首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Untreated disposal of wastewater from coal-fired power plants has environmental and public health concerns in the developing Shanbei Energy Base, Northwest China. An in situ experiment was conducted in the easily accessible wind-blown sands to study their efficiency in removal of pollutants. Approximately 245 l of wastewater was used in the test, which lasted 409 min. Sand samples were collected at 5 discrete depths, 0.2, 0.4, 0.6, 1, and 1.5 m from the surface before, at the end of, and 20 days after the infiltration test. Pollutants commonly found in wastewater were analyzed for all the sand samples. 20 days after infiltration, the content of As in the sand samples had a general reduction, decreased from original 0.0109–0.0132 to 0.005 mg/kg. The content of N-NH4 also decreased from original 1.1–1.5 to 0.8–1.0 mg/kg. But the content of Cd and petroleum was stable and had no decreasing trend. The test indicates the wind-blown sands are more effective for As and N-NH4, but less effective for petroleum and Cd.  相似文献   

2.
The Upper San Pedro River Basin in Mexico and the United States is an important riparian corridor that is coming under increasing pressure from growing populations and the associated increase in groundwater withdrawal. Several studies have produced three-dimensional maps of the basin fill sediments in the US portion of the basin but little work has been done in the Mexican portion of the basin. Here, the results of a ground-based transient electromagnetic (TEM) survey in the Upper San Pedro Basin, Mexico are presented. These basin fill sediments are characterized by a 10–40 m deep unsaturated surficial zone which is composed primarily of sands and gravels. In the central portion of the basin this unsaturated zone is usually underlain by a shallow clay layer 20–50 m thick. Beneath this may be more clay, as is usually the case near the San Pedro River, or interbedded sand, silt, and clay to a depth of 200–250 m. As you move away from the river, the upper clay layer disappears and the amount of sand in the sediments increases. At 1–2 km away from the river, sands can occupy up to 50% of the upper 200–250 m of the sediment fill. Below this, clays are always present except where bedrock highs are observed. This lower clay layer begins at a depth of about 200 m in the central portion of the basin (250 m or more at distances greater than 1–2 km from the river) and extends to the bottom of most profiles to depths of 400 m. While the depth of the top of this lower clay layer is probably accurate, its thickness observed in the models may be overestimated due to the relatively low magnetic moment of the TEM system used in this study. The inversion routine used for interpretation is based on a one-dimensional geologic model. This is a layer based model that is isotropic in both the x and y directions. Several survey soundings did not meet this requirement which invalidates the inversion process and the resulting interpretation at these locations. The results from these locations were rejected.  相似文献   

3.
利用TRIME-T3型TDR仪土壤含水量测量系统和WM-1型负压计系统现场监测了强烈灌溉条件下整个作物生长期西芹大棚土壤水分、土壤负压(基质势)的动态变化;研究表明,不同深度土壤含水量受强烈灌溉的影响程度不同,0.3 m深度处受影响最大,1.0,2.0 m深度处受影响最小;受灌溉的影响,0.3,0.6,1.0 m深度处负压有所波动,其中0.3 m深度处负压的波动幅度最大;2.0 m深度处的土壤一直处于"饱和-非饱和"两种状态的转换之中;在地下水埋深为2.0 m左右,且上部土层的渗透性较差(饱和渗透系数仅为0.04 m/d)的情况下,地下水水位受灌溉的影响极小.  相似文献   

4.
An experiment was carried out in two soils of oasis farmland and the surrounding desert at the southern periphery of the Gurbantonggut Desert, in central Asia, to test the effects of land use on soil organic carbon (SOC) stock and carbon efflux in deep soil. The result showed that although SOC content in the topsoil (0–0.2 m) decreased by 27% after desert soil was cultivated, total carbon stock within the soil profile (0–2.5 m) increased by 57% due to the significant increase in carbon stock at 0.2- to 2.5-m depth, and carbon efflux also markedly increased at 0- to 0.6-m depth. In the topsoil, the carbon process of the oasis was mainly dominated by consumption; in the subsoil (0.2–0.6 m) it was likely to be co-dominated by storage and consumption, and the greatest difference in SOC stock between the two soils also lay in this layer; while in the deep layer (0.6–2.5 m) of the oasis, with a more stable carbon stock, there was carbon storage dominated. Moreover, carbon stocks in the deep layer of the two soils contributed about 65% of the total carbon stocks, and correspondingly, microbial activities contributed 71% to the total microbial activity in the entire soil profile, confirming the importance of carbon cycling in the deep layer. Desert cultivation in this area may produce unexpectedly high carbon stocks from the whole profile despite carbon loss in the topsoil.  相似文献   

