首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 968 毫秒
1.
青海湖近千年来气候环境变化的湖泊沉积记录   总被引:30,自引:3,他引:27       下载免费PDF全文
本文通过对青藏高原上所钻取的古里雅冰芯和青海都兰树轮高分辨率气候变化记录的对比,分析了过去近2 000a来的气候变化特征.结果表明:1)这两个地区过去2 000a来温度都在波动中逐渐上升,展示了气候逐渐变暖的趋势.进入20世纪以来,气候显著变暖,并有加速变暖的趋势;2)树轮和冰芯均明显地记录了小冰期的3次冷期,其出现的时间基本上一致.小冰期并不是过去2 000a来的最寒冷的时期.冰芯和树轮记录均表明公元初的寒冷程度要大于小冰期;3)古里雅冰芯所记录的温度和降水量揭示出,过去近2 000a来的降水和温度变化的总趋势是正相关关系;但在短时间尺度上,温度和降水的变化并不同步.这主要表现在两个方面,一是温度长期变化中的低频波动频率要大于降水,二是虽然温度和降水的变化在百年级时间尺度上有正相关性,但降水的变化要滞后于温度变化50~100a;4)同时周期分析表明,古里雅冰芯中的δ180和积累量以及都兰树轮记录的变化周期大多数与太阳活动有关,表明青藏高原地区冷、暖、干、湿变化的主要驱动力可能是太阳活动的变化;5)对这两记录的对比研究也揭示了气候变化的区域差异.如中世纪暖期在都兰树轮记录中很强而在古里雅冰芯记录中很弱,而都兰树轮记录中,中世纪暖期以后至1 800A.D.在波动中变冷,但在古里雅冰芯记录中这一时期在波动中变暖.  相似文献   

2.
以青藏高原为主体的第三极地区是中、低纬度最大的冰川作用区.冰芯记录可为该地区过去气候环境变化研究提供重要的信息.但在青藏高原地区尤其是高原南部印度季风影响区,其冰芯稳定同位素记录的解释还存在着不确定性.本文整合青藏高原不同空间位置上的10支冰芯δ18O记录,以研究其空间集成的序列与区域温度的关系,来论证青藏高原冰芯稳定同位素指标的温度代用性.将青藏高原北部和南部各5支冰芯及整个青藏高原面上的这10支冰芯δ18O记录经Z-score标准化处理后,与相应区域的器测气温标准化序列进行统计分析.结果发现,无论是高原北部、高原南部还是整个高原面上,冰芯δ18O与气温的标准化序列均存在显著的相关关系.在此统计分析基础上,将冰芯δ18O标准化序列延伸至1900年,从而重建了20世纪青藏高原地区气温变化,该气温序列与北半球气温变化具有较好的相似性.如上分析表明,青藏高原冰芯δ18O记录是区域气温变化的良好代用指标,多支冰芯δ18O记录的综合集成能更好地揭示过去气候变化特征.  相似文献   

3.
冰芯所记录的环境变化及空间耦合特征   总被引:24,自引:3,他引:24       下载免费PDF全文
近年来,我们先后在青藏高原的古里雅冰帽、唐古拉冰川和希夏邦马地区钻。取了大量冰芯。在这些冰芯中保存着大量的环境变化信息。特别是反映沙暴、尘暴和浮尘等环境事件的尘埃冰志记录,是目前我们所能得到的记录最详细、分辨率最高和最连续的资料系列。青藏高原冰芯中尘埃指标显示,在气候变冷时,青藏高原的尘暴、沙暴和浮尘等事件出现的频率增多,强度增大;在气候变暖时,则尘暴、沙暴和浮尘等事件的频率减少,强度减小。目前,在青藏高原面上,正经历着气候变暖、环境改善的过程。  相似文献   

4.
青藏高原苟鲁错湖泊沉积记录的小冰期气候变化   总被引:1,自引:1,他引:1       下载免费PDF全文
文章对在青藏高原腹地可可西里地区的苟鲁错封闭湖盆中心部位获取深1m的湖底沉积岩芯进行137Cs,210Pb测年和高分辨率的碳酸盐含量、地球化学等方面的分析。结果表明:该湖泊沉积记录揭示出青藏高原腹地在近1000年时间尺度上气候变化的模式呈冷湿和温(暖)干组合为主。该岩芯覆盖了过去近1000年左右的时间尺度,其碳酸盐含量、元素地球化学的变化对中世纪暖期和小冰期的3次冷期和期间的多次暖期都有明显反映。从苟鲁错沉积记录来看,中世纪暖期的盛期处于公元1060~1140年;小冰期第1次冷期在公元1140~1340年,但在1250~1290年存在1次暖波动;第2次冷期在公元1510~1680年,但在1580~1590年和1610年左右存在暖波动;第3次冷期在公元1790~1900年;暖期主要在公元1340~1510年和1680~1790年间,但在公元1400年、1410年左右和1440~1480年间以及1710~1740年存在冷波动;20世纪暖期和全球记录相一致。该湖泊记录与古里雅冰芯记录和祁连山树轮记录以及我国东部气候历史记录都有较好的可对比性,只是在起迄年代上还存在一些差异有待深入研究。  相似文献   

