首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
南皮县淡水资源严重短缺,制约工农业与经济社会的发展.春季开采浅层地下水包括微咸水和半咸水抗旱灌溉,腾出地下含水层空间;汛期增加降雨入渗,减少径流流失,防渍防涝,把时空分布不均的天然降雨转化为地下水资源;秋冬利用河道沟渠引蓄河水补源,淡化地下水质,增加地下水可采量.地上水地下水联合运用,保持水资源采补平衡.实现旱涝碱咸综合治理、水资源可持续利用与经济社会可持续发展.  相似文献   

2.
Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF2, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl–Na or SO4–Na type water).  相似文献   

3.
华北平原东部淡水资源短缺,旱涝碱成灾害限制了农业生产的可持续发展。海河的治理,解决了排洪排涝排咸出路。春季开发利用地下水包括微咸水和半咸水抗旱灌溉。夏季利用伏雨洗盐排咸,增大降雨入渗,减少径流流失,防治渍涝灾害,把降雨转化为地下水资源。秋冬引蓄河水,回灌地下水补源。以土壤与潜水的地层空间作为调节大气降水、土壤水、地下水、地表水的地下水库,以调控地下水埋深在临界动态为指标,最大限度地把时空分布不均的天然降雨转化为可持续利用的水资源。地表水地下水联合运用,促使水资源采补平衡,降雨灌溉淋洗脱盐强于干旱蒸发积盐过程,地下水淡化强于矿化过程。实现旱涝碱咸综合治理,水土资源可持续利用,经济社会可持续发展,生态环境良性循环。  相似文献   

4.
利用测温法和核磁共振法测量了不同浓度典型盐溶液(NaCl、Na2CO3)饱和重塑粉土的冻结温度及冻结特征曲线,并与不同浓度的NaCl、Na2CO3纯溶液作对比分析,研究初始含盐量对冻结温度及未冻水含量的影响。结果表明:土样冻结温度随初始含盐量的增加而逐渐降低;相同浓度NaCl溶液饱和土样的冻结温度低于相应纯溶液的冻结温度,但相同浓度 (<0.6 mol/L)Na2CO3溶液饱和土样的冻结温度却比纯溶液的冻结温度高;同一负温下,土样中未冻水含量随NaCl初始含盐量的增加而增多,但随Na2CO3初始含盐量的变化不明显。通过机制分析,表明盐类型和含盐量对土水势具有不同的影响。基于改进的广义Clapeyron方程,将含盐分土冻结温度表达式引入未冻水含量预测模型,得到了能够考虑不同含盐量影响的土体未冻水含量的定量表达,并与实测数据进行对比,验证了该模型能够较为合理的预测不同温度下含盐土体的未冻水含量。  相似文献   

5.
Freshwater requirements of a semi-arid supratidal and floodplain salt marsh   总被引:2,自引:0,他引:2  
When rivers are impounded, the reduction in downstream flow can produce important and often adverse effects, especially in the estuarine environment. One or more dams have been proposed for the Olifants River system in the Western Cape, South Africa. This estuary has an extensive area of salt marsh that was examined to see whether it required occasional flooding with freshwater to wash out accumulated salts. The dominant salt marsh species,Sarcocornia pillansii, occurred in supratidal and floodplain areas where the water table was shallowest, the soil moisture highest, and the soil electrical conductivity lowest. Aerial photographs and simulated runoff data showed that no flood had covered the floodplain during the previous 80 years. The data indicate that salt marsh plants use saline groundwater during the dry months of the year in order to survive, but use the short season winter rainfall period with low salinity conditions to grow and reproduce. This study demonstrated that live roots ofS. pillansii reached the water table during the dry season. Tissue and soil water potentials, the relationship between vegetation cover, depth to the water table, and electrical conductivity of the groundwater support the conclusion that saline groundwater is the only source of water during the drier months of the year. Freshwater flooding of the river in winter may be important because it covers the supratidal area with less saline water and reduces the depth to the water table on the floodplain. This makes the groundwater more accessible to the halophytes growing on the floodplain.  相似文献   

