首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
王成华  刘庆晨 《岩土力学》2012,33(6):1851-1856
对土体采用Mohr-Coulomb弹塑性本构模型,用接触面单元模拟桩-土相互作用,利用ABAQUS建立桩筏基础--地基--基坑开挖三维有限元分析模型。对基坑开挖影响下的群桩基础竖向承载性状进行了分析,讨论了桩顶反力分布、桩身轴力、桩侧摩阻力以及开挖引起的桩身水平位移及其弯矩的变化规律,并进行了考虑基坑开挖与不考虑基坑开挖的群桩基础竖向承载性状的对比分析。通过研究,取得了基坑开挖对高层建筑桩筏基础影响的基本认识,这些认识对于改进桩筏基础设计理论有一定的参考意义。  相似文献   

2.
A numerical method of analysis is proposed for computation of the elastic settlement of raft foundations using a FEM–BEM coupling technique. The structural model adopted for the raft is based on an isoparametric plate bending finite element and the raft–soil interface is idealized by boundary elements. Mindlin's half-space solution is used as a fundamental solution to find the soil flexibility matrix and consequently the soil stiffness matrix. Transformation of boundary element matrices are carried out to make it compatible for coupling with plate stiffness matrix obtained from the finite element method. This method is very efficient and attractive in the sense that it can be used for rafts of any geometry in terms of thickness as well as shape and loading. Depth of embedment of the raft can also be considered in the analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
本文采用有限元法对高层建筑上部结构—桩筏基础—地基共同作用及相互影响进行了研究。研究表明:高层建筑上部结构—桩筏基础—地基共同作用及相互影响时,基础总体沉降和差异沉降随楼层的增加呈非线性变化趋势,上部结构中存在次应力,弯矩和轴力比常规法设计偏大;随楼层的增加,桩体对荷载的分担比在减少,土体分担比在增加;随着上部结构刚度的增加,荷载向角桩、边桩集中;增加筏板厚度,能减少一定的差异沉降和基础平均沉降,从而减少上部结构的次应力,提高地基土的荷载分担比,同时筏板下桩顶反力分布更不均匀,因此需要从筏板受力,以及考虑筏下桩、土的受力来综合确定一个合理的筏板厚度,使设计安全经济;随着地基土变形模量的提高,地基土分担的上部荷载增加,桩顶反力趋向平均,筏板最大弯矩逐渐减小。桩筏基础在均匀布桩条件下呈中间大边缘小的“碟型”分布。差异沉降是由于上部结构次生应力和筏板内力产生的。通过对地基土刚度以及桩长、桩径、桩距等五种桩基刚度的调整,并分析不同刚度对基础差异沉降影响可知:改变桩长的布桩形式并结合地基土刚度调整的中心布桩形式是高层建筑桩筏基础最佳设计方案。  相似文献   

4.
This paper presents a method of analysis for piled raft systems constructed in layered soils. The method presented takes account of the interactions of the raft, piles and soil without the cost of a full three-dimensional rigorous analysis. This is done by the use of finite layer methods for the analysis of the soil and finite element methods for the raft. Examples are provided in the paper for piled rafts constructed on layered soils, and results are presented for bending moments in the raft and loads in the piles.  相似文献   

5.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

6.
王伟  杨敏  上官士青 《岩土力学》2015,36(Z2):178-184
桩径优化是桩筏基础以差异沉降最小化为目标的基础优化分析的重要组成部分。基于桩筏基础通用分析方法,结合遗传算法提出了包含非线性约束条件的以差异沉降控制为目标的桩筏基础桩径优化分析模型,并给出了优化分析的实施步骤。通过示例说明了桩径优化的实施情况,对比给出了优化前后基础沉降、桩基荷载分布与筏板分担比、筏板弯矩和剪力结果。最后通过参量分析研究了筏板厚度、桩基参量和土体参量对最优桩径确定的影响程度,桩长和土体特性对桩径优化结果影响显著,而桩体材料特性和筏板厚度对桩径优化结果影响不大。  相似文献   

7.
The micropiled raft (MPR) offers an efficient foundation system that combines the advantages of micropiles and piled rafts that can be used as primary foundation system or to enhance an existing raft foundation. In this paper, a calibrated and verified finite element model (FEM) with centrifuge tests was used to carry out a numerical investigation on the performance of MPR in sand. A total of 78 different cases were analyzed in this study to assess the behavior of MPR in sand taking into account a number of factors that may influence its behavior such as: the number of micropiles (MPs), the spacing to micropile diameter (S/Dmp), the raft thickness, type of loading and soil density. The outcomes of this investigation should help in understanding the effect of these factors on the MPR axial stiffness, including; differential settlement; load sharing between the MPs and the raft; and the raft bending moment. Moreover, the ability of the PDR method to evaluate the axial stiffness of a MPR for the preliminary design stage is examined. It was found that the MPR system has the ability to increase the tolerable bearing pressure by 190% compared to an isolated raft system. In addition, an adjustment factor (ωPR) for PDR method was introduced to account for the raft flexibility.  相似文献   

