首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This investigation represented the preliminary study to characterize Pt and Pd concentrations and enrichment ratios in urban roadside soils. Roadside soil samples were analyzed by ICP-MS. Data from 21 roadside topsoil samples show medians of Pt and Pd concentrations are 2.9 and 2.8 ng g−1, respectively. These values are higher than those of upper crust that average 0.4 and 0.4 ng g−1, respectively. The relatively lower Pt and Pd concentrations are expected due to recent introduction of catalysts to China compared to the prolonged use of catalysts in Europe. Hierarchical clustering analysis indicates that Pt and Pd in Xuzhou urban roadside soils were mainly from the traffic emissions. Computation of enrichment ratios using the upper crust values as background levels suggests that the roadside soils had enrichment medians of 6.4 for Pt (range 2.5–11.75) and of 6.75 for Pd (range 2.75–9.25). Lower Pt/Pd ratios (range 0.35–2.86) in relation to similar studies in other countries were observed due to the different automobile catalytic converters. In general, fine fraction (<250 μm) contains higher Pt and Pd concentrations compared to the coarse fraction (250–500 μm).  相似文献   

2.
Oyster and sediment samples collected from six sites in Galveston Bay from 1986 to 1998 were analyzed for polynuclear aromatic hydrocarbons (PAHs). Total concentrations of parent PAHs in oysters ranged from 20 ng g−1 at one site to 9,242 ng g−1 at another and varied randomly with no clear trend over the 13 year period at any site. Concentrations of alkylated PAHs, which are indications of petroleum contamination, varied from 20 to 80,000 ng g−1 in oysters and were in higher abundance than the parent PAHs, indicating that one source of the PAH contaminants in Galveston Bay was petroleum and petroleum products. Four to six ring parent PAHs, which are indicative of combustion source , were higher than those of 2–3 ring parent PAHs, suggesting incomplete combustion generated PAHs was another source of PAHs into Galveston Bay. Concentrations of parent PAHs in sediments ranged from 57 to 670 ng g−1 and were much lower than those in oysters. Sediments from one site had a high PAH concentration of 5,800 ng g−1. Comparison of the compositions and concentrations of PAHs between sediment and oysters suggests that oysters preferentially bioaccumulate four to six ring PAHs. PAH composition in sediments suggests that the sources of PAH pollution in Galveston Bay were predominantly pyrogenic, while petroleum related PAHs were secondary contributions into the Bay.  相似文献   

3.
Concentrations of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured in 13 surficial sediment samples collected at three lacustrine locations in the surroundings of Mexico City and four coastal areas of the States of Sinaloa, Sonora, Oaxaca and Veracruz. Total PCB concentrations span the interval 3.18–621 ng g−1. The highest values (63.7–621 ng g−1) were found in Mexico City, which is a highly anthropogenically impacted area, whereas low concentrations (3.18–12.9 ng g−1) were characteristic of seven places, some of them subject to intense hydrodynamics. In these latter cases, values increase by 18–73 times if normalised against the fine fraction (silt plus clay) content in sediment. Two samples from Mexico City exceed the ERM (Effect Range Median) guidelines and are likely to cause adverse effects. Samples contain only lower chlorinated PCBs (mainly 2-, 3- and 4-CB), thus suggesting that the most used PCB commercial mixture was Aroclor 1242. The homologue composition of the sample taken close to the nuclear power plant of Laguna Verde is identical to this commercial mixture. PAHs in the same samples have relatively low concentrations (14.9–287 ng g−1), well below ERL (Effect Range Low) guidelines. The composition of PAH mixtures accounts for the influence of both petrogenic and pyrolitic sources, with these latter prevailing at some places in Mexico City.  相似文献   

