluvial aggradation along the study reach occurred rapidly. Due to the high sediment supply, short transport distances and semi-arid climate with flashy discharge, partial bleaching (zeroing) of the luminescence signal was expected to be a problem for OSL dating. We approached this problem by first using small-aliquot (∼20 grains) and single-grain dating of quartz sand to reduce the number of grains contributing to the OSL signal. Second, we used statistical parameters based on single-grain and small-aliquot equivalent dose (De) distributions of bleached sediment to help identify partial bleaching and to inform if a minimum age model (MAM) should be used for age calculation. Comparison of results with radiocarbon ages demonstrates the success of OSL dating on Kanab Creek arroyo-fill deposits, although careful attention should be paid to the sedimentary facies and stratigraphy of the targeted sample horizon to minimize the effects of partial bleaching. Thin, decimeter-scale plane-bedded and ripple cross-bedded sandy lithofacies were found to be the best target for OSL dating, as these sediments showed minimal evidence for incomplete solar resetting. Additionally, results generally indicate that better-bleached sediments are found in downstream reaches. Age control from these arroyo-fill deposits was acquired in order to fulfill larger research goals of understanding regional arroyo incision and aggradation cycles.  相似文献   

2.
The optically stimulated luminescence (OSL) signals from quartz have been widely used to estimate the equivalent dose (De) of environment radiation after the deposition of mineral grains. However, the usage of quartz is often limited due to the lower saturation behavior compared with feldspar. Saturation limits among quartz (defining the upper dating range) vary significantly. It is important to better understand the reason for various dose saturation behaviors of the quartz OSL signals. In this study, coarse quartz grains were extracted from the Taklimakan Desert and the Hunshandake sandy land in north China and the dose saturation behavior of quartz OSL signals were studied. Our results suggest that the quartz grains produce very different aliquot-specific dose response curves, showing the significant variability in dose saturation characteristics for OSL signals. Laboratory dosing, optical bleaching and heating experiments were designed to simulate their effects on the dose saturation behavior for the quartz OSL. The results demonstrate that cycles of dosing and optical bleaching have insignificant impact on the OSL dose growth curves, while the heating to high temperature (above 400 °C) can significantly change the dose saturation characteristics for the quartz OSL. Such results suggest that the different heating history of quartz might be an important factor for the variability in dose saturation characteristics for OSL signals. Additionally, the quartz grains from the Hunshandake sandy land exhibit lower dose saturation level for OSL signals, compared with that from the Taklimakan Desert. This can be explained that the quartz grains from Hunshandake sandy land are mainly of igneous origin, while the quartz grains from Taklimakan Desert are mainly of metamorphic origin.  相似文献   