6.
Five intersecting resistivity sections have been measured in glaciofluvial deposits hosting an aquifer of regional importance situated along a heavy traffic highway in Sweden. The winter salt spreading has caused a regular salinity increase through the years. For imaging the transport of saltwater in the aquifer, the sections were measured exactly in the same location before and after winter, and interpreted using a time-lapse inverse procedure. Some auger drilling and RCPT data were available for correlation. After winter, the resistivity had generally decreased under the water table and increased above it. The decrease in resistivity in the saturated zone is interpreted as a plume of more saline groundwater created by de-icing salt from the road. The increase in the upper layer can be explained by changes in temperature and soil moisture. The study shows that time-lapse resistivity investigations has potential for imaging hydraulic pathways in complex hydrogeological environments.  相似文献   

7.
为了探明耕地-荒地-海子系统中不同类型水分的运移转化规律,在2018-2019年典型时期对系统内具有代表性的采样点进行水样采集,分析了不同时期内不同水体的δ18O变化特征,并利用二端元混合模型和土壤水动力学方法计算了不同类型水分转化贡献率。结果发现:①在灌溉期,82%的灌溉水储存于1 m土体中,18%的灌溉水通过渗漏补给了耕地地下水,渠系灌溉水通过地下侧向径流给耕地地下水贡献了76%。②灌溉水和降雨对耕地地下水平均贡献率为94%和6%;耕地地下水和降雨对荒地地下水的平均贡献率为71%和29%;荒地地下水和降雨对海子的平均贡献率为43%和57%。③渠系灌溉水通过侧向径流贡献给耕地地下水的水量基本全部迁移给了荒地地下水,地下水迁移转化是由渠系水侧向径流触发的。④灌后5 d,耕荒地交界土层0~40 cm存在饱和-非饱和侧向补给;灌后15 d和30 d,耕地和耕荒地交界处的地下水向根区40~60 cm、土层80 cm以及100 cm补给水分;灌后30 d,耕地中的灌溉水水分消失。⑤在非灌溉期,荒地地下水和海子耗水较多,应给海子补给水分。  相似文献   

8.
为了探明耕地-荒地-海子系统中不同类型水分的运移转化规律,在2018-2019年典型时期对系统内具有代表性的采样点进行水样采集,分析了不同时期内不同水体的δ18O变化特征,并利用二端元混合模型和土壤水动力学方法计算了不同类型水分转化贡献率。结果发现:①在灌溉期,82%的灌溉水储存于1 m土体中,18%的灌溉水通过渗漏补给了耕地地下水,渠系灌溉水通过地下侧向径流给耕地地下水贡献了76%。②灌溉水和降雨对耕地地下水平均贡献率为94%和6%;耕地地下水和降雨对荒地地下水的平均贡献率为71%和29%;荒地地下水和降雨对海子的平均贡献率为43%和57%。③渠系灌溉水通过侧向径流贡献给耕地地下水的水量基本全部迁移给了荒地地下水,地下水迁移转化是由渠系水侧向径流触发的。④灌后5 d,耕荒地交界土层0~40 cm存在饱和-非饱和侧向补给;灌后15 d和30 d,耕地和耕荒地交界处的地下水向根区40~60 cm、土层80 cm以及100 cm补给水分;灌后30 d,耕地中的灌溉水水分消失。⑤在非灌溉期,荒地地下水和海子耗水较多,应给海子补给水分。  相似文献   

9.
According to the field experiment in the sodic saline soil region in the Songnen Plain, the dynamics of the soil water and solute affected by the shallow groundwater were explored during the growing season in 2004. The results presented that, influenced by the strongly evaporative demand, the soil water tended to transport to the upper soil layer with salt. The layered soil water balance model (LSWB model) revealed that the ratio of the water exchange between the groundwater and upper layer of the soil was 11.7:1. The groundwater discharge was 53.86 mm, but the groundwater recharge from the upper layer of soil was only 5.04 mm from 11 July to 06 September, which indicated that the groundwater could discharge to upper layer of soil and influence the soil salinization through capillary rise. The observed values of the salt content from July to mid-October presented that the soil solute was more changeable influenced by the climatic condition at 30 cm depth. As the field saturated hydraulic conductivity was low, the salts mainly accumulated in about 50–70 cm depth soil layer and hardly leached into deeper soil layer. Furthermore, the salt content was mainly controlled by the groundwater in the subsoil below 100 cm depth, the salt content decreased with the groundwater level receding. As influenced by the shallow groundwater and freeze-thaw action, further studies should be performed on the mechanism of soil salinization in the sodic saline soil region in the Songnen Plain of China.  相似文献   