4.
Cadmium (Cd) is a highly toxic element and its presence in the environment needs to be closely monitored. Recent systematic surveys in French soils have revealed the existence of areas in eastern and central France, which show systematically high cadmium concentrations. It has been suggested that at least part of these anomalous levels are of natural origin. For the Lower Burgundy area in particular, a direct heritage from the Jurassic limestone bedrock is highly suspected. This potential relationship has been studied in several localities around Avallon and this study reports new evidence for a direct link between anomalously elevated cadmium contents of Bajocian and Oxfordian limestone and high cadmium concentrations in deriving soils. Soils in this area show cadmium concentrations generally above the average national population values, with contents frequently higher than the ‘upper whisker’ value of 0.8 μg g−1 determined by statistical evaluation. In parallel, limestone rocks studied in the same area exhibit cadmium concentrations frequently exceeding the mean value of 0.030–0.065 μg g−1 previously given for similar rocks by one order of magnitude, with a maximum of 2.6 μg g−1. Mean ratios between the cadmium concentrations of limestone bedrock and deriving soils (Cdsoil/Cdrock), calculated for different areas, range from 4.6 to 5.7. Calculations based on the analyses of both soils from a restricted area and fragments of bedrock sampled in the immediate vicinity of high-concentration soils are around 5.5–5.7. Cdsoil/Cdrock is useful in determining the potential of soils in Lower Burgundy to reflect and exacerbate the high concentrations of cadmium present in parent bedrocks.  相似文献   

5.
This research was conducted in an attempt to assess the concentration levels and potential sources of organochlorine pesticides (OCPs) in the karst soils of Dashiwei tiankeng, southwest China. The tiankeng is a karst surface expression that can act as a focal point for introduction of contaminants to groundwater system, which may serve as condenser and receiver for semi-volatile persistent organic pollutants such as OCPs. In this study, surface soil samples from Dashiwei tiankeng were collected and 23 organochlorine pesticide compounds were analyzed. The results showed that the concentration was 0.019–3.605 ng/g for DDTs (sum of p,p’-DDD, p,p’-DDE, o,p’-DDT, p,p’-DDT), 0.001–0.218 ng/g for HCHs (sum of α-, β-, γ-, δ-HCH), 0.003–0.290 ng/g for CHLs (sum of heptachlor, heptachlor epoxide, TC, CC and trans-nonachlor), 0.001–0.064 ng/g for endosulfan (sum of α-endosulfan and β-endosulfan), 0.008–1.630 ng/g for HCB and 0.023–0.928 ng/g for other OCPs (sum of aldrin, dieldrin, methoxychlor, endrin, endrin aldehyde and endrin ketone). The total OCPs concentrations varied from 0.055 to 5.216 ng/g. The ratio of DDT/(DDE + DDD) in the floor soils of Dashiwei tiankeng ranged from 0.434 to 0.797, suggesting a mostly historical residue of technical DDT contamination. However, the ratio of DDT/(DDE + DDD) in the upper rim soils was higher than one, which that there was fresh DDT application nearby. Both the floor and upper rim soils of Dashiwei tiankeng had high ratios of o,p’-DDT/p,p’-DDT (range of 0.016–10.833 with mean of 5.424 and 4.667–7.714 with mean of 5.723, respectively), which implied that the primary source of DDTs was probably from dicofol-type DDT products. The average ratios of α-/γ-HCH were 24.435 in the floor soils and 1.067 in the upper rim soils, together with the averaged percentages of β-HCH among the total HCH isomers (accounting for 33.772 %), indicating that the HCHs were a dominant contribution from technical HCH usage in the past.  相似文献   