3.
The Altyn Tagh Fault(ATF)is one of the most prominent active strike-slip faults in the India-Eurasia collision. Fresh features of surface ruptures, which are attributed to seismic events taking place in the last millennium, are identified at several sites along the Che'erchen River to Qingshui River section on the central part of ATF. Accurate chronology of these earthquake events would help understand the spatial-temporal relationship of the recent earthquakes. However, great difficulties are encountered. The central ATF is located in the arid area, and the vegetation cover is so limited that rare organic materials appropriate for radiocarbon dating can be found in the sediments. Luminescence dating technique may serve as an alternative to directly determine the burial ages of the earthquake related sediments. The optically stimulated luminescence(OSL)signal of quartz, which has been widely employed for luminescence dating, displays unwanted charateristics for accurate dating. Firstly, the quartz OSL signal is not sensitive to irradiation, which leads to low signal-to-noise ratio or even no measurable quartz OSL signal. Secondly, the targeted samples of the last millennium are very young, and the radiation dose received during the burial is expected to be less than 3~4Gy, which futher deteriorates the signal-to-noise ratio of the quartz OSL signal. Therefore, quartz OSL signal is not appropriate for dating the sediments relevant to the recent earthquakes on ATF.
The infrared stimulated luminescence(IRSL)signal of potassium feldspar is an alternative, and it is in usual an order of maginitude more sensitive to raidation than the quartz OSL signal. The enhanced signal-to-noise ratio makes it applicable to young samples. The post-IR IRSL signal has been successfully applied to date the sediments beyond the Holocene, however, the relatively slow bleaching of the post-IR IRSL signal poses challenges on applying it to young sediments, especially for the sediments deposited during the last millennium. In this study, we investigated the feasibility of using post-IR IRSL signal from potassium feldspar to date the earthquake events of the last millennium by employing modern sag pond deposits with different sorting and expected equivalent dose(De)of 0Gy. Choosing an appropriate measurement procedure and identifying the well bleached pottassium feldspar grains are essential for post-IR IRSL dating of young sediments. The non-fading characteristic of the post-IR IRSL170 signal measured at 170℃ following a prior IR stimulation at 110℃ was verified by employing the De plateau test with respect to the signal integration interval and IR stimulation temperature together. Reducing the amount of potassium feldspar grains mounted on an aliquot would help reveal the among grains variation of bleaching level of post-IR IRSL170 signal before depostion and identify the most sufficiently bleached grains. Therefore, the post-IR IRSL170 De values of 2mm aliquots were measured for three samples with different sedimentary textures. The median of De distribution of well sorted and stratified sag pond deposits is consistent with the minimum De value inferred from the minimum age model(MAM-3) and finite mixture model(FMM), while for the poorly sorted deposits, the median is significantly overestimated compared with the minimum De values from the MAM-3 and the FMM. The minimum De values of 0.6~0.8Gy of all three samples are consistent with the unbleachable residual dose previously reported for post-IR IRSL signals measured at similar temperature for well bleached samples. It implies that by combined use of small aliquot and statistical age models, the well-bleached potassium feldspar grains could be identified. Such an intrinsic unbleachable component needs to be properly corrected when earthquake events of last millennium are to be dated in this area. Otherwise, the post-IR IRSL170 age would be overestimated by 200~300a.
The post-IR IRSL170 procedure investigated in this study is not only applicable for dating the paleoearthquake events along the Altyn Tagh Fault, but also with great potential to be applied to other tectonically active area. With consideration of the potential variability in post-IR IRSL signal characteristics of potassium feldspar grains from different origins, the signal stability needs to be routinely inspected. The modern analog sample would also be informative for justifying the measurement procedure and analytical method employed.  相似文献   

4.
The optically stimulated luminescence (OSL) signals from quartz consist of several physically distinct components, which are commonly referred to as fast, medium and slow components. In this study, the OSL components of quartz from the Taklimakan Desert and the Hunshandake sandy land in north China are investigated. Our results show that the relative contributions of OSL components to the bulk OSL signal can be significantly different among quartz grains from both deserts. Laboratory dosing, optical bleaching and heating experiments are used to test their effects on the relative contributions of quartz OSL components. It is found that cycles of dosing and optical bleaching have insignificant impact on the relative contributions of quartz OSL components, while heating to high temperature (500 °C) can significantly enhance the contribution of the fast component to the bulk OSL signals, especially for quartz samples from the Taklimakan Desert. Such results suggest that the different heating history of natural quartz grains plays an important role in controlling OSL components. Additionally, the quartz grains from the Hunshandake sandy land can easily be distinguished from those of the Taklimakan Desert, by using a ternary plot of fast-medium-slow components. The quartz grains from the Hunshandake sandy land exhibit a much stronger fast component than those from the Taklimakan Desert. This can be explained by that the quartz grains from the Hunshandake sandy land are mainly of igneous origin, while most of the quartz grains from the Taklimakan Desert are of low grade metamorphic origin.  相似文献   