10.
To explore the causes of the ecological environment deterioration of lakes in the Inner Mongolia Plateau, this study took a typical inland lake Daihai as an example, and investigated the groundwater recharge in the process of lake shrinkage and eutrophication. Using the radon isotope (222Rn) as the main means of investigation, the 222Rn mass balance equation was established to evaluate the groundwater recharge in Daihai. The spatial variability of 222Rn activity in lake water and groundwater, the contribution of groundwater recharge to lake water balance and its effect on nitrogen and phosphorus pollution in lake water were discussed. The analysis showed that, mainly controlled by the fault structure, the activity of 222Rn in groundwater north and south of Daihai is higher than that in the east and west, and the difference in lithology and hydraulic gradient may also be the influencing factors of this phenomenon. The 222Rn activity of the middle and southeast of the underlying lake is greater, indicating that the 222Rn flux of groundwater inflow is higher, and the runoff intensity is greater, which is the main groundwater recharge area for the lake. The estimated groundwater recharge in 2021 was 3 017×104 m3, which was 57% of the total recharge to the lake, or 1.6 times and 8.1 times that of precipitation and surface runoff. The TN and TP contents in Daihai have been rising continuously, and the average TN and TP concentrations in the lake water in 2021 were 4.21 mg·L?1 and 0.12 mg·L?1, respectively. The TN and TP contents entering the lake with groundwater recharge were 6.8 times and 8.7 times above those of runoff, accounting for 87% and 90% of the total input, respectively. The calculation results showed that groundwater is not only the main source of recharge for Daihai, but also the main source of exogenous nutrients. In recent years, the pressurized exploitation of groundwater in the basin is beneficial in increasing the groundwater recharge to the lake, reducing the water balance difference of the lake, and slowing down the shrinking degree of the lake surface. However, under the action of high evaporation, nitrogen and phosphorus brought by groundwater recharge would become more concentrated in the lake, leading to a continuous increase in the content of nutrients and degree of eutrophication. Therefore, the impact of changes in regional groundwater quantity and quality on Daihai is an important issue that needs further assessment.  相似文献   

11.
巴尔喀什湖水量平衡研究   总被引:8,自引:3,他引:5  
巴尔喀什-阿拉湖流域是中亚地区重要和独特的景观生态系统,巴尔喀什湖是该区域的核心,其水位变化作为巴尔喀什湖流域生态系统及其保护的主要指标,向来备受世人关注.研究巴尔喀什湖水量平衡,对合理确定巴尔喀什湖生态系统保护目标及保护措施,具有十分重要的理论与现实意义.在明晰巴尔喀什湖水系、水位影响因素的基础上,构建了巴尔喀什湖水...  相似文献   

12.
A MX-80 sodium bentonite crushed granite rock mixture is being saturated in the Äspö Hard Rock Laboratory managed by SKB (the Swedish Company of nuclear waste management) as part of the “Backfill and Plug Test Project”. The Äspö Hard Rock Laboratory is placed in the Swedish Island of Äspö, an underground full-scale laboratory where different testing construction procedures and handling techniques are being studied. The groundwater of Äspö has a variable salt concentration according to the zone considered. The added water during the mixing process of both materials had an average salt concentration of 6 g/L. However, backfill is being saturated with salt water containing higher salt content (up to 16 g/L, 50 / 50 of NaCl and CaCl2 by mass) to speed up the saturation process. The mixture swelling capacity is small due to the low backfill bentonite content, but its activity is still large if compared with natural clayey soils. A coupled hydro-chemical approach was used to simulate the backfill hydration process, comparing the results with in situ measurements. An intrinsic permeability law, depending on salt concentration in the liquid phase, was incorporated into the model. The retention curve was also determined taking into account the effect of the chemical species on backfill behaviour. The simulation of the saturation process shows the importance of studying these problems with a HC (hydro-chemical) formulation, especially if long term behaviour of such mixtures is going to be reproduced.  相似文献   