8.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
汪宏伟  纠永志  木林隆 《岩土力学》2012,33(Z1):205-210
提出一种多向荷载同时作用下的刚性桩筏基础简化计算方法,基于Mindlin解,分析桩顶面-桩顶面、桩顶面-土表面、土表面-土表面的相互作用关系。推导多向荷载下桩土体系柔度矩阵,得到刚性桩筏基础的受力和变形的关系,通过与有限元对比证明了文中方法的正确性,在此基础上对耦合荷载作用下的风机基础的受力和变形特性进行分析。研究表明,耦合荷载作用下风机基础将会产生竖向不均匀沉降,并会引起桩顶轴力的的巨大的差异。  相似文献   

10.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to ground movements induced by tunnelling and incorporated into a computer program ‘PRAB’. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates, the piles as elastic beams, and the soil is treated as interactive springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are modelled based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with some published solutions for single piles and pile groups subjected to ground movements induced by tunnelling. Thereafter, the solutions from this approach for the analysis of a pile group and a piled raft subjected to ground movements induced by tunnelling are compared with those from three‐dimensional finite difference program. Good agreements between these solutions are demonstrated. The method is then used for a parametric study of single piles, pile groups and piled rafts subjected to ground movements induced by tunnelling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A simplified method of numerical analysis has been developed to estimate the deformation and load distribution of piled raft foundations subjected to vertical, lateral, and moment loads, using a hybrid model in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. Both the vertical and lateral resistances of the piles as well as the raft base are incorporated into the model. Pile–soil–pile, pile–soil–raft and raft–soil–raft interactions are taken into account based on Mindlin's solutions for both vertical and lateral forces. The validity of the proposed method is verified through comparisons with several existing methods for single piles, pile groups and piled rafts. Workable design charts are given for the estimation of the lateral displacement and the load distribution of piled rafts from the stiffnesses of the raft alone and the pile group alone. Additionally, parametric studies were carried out concerning batter pile foundations. It was found that the use of batter piles can efficiently improve the deformation characteristics of pile foundations subjected to lateral loads. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A simplified analysis method has been developed to estimate the vertical movement and load distribution of pile raft foundations subjected to ground movements induced by tunneling based on a two‐stage method. In this method, the Loganathan–Polous analytical solution is used to estimate the free soil movement induced by tunneling in the first stage. In the second stage, composing the soil movement to the pile, the governing equilibrium equations of piles are solved by the finite difference method. The interactions between structural members (such as pile–soil, pile–raft, raft–soil, and pile–pile) are modeled based on the elastic theory method of a layered half‐space. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups, and pile rafts subjected to ground movements induced by tunneling. Good agreements between these solutions are demonstrated. The method is also used for a parametric study to develop a better understanding of the behavior of pile rafts influenced by tunneling operation in layered soil foundations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
谢芸菲  迟世春  周雄雄 《岩土力学》2019,40(Z1):486-493
变刚度优化设计对于复杂环境中的大规模桩筏基础始终是一个重要难题。基于有限元分析提出一种两阶段优化设计方法,该方法首先根据传统均匀布桩方案的桩顶应力分布对群桩进行分区,然后依据每个子区域桩顶应力之间的关系确定基桩数量调整系数,最后通过调整桩间距来改变各子区域的基桩数量,从而实现变刚度优化设计。运用该方法对多层土体中承担非均匀上部结构荷载的大规模桩筏基础进行变刚度优化设计,计算结果表明优化设计后筏板的差异沉降、平均整体弯矩和群桩顶部的差异应力均显著降低。该方法计算简单,应用范围广,且不受复杂土层条件、非均匀上部结构荷载以及桩基础规模大小形状的限制。  相似文献   

14.
An approximate method, using a simplified soil model, for predicting the behaviour of raft foundations subjected to applied vertical forces and moments will be outlined. Results obtained for circular rafts of finite rigidity are compared with those obtained, from more rigorous solutions, by other authors. Satisfactory agreement is obtained for the surface settlements and raft bending moments over a wide range of soil inhomogeneity. Finally, the versatility of the method of analysis is illustrated for an unusual asymmetrical structure. Computed total and differential settlements are shown to be in reasonable agreement with measured values and those predicted by an independent plane strain finite element analysis.  相似文献   

15.
The paper has proposed a design method considering interaction effects for a piled raft foundation. In this method, the raft is considered as a plate supported by a group of piles and soil. The ultimate load capacity of the pile group is taken into account in calculating the settlement when the foundation is subjected to a large vertical external load. In addition, this method supports estimation of the nonlinear behaviour of the piled raft foundation by considering the nonlinear behaviour of the piles.A step-by-step procedure to apply the proposed method to calculate the settlement and distribution of the bending moment of the piled raft foundation is introduced. To verify the reliability of the proposed method, models of a 16-pile raft and a 9-pile raft with different pile lengths embedded in homogeneous silica sand were tested in a centrifuge and comparisons were made between the results of the proposed method, the results of centrifuge tests, and those of Plaxis 3D. Good agreement between centrifuge modelling and the proposed method is demonstrated, thus showing the potential of the proposed method.  相似文献   