5.
Previous luminescence dating studies on loess from China and Tajikistan have focused on the establishment of the regional chronology of the loess sequences. In order to improve the precision and accuracy of optical ages derived from the loess of the last glacial period in these regions, we have examined the components of luminescence signals in three loess samples from western China and southern Tajikistan. Our results show that the polymineral IRSL and post-IR OSL, and quartz OSL signals from loess of the two regions are represented by three components, which display different bleaching and growth characteristics. While the composition of the polymineral IRSL signals is similar between samples with the same age from the two regions, in the case of quartz there is significant discrepancy in the proportion of the fast and medium components of the OSL signals. Greater difference is observed in the composition of the polymineral post-IR OSL signals for the loess from the two regions. The three components of polymineral IRSL signals yield almost identical equivalent dose values as that derived from the total IRSL signal. An apparent agreement in equivalent dose is observed between the fast component of the polymineral post-IR OSL and the quartz OSL for the loess of western China but not in the loess of the same age from southern Tajikistan. The fast component of the quartz OSL yields an equivalent dose 25% higher than that based on the total signal for the sample from the base of the Late Pleistocene loess in southern Tajikistan. This demonstrates the importance of signal selection for an accurate luminescence dating of Central Asian loess.  相似文献   

6.
Resetting of sediments mobilised by the LGM ice-sheet in southern Norway   总被引:3,自引:0,他引:3  
Former geological field investigations in the Rondane area, east-central southern Norway, have proposed that the maximum Fennoscandian ice-sheet coverage occurred during the Late Weichselian Glacial Maximum (LGM, ca. 20 ka) and that subsequent glaciofluvial sediments were first deposited in the early Holocene (after 10 ka). However, recent field investigations with ages from three internally consistent quartz optically stimulated luminescence (OSL) age series show an apparent deglaciation of northern Rondane in the period 20.0–13.8 ka. We examine here the possibility that these ages are too old because the sediment was not completely zeroed prior to deposition. Our investigations of incomplete bleaching use modern analogues, small aliquots, and single grains of quartz. First, the symmetric shape of small aliquot equivalent dose distributions suggests that the sediment was probably well bleached at deposition. This is supported by 5 modern analogue equivalent doses (De) of 0.6 Gy, 1.5% of the typical De from the deglaciation sediments. Finally, from single grain studies on three samples, we conclude that there is no evidence for poor bleaching in these samples; thus the weighted mean gives the best estimates of De, and these are completely consistent with both large and small aliquot estimates for these samples. These comparisons between large aliquots, modern analogues, small aliquots and single-grain analyses help to validate the OSL ages and confirm the complete resetting of these sediments prior to deposition.  相似文献   

7.
Studies of modern sediments, their sedimentology and depositional processes are important for understanding the behaviour of the luminescence characteristics of quartz and feldspar in fluvial settings. Previous studies have shown large variations in OSL characteristics of quartz from different fluvial systems, while the IRSL and pIRIR signals from K-feldspar have been understudied. We test the effects of fluvial setting on luminescence characteristics by collecting modern (<1 year old) bedload sediments down the courses of three river systems with very different hydrological characteristics, geologic contexts, and catchment lithologies. The single grain (SG) and multi-grain aliquot (MGA) OSL (quartz) and IRSL and pIRIR (K-feldspar) properties of samples were measured and compared to better understand intra- and inter-fluvial system patterns in sensitivity, bleaching, and equivalent dose (De) distribution skewness and kurtosis. The quartz OSL and K-feldspar IRSL and pIRIR signal sensitivities increase with downstream transport distance of sediments, confirming previous studies (quartz) and showing that IRSL signals from K-feldspar also increase in response to reworking cycles. Increasing transport distance also results in better bleaching of the OSL signal from quartz samples (MGA and SG) due to more grains being exposed to sunlight. By contrast, the IRSL and pIRIR signals retain significant residuals in all samples, though 5–15% of grains yield zero-dose De values and age modelling of SG data yields accurate burial dose estimates. Additionally, the skewness and kurtosis of SG OSL De datasets from one river increase with transport distance, with the best bleached samples exhibiting the highest skewness, thereby questioning the applicability of the skewness-value of a De dataset as an accurate indicator for partial-bleaching. Our data shows marked variability between (i) different river systems and (ii) the measured minerals, however consistent use of statistical models allows accurate De estimation in all contexts. Age modelling of SG data from K-feldspar, thus, provides a valuable tool for future fluvial research in regions where poor OSL characteristics prevent the use of quartz as a dosimeter.  相似文献   