6.
Variation of vegetation coverage and canopy height may reflect the complex spatial heterogeneity of nutrient storage and supply capacity, soil moisture, and surface hydrology in the karst terrains suffering from severe land degradation. To assess the patterns of nutrient limitation under different vegetation covers in the subtropical karst ecosystems from Guizhou province, southwestern China, topsoil and leaf samples of dominant tree species were collected in forest stand (FO), shrub stand (SH) and shrub-grass stand (SG), respectively. Nutrient concentrations of both soil and leaf were determined, and ratios of N to P and vegetation nutrient reuse capacity (VNR) calculated as well as vegetation coverage, vegetation canopy height and tree density measured across the three stands. Mean leaf N/P ratio was lowest (16.1 ± 1.4) in FO and highest (33.5 ± 3.2) in SG. Vegetation nutrient reuse increased with the decline in N and P availability in soils for these three stands. VNR of N and P ranged from 8.5 to 25.2 mg N g−1 and from 0.4 to 1.1 mg P g−1, respectively, and appeared lowest in SG (10.4 mg N g−1 and 0.5 P mg g−1 on average, respectively) and highest in FO (22.4 mg N g−1 and 0.9 mg P g−1 on average, respectively). Although there was no substantial difference in phosphorus reuse efficiencies between plant species and vegetation stands, concentrations of N and P of senesced leaves (SLs) were, respectively, found in positive correlation with the concentrations of mature leaves. The variation of VNR with elements indicated that P is cycled within vegetation much more efficiently than N across the stands. This study demonstrated that the karst vegetations were generally at P-limited or N- and P- co-limited stresses and that N/P ratio could be an effective indictor for nutrient limitation in the karst ecosystems at vegetation community level rather than at tree species level. It is proposed that phosphorus reuse by mature leaves could be an adaptation strategy by the dominant species to the low P availability in the karst soil.  相似文献   

7.
An extensive soil survey was carried out in Shanghai to investigate the spatial distribution and possible sources of polycyclic aromatic hydrocarbons (PAHs) in urban soils. Soil samples were collected from highways, iron-smelting plants, steel-smelting plants, shipbuilding yards, coking plants, power plants, chemical plants, urban parks, university campuses and residential areas and were analyzed for 16 PAHs by gas chromatography with mass detection. High PAH concentrations were found in all locations investigated, with mean values of soil total PAH concentrations in the range 3,279–38,868 μg/kg DM, and the PAH concentrations were significantly influenced by soil organic matter content. Soil PAH profiles in all districts were dominated by PAHs with 4–6 rings. Principal components analysis and diagnostic ratios of PAHs indicate that they were mainly derived from coal combustion and petroleum but in soils from highways the PAHs were derived largely from vehicle exhaust emissions. The high concentrations of PAHs found indicate that many urban soils in Shanghai represent a potential hazard to public health.  相似文献   

8.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

9.
Coal handling, crushing, washing, and other processes of coal beneficiation liberate coal particulate matter, which would ultimately contaminate the nearby soils. In this study, an attempt was made to determine the status of soil bio-indicators in the surroundings of a coal beneficiation plant, (in relation to a control site). The coal beneficiation plant is located at Sudamudih, and the control site is 5 km away from the contaminated site, which is located in the colony of Central Institute of Mining and Fuel Research Institute, Digwadih, Dhanbad. In order to estimate the impact of coal deposition on soil biochemical characteristics and to identify the most sensitive indicator, soil samples were taken from the contaminated and the control sites, and analyzed for soil organic carbon (SOC), soil N, soil basal respiration (BSR), substrate-induced respiration (SIR), and soil enzymes like dehydrogenase (DHA), catalase (CAT), phenol oxidase (PHE), and peroxidase (PER). Coal deposition on soils improved the SOC from 10.65 to 50.17 g kg−1, CAT from 418.1 to 804.11 μg H2O2 g−1 h−1, BSR from 8.5 to 36.15 mg CO2–C kg−1 day−1, and SIR from 24.3 to 117.14 mg CO2–C kg−1 day−1. Soils receiving coal particles exhibited significant decrease in DHA (36.6 to 4.22 μg TPF g−1 h−1), PHE (0.031 to 0.017 μM g−1 h−1), PER (0.153 to 0.006 μM g−1 h−1), and soil N (55.82 to 26.18 kg ha−1). Coal depositions significantly (P < 0.01) decreased the DHA to 8.8 times, PHE to 1.8 times, and PER to 25.5 times, but increased the SOC to 4.71 times, CAT to 1.9 times, SIR to 4.82 times, and BSR to 4.22 times. Based on principal component analysis and sensitivity test, soil peroxidase (an enzyme that plays a vital role in the degradation of the aromatic organic compounds) is found to be the most important indicator that could be considered as biomarkers for coal-contaminated soils.  相似文献   