5.
Effects of saline water irrigation on soil properties in northwest China   总被引:2,自引:1,他引:1  
Due to the lack of freshwater, highly saline groundwater was the main irrigation source in the last few decades in the Minqin Basin, which is in northwest China. The study evaluates the effects of salt accumulation on the soil physical–chemicals properties. Undisturbed and disturbed soil samples were taken from the experiment site, which was irrigated with saline water at a concentration of 0.8, 2 and 5 g L−1 (coded later as C08, C2 and C5). Undisturbed soil samples, at depths of 0–45 and 45–60 cm were taken to determine the water retention curve (WRC). Moreover, in the same place, another set of undisturbed soil samples were taken to determine the porosity and pore-size distribution (PoSD). From the WRC, the water-holding capacity of the soil was estimated. Disturbed soil samples at depths of 0–20, 0–45, 45–60 and 80–100 cm were taken to determine the index of aggregates stability in water (IC). The electrical conductivity of the saturated paste (ECe) was determined at depths of 0–30, 30–60 and 60–90 cm, during the irrigation season on C08, C2 and C5 treatments. The results show that the total porosity and the index of aggregates stability in water decrease with the increasing salinity of irrigation water, and the ECe increases with the increasing salinity of irrigation water especially in the surface soil. The water-holding capacity (WHC) of soil also increases with the increasing salinity of irrigation water.  相似文献   

6.
Electrical imaging of the groundwater aquifer at Banting,Selangor, Malaysia   总被引:1,自引:0,他引:1  
A geophysical study was carried out in the Banting area of Malaysia to delineate groundwater aquifer and marine clay layer of the alluvial Quaternary deposits of Beruas and Gula Formations. The Beruas Formation is formed by peat and clayey materials as well as silt and sands, whereas the Gula Formation consists of clay, silt, sand and gravels. Both Formations were deposited on top of the Carboniferous shale of the Kenny Hill Formation. A 2-D geoelectrical resistivity technique was used. Resistivity measurement was carried out using an ABEM SAS 4000 Terrameter. The 2-D resistivity data of subsurface material for each survey line was calculated through inverse modelling and then compared with borehole data. The resistivity images of all the subsurface material below the survey lines show similar pattern of continuous structure of layering or layers with some lenses with resistivity ranging from 0.1 to 50 Ωm. The upper layer shows resistivity values ranging from 0.1 to 10 Ωm, representing a clay horizon with a thickness up to 45 m. The second layer with depth varies from 45 to 70 m below surface and has resistivity values ranging from 10 to 30 Ωm. Borehole data indicate coarse sand with some gravels for this layer, which is also the groundwater aquifer in the study area. The lowermost layer at a depth of 70 m below ground level shows resistivity values ranging from 30–50 Ωm and can be correlated with metasedimentary rocks consisting of shale and metaquartzite.  相似文献   

7.
Terra rossa and eutric cambisol soils were surveyed in Slovenia. At both sites, 6–13 boreholes were drilled in a regular 24 m × 24 m square grid. Soil samples from various depths were taken for gamma spectrometric analysis, and radon in soil gas was measured at a depth of 80 cm using an AlphaGuard instrument. The following ranges of activity concentration (Bq kg−1) were obtained for 238U, 226Ra, 228Ra, 40K and 137Cs: in terra rossa, 64–74, 70–84, 45–49, 293–345, 20–30 and, in eutric cambisol, 55–80, 132–147, 50–57, 473–529, 106–272. Radon activity concentrations in both soils ranged from about 100 kBq m−3 to 370 kBq m−3.  相似文献   