8.
Modern Mississippi Delta sediments were analyzed to investigate quartz OSL signal resetting in large river deltas and test the accuracy of OSL dating on a decadal time scale with the early background subtraction and a recently proposed burial dose estimation procedure. Both fine silt-sized and sand-sized quartz were measured with a modified single-aliquot regenerative dose (SAR) protocol and equivalent dose (De) was calculated using different background subtraction methods. Evidence of insufficient bleaching was observed, but the residual signal is equivalent to ∼100 a on average for both sandy quartz and fine silt-sized quartz. It is shown that dose distributions of sandy quartz are affected by the background subtraction. The proportion of aliquots that have De in agreement with expectation is significantly larger when an early background is subtracted compared to the late background subtraction. This is, in contrast, not observed for fine silt-sized quartz. Accurate OSL ages were obtained by employing the unlogged minimum age model to Des of sandy quartz obtained with the early background subtraction method.  相似文献   

9.
The accuracy of optical ages derived from tidal sediments depends largely upon the transport processes. These processes constrain the degree of bleaching by the time of deposition and the choice of grain size for dating. This study looks at flow regime, sediment bedding, particle size and suspended sediment concentration (SSC) over tidal flats in order to identify the tidal sub-environment from which reliable multigrain optical ages are most likely to be achieved. The resulting conceptual model is then compared with empirical OSL data obtained from Holocene sediments of the southern North Sea tidal coastal plain of continental Europe. Optical dating of the tidal sediments included single-aliquot-regenerative dose protocol applied to multigrain aliquots of fine sand and fine silt, statistical analysis using weighted skewness, standardised kurtosis and over-dispersion. It is inferred from the model that smaller grains should be better bleached than larger grains. However, because transport and deposition processes are extremely variable in both space and time, unequivocal “bleaching rules” could not be assigned to a particular tidal sub-environment. In this context more than 85% of our samples return accurate ages and around 13% of our optical ages are overestimated when compared with ages from established well-constrained stratigraphic frameworks. The empirical study confirms the concept of “variable bleaching rules”: both accurate and inaccurate ages are obtained from silty and sandy OSL samples regardless of the sub-environment and well-bleached samples may be obtained from all tidal sub-environments. Although our study is based on multiple-grain aliquots it also shows that an independent statistical treatment of equivalent dose data is an indispensable procedure to detect and correct for insufficient bleaching.  相似文献   

10.
As part of a study on coastal sedimentary processes this paper presents the OSL dating of mixed coastal sediment samples from the southern North Sea island of Sylt (German Bight). During coring of the swash-bar (beach) sediments, five samples were presumably contaminated by younger overwash and aeolian sediments because of the sampling method employed. To obtain reliable burial ages for these swash-bar sediments, single-grain and small aliquot measurements were used together with the Finite Mixture Model (FMM) proposed by Roberts et al. (2000) to identify the grain population containing the largest doses (from the deepest part of the core). Before the FMM was applied to dating, the parameters and performance of the FMM were first investigated by systematically comparing small aliquot (∼20 grains) and single-grain measurements of an undisturbed aeolian and swash-bar sample and a laboratory mixture of both sediments. This test case demonstrates the advantage of selecting the time interval immediately following the initial luminescence signals for background subtraction because unsuitable quartz grains were removed from the dose distribution. It is concluded that the measurement of small aliquots can be regarded as a reliable proxy for single-grain dose distribution if the sediment contains only a small proportion of quartz grains emitting a luminescence signal and that the FMM results are relatively insensitive to changes of the over-dispersion parameter between 5–40% for small aliquots and 10–40% for single-grains.We show that the burial ages of the contaminated swash-bar samples resulting from the maximum age populations from equivalent dose distributions measured using small aliquots are consistent with the stratigraphy and with ages obtained from uncontaminated samples.  相似文献   