10.
210Pb geochronologies of Cd, Cu, Hg, and Pb fluxes were obtained from the intertidal mudflat sediments of the coastal lagoons Chiricahueto, Estero de Urías, and Ohuira in the Mexican Pacific. The Cu and Hg sediment concentrations at the three lagoons fell within the ranges of 6–76 μg g−1 and 0.1 to 592 ng g−1, respectively; Chiricahueto and Estero de Urías sediments had comparable Cd and Pb concentrations within the ranges of 0.2–2.1 μg g−1 and 10–67 μg g−1, respectively; whereas in Ohuira lagoon, Cd concentrations were lower (0.1–0.5 μg g−1) and Pb concentrations were higher (115–180 μg g−1) than in the other lagoons. The metal fluxes (μg cm−2 y−1) for the three lagoons fell within the ranges of 0.02–0.15 for Cd, 0.7–6.0 for Cu, 0.001–0.045 for Hg, and 0.7–20 for Pb. The Hg pollution in Estero de Urías was attributed to the exhausts of the thermoelectric plant of Mazatlan and the metal enrichment in Chiricahueto and Ohuira was related to the agrochemical wastes from the croplands surrounding these lagoons.  相似文献   

11.
Recent identification of elevated excess 210Pb (≤302.6 mBq L−1) and 137Cs (≤111.3 mBq L−1) activity in drinking water wells up to 20 m depth indicates some transport of airborne radionuclide fallout beyond soils in the Shaker Village catchment, Maine. Estimated airborne mass loading 210Pbex fluxes of about 0.9 mBq m−3, canvass this headwater catchment and may be sufficient to pose risks to unprotected shallow wells. Inventories of 210Pbex and 137Cs in pond sediments indicate maximum median activities of 943 mBq g−1 and 40.0 mBq g−1, respectively. Calculated 210Pbex fluxes in the catchment soils range from 0.62–0.78 Bq cm−2 year−1 and yield a mean residence time of near 140 years. Measured 137Cs activity up to 51.1 mBq g−1 occurs in sediments at least to 5 m depth. Assumed particle transport in groundwater with apparent 85Kr ages less than 5 years BP (2005) may explain the correlation between these particle-reactive radionuclides and elevated activity in some drinking water wells.  相似文献   

12.
The objective of this research was to investigate the morphology, genesis and classification of organic soils formed on depression and flat land around Lake Yenicaga, west-central Turkey. Formation of the area has been influenced by tectonic and karst processes. This peatland is important in this area due to its extensive use as a horticultural plant growth medium resulting from positive physical and chemical properties. Organic soils in the study area were formed in nutrient-rich conditions and it is classified as typical basin peat. Four representative pedons were excavated in the study area based on extensive observations performed with random grid method using an auger. Samples were taken from horizons in each profile for laboratory analyses. Organic matter contents ranged from 12.5 to 91.5% across all four pedons. Fiber contents were between 4.3 and 91.5%, and N ranged from 0.56 to 2.19%. Cation exchange capacity ranged from 37 to 222 cmol kg−1, bulk density from 0.09 to 0.78 g cm−3, lime from 0.15 to 2.62%. The pH and ECe values ranged from 5.38 to 7.92 and 0.50 to 3.80 dS m−1, respectively. Sand, silt and clay contents of the organic soils ranged between 0.75–3.92, 40.70–74.77 and 24.15–57.30%, respectively. Differences in organic soils were found to depend on the environment, botanical origins, decomposition degrees, and groundwater composition. The organic soils of the research area were classified in the typic, hemic and hydric subgroups of Medifibrists (Soil Taxonomy 1999).  相似文献   