8.
Nine vertical electrical soundings of Schlumberger configuration were measured with AB/2 = 1–500 m. Manual and computerized interpretation were done to detect the subsurface stratigraphy of the study area. The results show that the subsurface section consists of alternated units of limestone, clay, marly limestone and dolomitic limestone and the thickness of clay unit ranged from 10 to 40 m. Nine dipole–dipole sections have also been constructed to give a clearer picture of the subsurface at the study area. The length of each dipole–dipole section is 235 m, with a electrode spacing ranging between 5 and 25 m. The Res2Dinv software was used for processing and interpretation of field data. The dipole–dipole sections at the upper plateau display high resistivity values at most parts of the plateau. Twelve shallow seismic refraction profiles are measured at selected locations for the dipole sections to define the interface between the fractured limestone and the upper surface of the clay layer. Each profile consists of 24 geophones with a geophone spacing of 2–3 m. Interpretation of seismic data indicates that the surface layer of the upper plateau consists of fractured limestone with a velocity range of 1.16–1.56 km/s and another layer of compacted clay with a velocity range of 1.38–1.88 km/s. Furthermore, the surface layer of the middle plateau consists of marl and marly limestone with a velocity about 2.1 km/s and its underlying layer consists of massive limestone with a velocity of 4.94 km/s.  相似文献   

9.
In this study, we tried to model the processes of moisture and heat transfers in the soil–vegetation–atmosphere system in an integrated comprehensive way. The purpose of the study is to simulate profiles of soil water content and temperature at root active zone (i.e., 0–50 cm), taking the root water uptake, soil evaporation, and canopy transpiration into account. The water and heat transfer equations are solved by an iterative Newton–Raphson technique and a finite difference method is used to solve the governing equations. Soil water content and soil temperature dynamics could be simulated rather accurately in a cropped field on Loess Plateau area. The water and heat transfer flux predicted by the classical theory of Philip and de Vries (Tans Am Geophys Union 38:222–232, 1957) slightly overestimated near the surface and underestimated at the deeper depths, as a result of the overestimated soil evaporation at the top soil layer (0–10 cm) and underestimated crop canopy transpiration at the deeper depths (10–50 cm). Water content tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). Soil temperatures during the simulated period was slightly overestimated in the nighttimes and underestimated in the daytimes, as a result of the underestimated soil water content at the top soil layer (0–10 cm) and overestimated at the deeper depths (10–50 cm). Soil temperatures tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). While the sum of the water and heat regimes yielded a much better match with the soil water content and soil temperature obtained from the field observations. The results obtained show that the model coupled water and heat transfer is able to capture the dynamics of soil water content.  相似文献   

10.
The geochemical study of groundwaters and core sediments from the Old Brahmaputra plain of Bangladesh was conducted to investigate the distribution of arsenic and related trace elements. Groundwaters from tube wells are characterized by pH of 6.4–7.4, dissolved oxygen (DO) of 0.8–1.8 mg/l, Ca contents of 5–50 mg/l, and Fe contents of 0.2–12.9 mg/l. Arsenic concentrations ranged from 8 to 251 μg/l, with an average value of 63 μg/l. A strong positive correlation exists between As and Fe (r 2 = 0.802; p = 0.001) concentrations in groundwater. The stratigraphic sequences in the cores consist of yellowish silty clays at top, passing downward into grayish to yellowish clays and sands. The uppermost 3 m and lower parts (from 13 to 31 m) of the core sediments are oxidized (average oxidation reduction potential (ORP) +170 and +220 mV, respectively), and the ORP values gradually become negative from 3 to 13 m depths (−35 to −180 mV), indicating that anoxic conditions prevail in the shallow aquifers of the Brahmaputra plain. Age determinations suggest that clay horizons at ~10 m depth were deposited at around 2,000 and 5,000 years BP (14C ages) during the transgressive phase of sea-level change. Elevated concentrations of As, Pb, Zn, Cu, Ni, Cr, and V are present in the silts and clays, probably due to adsorption onto clay particles. Significant concentrations of As occur in black peat and peaty sediments at depths between 9 and 13 m. A strong positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed onto Fe oxides in aquifer sediments.  相似文献   

11.
Grainsize, mineralogy and current-meter data from the Northern Rockall Trough are presented in order to characterise the sandy contourite that forms the sedimentary environment of the Darwin cold-water coral mounds, and to investigate the impact of this environment on the mound build-up. Large clusters of small cold-water coral mounds, 75 m across and 5 m high, have been found southwest of the Wyville Thomson Ridge, at 900–1,100 m water depth. Their present-day sedimentary environment consists of a subtly sorted sandy contourite, elongated NE–SW, roughly parallel to the contours. Critical erosional and depositional current speeds were calculated, and trends in both the quartz/feldspar and foraminifera fractions of the sands show a bi-directional fining from bedload/erosion-dominated sands in the NE to suspension/deposition-dominated sediments in the SW and towards the S (downslope). This is caused by a gradual reduction in governing current speed, linked to a reduction in slope gradient, and by the increasing distance from the current core in the downslope direction. No specific characteristics were found distinguishing the mound sediments from the surrounding sands: they fit in the overall spatial pattern. Some mound cores show hints of a fining-upward trend. Overall the mound build-up process is interpreted as a result of sediment baffling.  相似文献   