11.
Luminescence and ESR dating methods of quartz sediment are based on the natural resetting of the signal by light exposure (optical bleaching). When the bleaching is incomplete, a residual dose (DeR) is added to the post-depositional dose accumulated since the deposit and hence the age is overestimated.Insufficient bleaching is usually linked to the environment and conditions of transport/deposition of the quartz grains affecting the light exposure duration. Indeed, each transportation mode – fluvial, marine or aeolian – is associated to specific conditions of light exposure, depending mainly to the location of grains in the transport agent during the transport phase, the opacity of the transport environment and the velocity of the transport.The present study attempts to discriminate the modes of transport/deposition providing a satisfying reset of the ESR signals of quartz grains. For this purpose, we investigated bleaching rates and ESR residual doses of aluminum centers from “present-day” aeolian, fluvial and marine sediments sampled in various sedimentary environments. The bleaching efficiency evaluation in these different environments may help for a better understanding of the resetting phenomenon for quartz signals which represents presently the main difficulty for ESR dating.The results show that the residual doses are small enough to allow an ESR dating of the main part of the sediment transported in almost all the context examined in this study. The smallest residual doses are obtained from quartz grains within the range of 100–200 μm and transported in clear water. Some limits for the application of optically bleached quartz ESR dating appears nevertheless, mainly when the residual dose and the dose accumulated after the deposit are quite similar, i.e. for Upper Pleistocene samples.  相似文献   

12.
The Yellow River is characterized by its tremendous sediment load. In this study we investigated the residual OSL signals in modern fluvial sand and suspended-sediment samples from the middle reach of the river. The residual equivalent dose (De) is found to vary with grain size, mineralogy and the techniques used for the De determination. The results indicate that the OSL signals in some grains from these samples were not completely bleached prior to burial, the maximum individual De value obtained is up to 56 Gy. The results also show that coarse grains are generally better bleached at deposition than fine grains; the fine-grained quartz from suspended sediments are better bleached than the fine-grained quartz from the fluvial sand deposits. The Des obtained using quartz TT-OSL signals are up to ~380 Gy for these modern samples.  相似文献   

13.
Fossil oyster reefs are indicators of past sea levels, and their formation is usually dated by means of radiocarbon. However, radiocarbon dating of the shells from coastal areas may be complicated by the varying sources of carbon. Here we applied optical dating methods to date the samples from above and below a fossil oyster bed in a section on the coast of Bohai Bay, China. The optical ages of the sediments were used to constrain the oyster bed. Single-aliquot regenerative-dose procedures using the OSL signal from fine grain quartz, the IRSL and post-IR OSL signals from polymineral fine grains were employed to determine equivalent dose (De). The behaviors of the different luminescence signals from quartz and polymineral grains during De measurements were examined. The results showed that the quartz OSL signal is more reliable than the polymineral IRSL and post-IR OSL signals with respect to dating for these coastal samples. The optical ages indicated that the oyster reef formed between ca. 6.2 and 5.0 ka.  相似文献   

14.
The properties of the quartz luminescence signal have been shown to be a useful tool for sediment provenance analysis. These provenance studies are based on the sensitivity of the fast optically stimulated luminescence (OSL) component, which is also used for sediment dating. Besides the widespread occurrence of quartz in terrigenous sediments, OSL sensitivity can be acquired using relatively fast and low-cost measurements compared to sediment provenance analysis methods based on accessory minerals or isotopes. Additionally, laboratories worldwide already have an extensive database of recorded quartz OSL signals primarily measured for dating studies, and these data could potentially be repurposed for provenance analysis of Quaternary sedimentary systems through OSL sensitivity calculation. Here, we investigate the use of OSL quartz signals measured in sediment dating surveys for OSL sensitivity calculation and evaluation of changes in sediment sources. The OSL sensitivity was calculated and expressed as %BOSLF, which corresponds to the percentage of the fast OSL component signal (blue stimulation) to the total OSL curve; such approach is advantageous as it does not require any normalisation of the measured signal intensity to dose or aliquot size (weight). Three sets of samples from Amazonian fluvial sediments are investigated: two sets of Holocene floodplain sediments representing different sediment sources to the Amazonian fluvial system, i.e. the Amazon craton and the Andes Mountain belt, and a set of samples from the Içá Formation, a paleo-fluvial system active during the Pleistocene whose provenance is not fully known. Results show that the quartz OSL signal derived from the first test doses (Tn) applied in dating protocols had the best performance for %BOSLF calculation when compared to results from a measurement protocol designed specifically for sediment provenance analysis. There is significant correlation (R2 = 88) between sensitivities derived from Tn and a specific OSL provenance analysis protocol. The proposed approach indicates to be appropriate for sediment provenance analysis since it is able to discriminate signal differences among samples from known sources: Brazilian cratonic quartz yield high sensitivity values (mean %BOSLF >70), in contrast to the relatively lower values from Andean quartz (mean %BOSLF <50). In general, quartz OSL sensitivities from the Içá Formation samples fall into the same range of modern sediments transported by the Içá and Japurá rivers draining the Andean Eastern Cordillera of Colombia and Ecuador. We also observe a decrease in quartz OSL sensitivity during the Holocene, notably after 4 ka, with younger deposits showing lower sensitivity. Sediment provenance variations are discussed in terms of watershed rearrangement and/or precipitation-driven changes during the Late Pleistocene and Holocene across Amazonia.  相似文献   