16.
This paper presents the results of a parametric study in which a series of fully coupled, 3-dimensional thermo-hydro-mechanical Finite Element (FE) analyses has been conducted to investigate the effects of the thermal changes imposed by the regular performance of a GSHP system driven by energy piles on a very large piled raft. The FE simulation program has been focused mainly on the evaluation of the following crucial aspects of the energy system design: the assessment of the soil–pile–raft interaction effects during thermal loading conditions; the quantification of the influence of the thermal properties of the soil and of the geometrical layout of the energy piles on the soil–foundation system response, and the evaluation of the influence of the active pile spacing on the thermal performance of the GSHP–energy pile system. The results of the numerical simulations show that the soil–pile–raft interaction effects can be very important. In particular, the presence of a relatively rigid raft in direct contact with the soil is responsible for axial load variations in inactive piles of the same order of those experienced by the thermo-active piles, even when the latter are relatively far and temperature changes in inactive piles are small. As far as the effect of pile spacing is concerned, the numerical simulations show that placing a high number of energy piles in a large piled raft with relatively small pile spacings can lead to a significant reduction of the overall heat exchange from the piles to the soil, thus reducing the thermal efficiency of the system.  相似文献   

17.
An approximate numerical method for the analysis of piled raft foundations is presented. The raft is modelled as a thin plate and the piles as interacting non-linear springs. Both the raft and the piles are interacting with the soil which is modelled as an elastic layer. Two sources of non-linearity are accounted for: (i) the unilateral contact at the raft–soil interface and (ii) the non-linear load–settlement relationship of the piles. Both theoretical solutions and experimental results are used to verify that, despite the approximations involved, the proposed method of analysis can provide satisfactory solutions in both linear and non-linear range. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
An investigation is made to present analytical solutions provided by a Winkler model approach for analysis of piled rafts with nodular pile subjected to vertical loads in nonhomogeneous soils. The vertical stiffness coefficient along a piled raft with the nodular pile in nonhomogeneous soils is derived from the displacement given by the Mindlin solution for elastic continuum analysis. The vertical stiffness coefficients for the bases of the raft and the nodular part in the nodular pile in a soil are expressed by the Muki solution for the 3‐D elastic analysis. The relationship between settlement and vertical load on the pile base is presented considering the Mindlin solution and the equivalent thickness in the equivalent elastic method. The interaction factor between the shaft of the nodular pile and the soil is expressed taking into account the Mindlin solution and the equivalent elastic modulus. The relationship between settlement and vertical load for a piled raft with the nodular pile in nonhomogeneous soils is obtained by using the recurrence equation of influence factors of the pile for each layer. The percentage of each load carried by both nodular pile and raft subjected to vertical load is represented through the vertical influence factors proposed here. Comparison of the results calculated by the present method for piled rafts with nodular piles in nonhomogeneous soils has shown good agreement with those obtained from the finite element method and a field test. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
黄茂松  李波 《岩土力学》2012,33(8):2388-2394
提出一种层状地基中柔性筏板-群桩共同作用分析方法,探讨筏板刚度对桩筏基础沉降的影响,并成功预测了往复荷载下桩筏基础的长期沉降。筏板刚度采用Mindlin板理论的有限单元法分析;桩-土体系的刚度矩阵中,桩顶面-桩顶面、桩顶面-土表面以及土表面-土表面的相互作用分析采用层状剪切位移法借助层状地基的Burmister位移解求得。基于层状地基中柔性筏板-群桩的沉降计算方法以及往复荷载下土体压缩模量的衰减特性得到了桩筏基础的长期沉降预测方法。与已有文献方法和离心模型试验结果的对比分析表明,柔性筏板-群桩共同作用方法得到的沉降值具有较高的精度。  相似文献   

20.
The piled raft has proved to be an economical foundation type compared to conventional pile foundations. However, there is a reluctance to consider the use of piled rafts on soft clay because of concerns about excessive settlement and insufficient bearing capacity. Despite these reasons, applications of piled rafts on soft clay have been increased recently. Current analysis methods for piled rafts on soft clay, however, are insufficient, especially for calculating the overall bearing capacity of the piled raft. This study describes the three-dimensional behavior of a piled raft on soft clay based on a numerical study using a 3D finite element method. The analysis includes a pile–soil slip interface model. A series of numerical analyses was performed for various pile lengths and pile configurations for a square raft subjected to vertical loading. Relatively stiff soil properties and different loading types were also used for estimating the bearing behavior of the piled raft. Based on the results, the effect of pile–soil slip on the bearing behavior of a piled raft was investigated. Furthermore, the proportion of load sharing of the raft and piles at the ultimate state and the relationship between the settlement and overall factor of safety was evaluated. The results show that the use of a limited number of piles, strategically located, might improve both bearing capacity and the settlement performance of the raft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号