12.
Permafrost degradation has the potential to significantly change soil moisture. The objective of this study was to assess the variability of soil moisture in a permafrost region using geostatistical techniques. The experiment was conducted in August 2008 in alpine steppe and meadow located in the Qinghai-Tibetan Plateau permafrost region. Four soil depths (0–10, 10–20, 20–30 and 30–40 cm) were analyzed using frequency domain reflectometry, and sampling made of 80 points in a 10 m × 10 m grid were sampled. Soil moisture was analyzed using classical statistics to appropriately describe central tendency and dispersion, and then using geostatistics to describe spatial variability. Classical statistical method indicated that soil moisture in the permafrost region had a normal distribution pattern. Mean surface soil moisture in alpine meadow was higher than that in alpine steppe. The semivariograms showed that soil moisture variability in alpine cold steppe was larger than that in alpine meadow, which decreased with depths. Nugget values in alpine steppe were low (0.1–4.5), in contrast to alpine cold meadow. Soil moisture in alpine steppe had highly structured spatial variability with more than 93.4% spatial heterogeneity, and the range decreased with depth. Soil moisture content in alpine cold meadow had a moderate spatial dependence with a range of 51.3–169.2 m, increasing with depth.  相似文献   

13.
Taiwan High Speed Rail (THSR), which began operations in January 2007, passes through an area in Yunlin County where the largest cumulative subsidence measured during 1992–2006 exceeds 100 cm. Leveling benchmarks, GPS pillars and multi-level monitoring wells were deployed in this area to collect detailed subsidence data from October 2003 to 2006. Leveling is carried out on both ground benchmarks and survey bolts attached to THSR columns. Minimum constraint solutions of leveling networks produce estimated heights accurate to a few mm. Special attention is paid to code smoothing, ionospheric, tropospheric and ocean tidal loading (OTL) effects, so that height estimates from GPS are optimal. Leveling and GPS-derived height changes are consistent to 1 cm, and show that from Stations 210 to 240K of TSHR, the subsidence is bowl shaped. Measurements of sediment compaction in specific depth intervals at three monitoring wells indicate that most of the subsidence is caused by sediment compaction at depths from 50 to 300 m. The major compaction occurs in the interval 220–300 m and is attributed to ground water withdrawal. Large angular deflections as determined from subsidence measurements are detected at some columns, but are below the upper bound (1/1,000) of tolerance specified in the safety code. With the current subsidence and sediment compaction, no significantly reduced loading capacity of the columns is expected to occur. For a safe THSR operation, subsidence and sediment-compaction monitoring should be continued, and current ground water withdrawal in Yunlin must be reduced or stopped.  相似文献   

14.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

15.
During 1992–2007, excessive pumping of groundwater caused large-scale aquifer-system compaction and land subsidence in the Choshui River Alluvial Fan, especially in the area of Yunlin county. The subsidence impedes surface-water runoff and endangers the operation of Taiwan High Speed Rail. Leveling, Global Positioning System (GPS), multi-level compaction monitoring well, and Differential Interferometric Synthetic Aperture Radar (DInSAR) are used to study the extent of subsidence in Yunlin and its mechanism. These sensors complement each other in spatial and temporal resolutions. A leveling network totaling 434 km in length was deployed to derive subsidence at every 1.5 km along the routes, and the result is accurate to few mm and shows a basin-like subsidence pattern centering at Tuku Township. Four multi-level compaction monitoring wells, co-located with GPS pillars, detect compactions at different depths, showing that the aquifer-system compaction (the cause of subsidence) occurs mostly below depths >200 m, where reduction of groundwater pumping is most needed. The vertical displacements from GPS and leveling agree to within 1 cm, and are larger than the cumulative compaction detected by the compaction-monitoring wells, suggesting that compaction also occurs below 300 m (the depth of the wells). The vertical displacements derived using DInSAR and 8 ENVISAT SAR images agree with the leveling result to 1–2 cm.  相似文献   