15.
One of the most important foundations of luminescence dating is the assumption that the growth of the luminescence signal in nature can be reproduced under laboratory conditions by performing irradiations with a calibrated beta or gamma source. When optically stimulated luminescence (OSL) of quartz with a dominant fast component is measured using the single aliquot regenerative dose (SAR) protocol, laboratory dose response curves that display continuing growth at high doses are increasingly reported in literature. In this study we investigate fine (4–11 μm) and coarse (63–90 μm) quartz extracted from 25 samples taken from L1, S1 and L2 units from the loess-palaeosol section at Costineşti in Romania. Our results indicate that the growth of the OSL signal in nature does not correspond to the laboratory generated laboratory dose response curve. The growth of the signal in nature is consistent with a single saturating exponential function, with the signal of coarse grains starting to saturate at 100–200 Gy, and for fine grains at 200–300 Gy, respectively. Laboratory dose response curves continue to grow for high doses (>300 Gy) for both quartz fractions. The differences observed between the natural and the laboratory dose response for the two quartz fractions are believed to be a cause for the different chronologies previously reported using the two grain sizes of quartz on Romanian loess. In addition, we have applied the single aliquot regeneration and added dose (SARA) procedure to both fine and coarse grains from the youngest sample. Our findings question the reliability of obtaining high equivalent doses for quartz samples displaying laboratory dose response curves obtained by the SAR protocol for which a single saturating exponential model does not describe the data.  相似文献   

16.
A comparative study using quartz optically stimulated luminescence (OSL) and feldspar post-infrared infrared stimulated luminescence (post-IR IRSL) was undertaken on Quaternary fluvial sediments from an unnamed tributary of the Moopetsi River in South Africa. The aim is to assess whether the post-IR IRSL signal can be used to date incompletely bleached sediments. Several post-IR IRSL signals using varying stimulation and preheat temperatures were investigated; of these the post-IR IRSL225 signal was deemed most appropriate for dating because it bleached most rapidly. The feldspar post-IR IRSL225 equivalent dose (De) values from this site are consistently larger than those from quartz OSL, probably due to differences in the bleaching characteristics of the two signals. Additionally, the post-IR IRSL225 De values within a sample showed less variation in precision than the quartz De data, possibly due to greater averaging between grains in the feldspar small aliquots. The agreement between ages based on the OSL and post-IR IRSL225 signals was better for younger samples (<20 ka) than for older ones (>50 ka); the cause of this variation is unclear.  相似文献   