13.
In southern California, USA, wildfires may be an important source of mercury (Hg) to local watersheds. Hg levels and Hg accumulation rates were investigated in dated sediment cores from two southern California lakes, Big Bear Lake and Crystal Lake, located approximately 40-km apart. Between 1895 and 2006, fires were routinely minimized or suppressed around Big Bear Lake, while fires regularly subsumed the forest surrounding Crystal Lake. Mean Hg concentrations and mean Hg accumulation rates were significantly higher in Crystal Lake sediments compared to Big Bear Lake sediments (Hg levels: Crystal Lake 220 ± 93 ng g−1, Big Bear Lake 92 ± 26 ng g−1; Hg accumulation: Crystal Lake 790 ± 1,200 μg m−2 year−1, Big Bear 240 ± 54 μg m−2 year−1). In Crystal Lake, the ratio between post-1965 and pre-1865 Hg concentrations was 1.1, and several spikes in Hg levels occurred between 1910 and 1985. Given the remote location of the lake, the proximity of fires, and the lack of point sources within the region, these results suggested wildfires (rather than industrial sources) were a continuous source of Hg to Crystal Lake over the last 150 years.  相似文献   

14.
Vertical transport of selected polycyclic aromatic hydrocarbons (PAHs) in different particle-size fractions of sandy soils was investigated by simulation experiments in soil columns. Tested soil samples were fractionized into three particle-sizes including sand, coarse silt and fine silt (2,000–50, 50–20 and <20 μm). Rainfall simulations were conducted in artificially PAHs contaminated soil columns with 30 cm length and 5 cm diameter in 40 days. PAHs were extracted from soil samples and determined by high performance liquid chromatography (HPLC). Results showed that the residue level of PAHs in fine silt fraction reached 35.85 mg/kg, which was significantly higher than those in sand and coarse silt fraction (16.28 and 11.80 mg/kg, respectively), probably because PAHs in macroporous fractions were prone to volatilize or degrade compared with that in microporous fractions. Linear relationship between the residue levels of individual PAH (R PAHs) and the value of partition coefficient (log K oc) was regressed as R PAHs = 1.55 × log K oc − 5.86, R 2 = 0.91, n = 9. These results indicated that vertical transport of the mixed PAHs in soils were controlled both by the nature of PAHs (i.e. log K oc, molecular weight), soil particle size and soil organic contents, which could influence the transport of PAHs.  相似文献   

15.
Terra rossa and eutric cambisol soils were surveyed in Slovenia. At both sites, 6–13 boreholes were drilled in a regular 24 m × 24 m square grid. Soil samples from various depths were taken for gamma spectrometric analysis, and radon in soil gas was measured at a depth of 80 cm using an AlphaGuard instrument. The following ranges of activity concentration (Bq kg−1) were obtained for 238U, 226Ra, 228Ra, 40K and 137Cs: in terra rossa, 64–74, 70–84, 45–49, 293–345, 20–30 and, in eutric cambisol, 55–80, 132–147, 50–57, 473–529, 106–272. Radon activity concentrations in both soils ranged from about 100 kBq m−3 to 370 kBq m−3.  相似文献   

16.
Soil nitrogen, phosphorous, and potassium concentrations accurately revealed spatial distribution maps and site-specific management-prone areas through inverse distance weighting (IDW) method in the Amik Plain, Turkey. Spatial mapping of soil nitrogen, phosphorous, and potassium is a very severe need to develop an economically and environmentally sound soil management plans. The objectives of this study were (a) to map spatial variability of total N, available P, and exchangeable-K content of Amik Plain’s soils and (b) to locate problematic areas requiring site specific management strategies for the nutrient elements. Spatial analyses of Kjeldhal-N, Olsen-P, and exchangeable-K concentrations of the soils were performed by the IDW method. Mean N content for surface soils (0–20 cm) was 1.38 g kg−1, available P was 28.19 kg ha−1 and exchangeable-K was 690 kg ha−1 with the differences between maximum and minimum being 7.63 g N kg−1, 242 kg P ha−1, and 2,082 kg K ha−1. For the surface soil, site-specific management-prone areas of Kjeldahl-N, Olsen-P, and exchangeable-K for “low and high + very high” classes were found to be 20.1–17.8%, 24.7–10.0%, and 4.1–39.6%, respectively. Consequently, lands with excessive nutrient elements require preventive-leaching practices, whereas nutrient-poor areas need fertilizer applications in favor of increasing plant production.  相似文献   