16.
The Haveri tailings area contains 1.5 Mt of sulfide-bearing waste from the Au–Cu mine that operated during 1942–1961. Geophysical and geochemical methods were used to evaluate and characterize the generation of acid mine drainage (AMD). Correlations were examined among the electrical resistivity tomography (ERT) data, the total sulfide content and concentrations of sulfide-bound metals (Cu, Co, Fe, Mn, Ni, Pb and Zn) of tailings samples, and the resistivity and geochemistry of surface water. The resulting geophysical–geochemical model defines an area in the vadose tailings, where a low resistivity anomaly (<10 Ohm m) is correlated with the highest sulfide content, extensive sulfide oxidation and low pH (average 3.1). The physical and geochemical conditions, resulting from the oxidation of the sulfide minerals, suggest that the low resistivity anomaly is associated with acidic and metal-rich porewater (i.e., AMD). The lower resistivity values in the saturated zone of the central impoundment suggest the formation of a plume of AMD. The natural subsoil layer (silt and clay) and the bedrock surface below the tailings area were well mapped from the ERT data. The detected fracture zones of the bedrock that could work as leakage pathways for AMD were consistent with previous geological studies. The integrated methodology of the study offers a promising approach to fast and reliable monitoring of areas of potential AMD generation and its subsurface movement over large areas (ca. 9 ha). This methodology could be helpful in planning drill core sampling locations for geochemical and mineralogical analysis, groundwater sampling, and choosing and monitoring remedial programs.  相似文献   

17.
The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10–12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A–A′ profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.  相似文献   

18.
Climate change has greatly influenced the permafrost regions on the Qinghai–Tibet Plateau (QTP). Most general circulation models (GCMs) project that global warming will continue and the amplitude will amplify during the twenty-first century. Climate change has caused extensive degradation of permafrost, including thickening of the active layer, rising of ground temperature, melting of ground ice, expansion of taliks, and disappearance of sporadic permafrost. The changes in the active layer thickness (ALT) greatly impact the energy balance of the land surface, hydrological cycle, ecosystems and engineering infrastructures in the cold regions. ALT is affected by climatic, geographic and geological factors. A model based on Kudryavtsev’s formulas is used to study the potential changes of ALT in the permafrost regions on the QTP. Maps of ALT for the year 2049 and 2099 on the QTP are projected under GCM scenarios. Results indicate that ALT will increase with the rising air temperature. ALT may increase by 0.1–0.7 m for the year 2049 and 0.3–1.2 m for the year 2099. The average increment of ALT is 0.8 m with the largest increment of 1.2 m under the A1F1 scenario and 0.4 m with the largest increment of 0.6 m under the B1 scenario during the twenty-first century. ALT changes significantly in sporadic permafrost regions, while in the continuous permafrost regions of the inland plateau ALT change is relatively smaller. The largest increment of ALT occurs in the northeastern and southwestern plateaus under both scenarios because of higher ground temperatures and lower soil moisture content in these regions.  相似文献   

19.
Accurate and reliable characterization of aquifer heterogeneity remains one of the foremost problems in hydrogeology. In this study, ground penetrating radar (GPR) and borehole geophysical logging are used to investigate scales of heterogeneity present locally (<500 m laterally) within an outwash deposit comprised of inter-bedded and cross-bedded sands and gravels of glaciofluvial origin. At a small scale (<15 m laterally), gamma log data in adjacent boreholes show evidence of fining upward sequences, occasional coarsening upward sequences, and abrupt changes in grain sizes, which appear to be laterally continuous at scales of 10 m. At the site scale (<500 m laterally), GPR profiles show a strong reflection interpreted as the water table. Reflectors in the unsaturated zone are more clearly defined than those beneath the water table due to signal attenuation within the saturated sediments. Undulating to discontinuous reflectors at scales of 10–15 m are interpreted to result from interbedded and cross-bedded sands and gravels. A few laterally continuous horizontal to sub-horizontal reflectors, which extend at least up to 360 m, are interpreted as unconformities, based on evidence of gravel bars, truncation of underlying units, as well as scour and fill features in a nearby gravel pit exposure. Overall, the integration of these two geophysical methods provided evidence of unit correlation at the two scales of investigation.  相似文献   

20.
 Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38–40 m, 125–128 m, 131–137 m, 149–158 m, and 183–198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1–2 km of the eastern Snake River Plain. Received: 16 February 1996 · Accepted: 1 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号