17.
Optically stimulated luminescence (OSL) is a technique that has been applied from the mid‐1980s, mainly for sediment dating. The OSL technique is based on sample stimulation by light to determine the luminescence signal that is stored in the crystal lattices of sediment grains after deposition, burial by later sediment and subsequent exposure to ionizing radiation from radioactive elements in the surrounding sediment. In such sediment dating, two parameters are required: the equivalent dose (i.e. the luminescence signal stored in the grains), and the dose rate (i.e. the ionizing energy from α, β and γ radiation emitted by naturally occurring radioisotopes in the deposit, plus the effects of cosmic radiation). In this research, the OSL technique is not used for dating. The study goal is to analyse only the luminescence signals (the total photon counts) in polymineral samples obtained after light stimulation in the blue (BLSL) and infrared (IRSL) wavelengths using a portable OSL reader designed and built at the Scottish Universities Environmental Research Centre (SUERC). Three fluvial case studies – from Cambodia, Australia and Mexico – are used to illustrate the geomorphological interpretations possible with the portable OSL reader data from sediments resulting from a range of different depositional processes. The case studies show that aspects of sediment's transport and depositional processes can be inferred from the portable OSL reader data, providing valuable insights into geomorphological history. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A suite of samples from an extensive aeolian sandscarp near Victoria Falls, Zambia was used to explore several different methods of calculating optically stimulated luminescence (OSL) ages that account for the effects of saturated quartz grains. Beta dose rate heterogeneity and early OSL signal saturation of the samples exacerbate the impact that saturated grains have on the equivalent dose (De) values calculated. Saturated grains that cannot calculate De values are often rejected but the minimum burial dose information they contain can have a significant impact on a sample's average De value. This study compares multiple techniques for combining luminescence measurements that enables inclusion of this data and their sensitivity to a criterion that rejects grains with early OSL signal saturation. The methods tested are found to have different advantages and disadvantages, but reasonable agreement between the De values they calculate suggests that including data from saturated grains makes a more significant difference to De values calculated than the specific method used to combine the data.  相似文献   

19.
Electron spin resonance (ESR) dating of optically bleached quartz grains was performed on three sediment samples collected from the Middle Palaeolithic site of Cuesta de la Bajada (Spain). A standard multiple grain and multiple aliquot additive dose procedure was employed, and both the Al and Ti centres were measured as part of the multiple centres approach.ESR age estimates obtained for the three samples indicate that the Al centre provides a maximum possible chronology, as the Ti centres show that the Al signal was likely not systematically reset to its residual level during sediment transport. A direct comparison between ESR ages based on the Ti centres and single grain optically stimulated luminescence (OSL) ages from samples collected nearby shows broadly consistent results. The Ti-H centre also appears to provide suitable chronologies for at least two of the three Middle Pleistocene samples studied here. Surprisingly, the only sample showing consistent ESR ages between the Al and Ti centres appears to be overestimated in comparison with the Ti-centre and OSL ages derived from the other two samples. This indicates either incomplete bleaching of both the Al and Ti centres for this sample, or unexpected impacts of other sources of De uncertainty, such as multi-grain averaging effects. The ESR dating results overall indicate that the archaeological sequence of Cuesta de la Bajada CB-3 is most likely correlated to either MIS 7 or 9.  相似文献   

20.
Colluvial and alluvial sediments represent important geoarchives to reconstruct long-term soil erosion and to gain insight into the complex system of sediment cascades and sediment fluxes within a catchment. In this respect, the temporal information of sediment archive formation is essential and achievable through optical stimulated luminescence (OSL) dating. In this study, colluvial and alluvial sediments from a mesoscale catchment in northern Bavaria were investigated and dated by OSL. Insufficient sediment bleaching was detected for some of the samples. In these cases, the method proposed by Fuchs and Lang [Fuchs, M., Lang, A., 2001. OSL dating of coarse-grain fluvial quartz using single-aliquot protocols on sediments from NE Peloponnese, Greece. Quaternary Science Reviews 20, 783–787.] was applied for equivalent dose (De) determination. The calculated OSL ages are in stratigraphic order and their accuracy is confirmed by 14C age control. Based on the chronostratigraphies for alluvial and colluvial archives, there is a dominant synchronous sedimentation history for the Medieval and Modern period, but initiation of Holocene sedimentation occurred at different times in the upper and lower parts of the catchment. The latter phenomenon might be explained by the decoupled sediment fluxes between both the slope–channel system and the upper and lower catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号