17.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

18.
Mercury mobility and bioavailability in soil from contaminated area   总被引:2,自引:0,他引:2  
The mobility and bioavailability of mercury in the soil from the area near a plant using elemental mercury for manufacturing thermometers, areometers, glass energy switches and other articles made of technical glass has been evaluated. Mercury has been determined by sequential extraction method and with additional thermo desorption stage to determine elemental mercury. The procedure of sequential extraction involves five subsequent stages performed with the solutions of chloroform, deionized water, 0.5 M HCl, 0.2 M NaOH and aqua regia. The mean concentration of total mercury in soil was 147 ± 107 μg g−1 dry mass (range 62–393), and the fractionation revealed that mercury was mainly bound to sulfides 56 ± 8% (range 45–66), one of the most biounavailable and immobile species of mercury in the environment. The fractions that brought lower contribution to the total mercury content were semi-mobile humic matter 22 ± 9% (range 11–34) and elemental mercury 17 ± 5% (range 8–23). The contributions brought by the highly mobile and toxic organomercury compounds were still lower 2.3 ± 2.7% (range 0.01–6.5). The lowest contributions brought the acid-soluble mercury 1.5 ± 1.3% (range 0.1–3.5) and water-soluble mercury 1.0 ± 0.3% (range 0.6–1.7). The surface layer of soil (0–20 cm) was characterized by higher mercury concentrations than that of the subsurface soil (60–80 cm), but the fractional contributions were comparable. The comparison of mercury fractionation results obtained in this study for highly polluted soils with results of fractionation of uncontaminated or moderately contaminated samples of soil and sediments had not shown significant statistical differences; however, in the last samples elemental mercury is usually present at very low concentrations. On the basis of obtained correlation coefficients it seems that elemental mercury soils from “Areometer” plant are contaminated; the main transformation is its vaporization to atmosphere and oxidation to divalent mercury, probably mainly mediated by organic matter, and next bound to humic matter and sulfides.  相似文献   

19.
Karst depressions comprise geomorphologically important sources and sinks for sediments and associated pollutants; yet the sedimentology of many depressions is not well understood in the world. In this paper, the 137Cs technique was employed to estimate recent sedimentation rates in a Chinese polygonal karst depression. The results indicate that the sediment deposition rates ranged from 0.91 to 1.97 mm year−1 from 1963 to 2007, and the average sediment deposition rate and specific deposit yield were estimated to be 1.47 mm year−1 and 20 t km−2 year−1, respectively. These results are consistent with the local monitoring data of runoff fields, which confirms the validity of the overall approach. This shows that the soil loss rate is very low in some karst areas of Southwest China. Above all, the approach appears to offer valuable potential to study surface erosion by estimating sediment deposition rates of karst depressions, rather than the assessment of complicated soil erosion in stony soils of carbonate rock slopes. In addition, the space distribution of surface soil and 137Cs inventories are affected remarkably by the inhomogeneous dissolution of limestone under the soil. It may be an important phenomenon, which exists widely in karst areas, and it is significantly different from other places.  相似文献   

20.
Groundwater regime and mineralization process in moraine sandy loam and peat soils of the active sulphatic karst zone (karst processes develop in the Upper Devonian gypsum–dolomites) in Lithuania and the dependence of chemical compounds concentrations on water level fluctuations are reviewed. According to ion sum, groundwater mineralization in peat soil is 1.1–1.3 times higher than in loam soil. Based on this result, lower levels of groundwater predetermine a more intensive mineralization process. A stronger correlation was determined between groundwater levels and concentrations of chemical compounds (Ca2+, Mg2+, SO4 2− and HCO3 ) enhancing groundwater mineralization. In mineral soil (sandy loam) nitrate (NO3) concentration is highly influenced by changing stages of groundwater level as well as by nearby sinkholes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号