13.
Recent decline in Lake Urmia water level makes it crucial to consider this issue more seriously. For this purpose, comparison of water level in Lake Urmia with Lake Van in Turkey, which is in relatively similar geographic and climate conditions, can be an effective approach. To follow this objective, trend analysis, regime shift, and coherency analyses are implemented. The results showed negative trend in Lake Urmia water level for the past 20 years, while in Lake Van, the trend is positive. Moreover, correlation of the lake level variations versus the basin rainfall during three common periods, identified by the regime shifts analysis, illustrated a decreasing trend in the correlation. These changes can be attributed to non-climatic factors such as different allocation disciplines in two lake’s catchments. Finally, the coherency analysis showed significant annual and inter-annual frequencies common between the two lake levels. Herein, the short-term period relations are associated with lags, while in long term, they act simultaneously.  相似文献   

14.
Road salt is pervasively used throughout Canada and in other cold regions during winter. For cities relying exclusively on groundwater, it is important to plan and minimize the application of salt accordingly to mitigate the adverse effects of high chloride concentrations in water supply aquifers. The use of geospatial data (road network, land use, Quaternary and bedrock geology, average annual recharge, water-table depth, soil distribution, topography) in the DRASTIC methodology provides an efficient way of distinguishing salt-vulnerable areas associated with groundwater supply wells, to aid in the implementation of appropriate management practices for road salt application in urban areas. This research presents a GIS-based methodology to accomplish a vulnerability analysis for 12 municipal water supply wells within the City of Guelph, Ontario, Canada. The chloride application density (CAD) value at each supply well is calculated and related to the measured groundwater chloride concentrations and further combined with soil media and aquifer vadose- and saturated-zone properties used in DRASTIC. This combined approach, CAD-DRASTIC, is more accurate than existing groundwater vulnerability mapping methods and can be used by municipalities and other water managers to further improve groundwater protection related to road salt application.  相似文献   

15.
Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl) and sodium (Na+), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl and Na+ concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl/Br) ratios and nitrate (N-NO3) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl and Na+ concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na+ were slightly lower than respective Cl concentrations (in equivalents). High Cl/Br mass ratios in the Ohio surface waters indicated the source of Cl was likely halite, or road salt. In addition, analysis of 36Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl and Na+ concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in Cl flux through the 1960s was also identified in the Hocking River at Athens, Ohio. Our results were similar to other studies that examined road salt impacts in the northern US, but a lack of consistent long-term data hindered historical analysis for some rivers.  相似文献   

16.
Lake Tyrrell is a large ephemeral salt lake, the level of which is controlled by climate and groundwater. Up to a metre of water fills the basin during the wetter and cooler winter season, but evaporates during the summer, precipitating up to 10 cm of halite. Each year essentially the same pool of ions is redissolved by this annual freshening. The small percentage of gypsum precipated (< 2%) in the surface salt crust reflects the low calcium content of the brine which, in turn, is a function of the negligible net discharge of calcium from the groundwater system. The small influx of fine‐grained clastic sediment to the lake floor comes from surface runoff, wind, and reworking of older sediment from the shoreline.

The Lake Tyrrell basin lies in a setting in which three different groundwater types, identified by distinct salinities, interact with surface waters. A refluxing cycle that goes from discharging groundwater at the basin margin, to surface evaporation on the lake floor, to recharge through the floor of the lake, controls the major chemical characteristics of the basin. In this process, salts are leached downward from the lake floor to join a brine pool below the lake. This provides an outlet from the lake, especially under conditions that have been both drier and wetter than those of today. Enhanced discharge occurs under drier conditions, when the enclosing regional groundwater divide is lowered, whereas a rise in lake level increases the hydraulic head over that of the sub‐surface brine and promotes an increase in brine loss from the lake.

Sulphate‐reducing bacteria in a zone of black sulphide‐rich mud beneath the salt crust help prevent gypsum from being incorporated into the recent sedimentary record. However, below the upper 5 to 10 cm zone of bacterial activity, discoidal gypsum is being precipitated within the mud from the groundwater. These crystals have grown by displacing the mud and typically “float” in a clay matrix; in some zones, they form concentrations exceeding 50% of the sediment. The occasional laminae of more prismatic gypsum that occur within the upper metre of mud have crystallised from surface brines. The scarcity of these comparatively pure prismatic‐crystal concentrations probably is a function of unfavourable chemical conditions in the lake brine and of the role that sulphate‐reducing bacteria have played.  相似文献   

17.
水质模型研究进展与流域管理模型WARMF评述   总被引:12,自引:0,他引:12       下载免费PDF全文
分析了以地表水、地下水与非点源为代表的水质模型研究发展历程,揭示了水质模型由经验-机理、单要素(或无机、大量、无毒要素)-多要素(或有机、微量、有毒要素)、单介质-多介质、稳态-动态、点源-非点源-两者统一研究、饱水带-包气带-二者统一研究、小规模分散(河流、湖泊、地下水等)-大规模集成(整个流域)、理论研究-实际应用研究的发展特点。认为当前水质模型正处于由水质研究向以水质为中心的流域管理研究转变的关键时期,给出了一个流域管理新模型WARMF的介绍与特点分析。  相似文献   

18.
杭州城市供水85%取自钱塘江河口段,取水水质在枯水大潮期都不同程度地受到盐水入侵的威胁,分析钱塘江河口盐水入侵时空变化及研制二维数值预测模型对保障城市供水安全十分必要。根据钱塘江河口段实测水文氯度资料,分析了强潮作用下盐水入侵的时空变化特征;据此构建考虑斜压作用的二维水流、盐度输移的耦合数学模型,计算格式采用守恒性较好的有限体积法;在模型验证的基础上,数值分析了径流和潮汐对钱塘江河口段盐水入侵的影响,结果表明河口段的盐水入侵明显地受径流和潮汐的影响,据此可通过增大上游新安江水库的下泄流量抑制盐水入侵上溯以减小取水口氯度及超标时间,确保用水安全。  相似文献   

19.
《Applied Geochemistry》2005,20(10):1907-1919
Soil from an infiltration trench for highway runoff was leached in columns alternately with NaCl and de-ionised water to simulate the runoff of de-icing salt into the trench followed by snowmelt or rainwater. Simultaneously, two columns with the same soil were leached with de-ionised water throughout the experiment. In addition, the groundwater below the infiltration trench was sampled on some occasions. The column leachate and groundwater were split into two sub samples, one was filtered though a 0.45 μm filter; both were analysed for Pb, Cd, Zn, Fe and total organic carbon (TOC). The column experiment showed clearly that an extensive mobilisation of Pb occurred in low electrolyte water leaching following NaCl leaching. The high Pb concentration coincided with peaks in Fe and TOC concentrations and implied colloid-assisted transport. Conversely, Cd and Zn concentrations were raised in the NaCl leachate and a high correlation with Cl showed that Cl complexes are important for the mobilisation, although a pH effect and ionic exchange cannot be excluded. Only 0.15% and 0.06% of the total amount of Pb was leached from the columns leached with alternating NaCl and deionised water confirming the usual hypotheses about the high immobility of Pb in soils. However, on one occasion when the ionic strength and pH was the lowest measured the concentration of Pb in groundwater sampled from 2.5 m depth was 27 μg L−1 in the dissolved phase (<0.45 μm) and 77 μg L−1 in the particle phase (>0.45 μm). These Pb concentrations are almost 3 and 8 times above the Swedish limit for drinking water quality. Accordingly, in spite of the immobility of Pb the accumulation in roadside soils is so large that groundwater quality is threatened. In conclusion, the study suggests that roadside soils impacted by NaCl from de-icing operations contribute Pb to groundwater by colloid-assisted transport.  相似文献   

20.
羌塘盆地多格错仁地区盐泉地球化学特征及成钾预测   总被引:2,自引:0,他引:2  
多层次、大面积发育的石膏和前人的古地理资料表明,羌塘盆地侏罗纪海相地层具有较好的成盐地质条件。在多格错仁周缘地区侏罗系发育有一系列氯化钙型的盐泉。通过野外地质工作,采集了30个盐泉的水样,并在室内对其地球化学组成和氢氧同位素组成进行了测定。地球化学分析表明,盐泉中富集Na+、Cl-、Ca2+、K+、Li和Rb,Br和B含量相对贫乏,而地球化学特征系数显示了明显的找钾异常。盐泉水的氢氧同位素特征表明盐泉的供给水源为大气降水,大气降水进入研究区岩层后成为地下水,溶滤了地层中的盐类矿物,从而形成了溶滤卤水,这与地球化学特征系数的判别结果是一致的。综合看来,多格错仁南岸找钾远景显示最好,该点盐泉具有盐度高、K+含量高的特征,而且很可能溶滤了钾盐-石盐岩、钾盐层,万安湖西北、源泉河、东温泉盐泉找钾远景次之,主要表现为盐度相对较低,但是含钾显示也异常明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号