5.
青藏高原苟鲁错湖泊沉积记录的小冰期气候变化   总被引:34,自引:15,他引:19  
文章对在青藏高原腹地可可西里地区的苟鲁错封闭湖盆中心部位获取深1m的湖底沉积岩芯进行137Cs,210Pb测年和高分辨率的碳酸盐含量、地球化学等方面的分析。结果表明:该湖泊沉积记录揭示出青藏高原腹地在近1000年时间尺度上气候变化的模式呈冷湿和温(暖)干组合为主。该岩芯覆盖了过去近1000年左右的时间尺度,其碳酸盐含量、元素地球化学的变化对中世纪暖期和小冰期的3次冷期和期间的多次暖期都有明显反映。从苟鲁错沉积记录来看,中世纪暖期的盛期处于公元1060~1140年;小冰期第1次冷期在公元1140~1340年,但在1250~1290年存在1次暖波动;第2次冷期在公元1510~1680年,但在1580~1590年和1610年左右存在暖波动;第3次冷期在公元1790~1900年;暖期主要在公元1340~1510年和1680~1790年间,但在公元1400年、1410年左右和1440~1480年间以及1710~1740年存在冷波动;20世纪暖期和全球记录相一致。该湖泊记录与古里雅冰芯记录和祁连山树轮记录以及我国东部气候历史记录都有较好的可对比性,只是在起迄年代上还存在一些差异有待深入研究。  相似文献   

6.
马兰冰芯记录的青藏高原中部现代升温变化特征   总被引:7,自引:4,他引:3  
根据从可可西里地区马兰冰帽钻取的深102.07m冰芯记录中δ18O的年变化,恢复了青藏高原中部20世纪20年代以来的气候变化.研究表明,青藏高原中部的升温变化与北半球20世纪的升温变化的总体趋势一致,最暖阶段出现在50—80年代早期.期间也出现了几次明显的冷的波动,尤其80年代后期至90年代持续低温,可能与这一时段强盛的夏季风有关.这也表明20世纪末全球急剧升温变化的过程中,某些地区存在气候变冷的波动事件.  相似文献   

7.
全球气候变暖与未来发展趋势   总被引:25,自引:0,他引:25       下载免费PDF全文
王绍武 《第四纪研究》1991,11(3):269-276
根据全球及中国气温观测资料分析了近百年全球变暖问题,指出总的变暖趋势对认为温室效应的加剧是气候变暖的原因的意见有利。但温度变化的时空分布则与温室效应的理论结果有不少不一致之处,如变暖的突变性,50年代到70年代的变冷、80年代大洋北部的变冷及中国南部的变冷等。根据代用资料建立的数百年气温序列表明,19世纪是小冰期中的一个冷期。因此,如果从这时开始计算变暖幅度,则可能过高估计了温室效应。  相似文献   

8.
依据青藏高原目前所取得冰芯的尘埃分析结果,初步分析了近1000年来青藏高原南北大气尘埃载荷的时空变化特征。研究表明,高原南部达索普冰芯记录的高尘埃含量时期为1270s~1380s和1870s~1990s,而北部马兰冰芯记录的高尘埃含量时期为1130s~1550s和1770s~1940s。近1000年来青藏高原南北冰芯中尘埃含量呈现不同程度的增加总趋势,这可能指示了环境的变干趋势。青藏高原冰芯记录还反映出,高原北部地区大气中的尘埃载荷明显高于南部地区;高原北部地区大气尘埃载荷春季最大,而南部地区非季风季节最大。另外,通过对高原南北冰芯中尘埃含量记录与δ18 O记录之间相关关系分析,揭示出大气尘埃载荷变化与气温变化之间关系在高原北部地区呈显著负相关,而在南部地区却呈显著正相关。这说明青藏高原南北气候环境变化的差异性。  相似文献   

9.
北极阿拉斯加巴罗(Barrow)地区(70°21′N,156°40′W)位于北极滨海平原最北端,根据湖泊钻孔花粉记录,210Pb和137Se测定以及多项环境代用指标测试(有机质含量、总C和总N含量、CaCo3),并结合当地现代冻原植被、表层花粉谱、当地70a的气象记录以及有关的冰芯、树龄等资料的综合对比研究,分析了13世纪以来巴罗地区气候和环境变化历史.大约在13世纪以前,巴罗地区植被稀少,气候寒冷,其后冻原植被发育良好,并经历几次演变.结合沉积地球化学元素测试结果和其他环境代用资料研究表明,小冰期以来Barrow地区曾发生3次暖期(公元1540—1600年,1660—1730年和1880—1992)和3次冷期(公元1440—1520年,1610—1650年和1750—1850年).这些冷暖事件与青藏高原冰芯记录对比发现,虽然在高频变化上,不同地区存在着差异,但重大冷暖事件都曾出现.其中3次暖期与青藏高原古里雅冰芯和敦德冰帽中代表温度变化的δ18O值指示的暖期基本一致,证实巴罗湖芯记录的环境变化序列是可靠的.同时,古里雅和敦德冰芯记录中反映传统小冰期中的15,17,和19世纪的3次冷期,在巴罗湖芯记录中都有显示.  相似文献   

10.
青藏高原地区过去2000年来的气候变化   总被引:14,自引:0,他引:14  
杨保 《地球科学进展》2003,18(2):285-291
依据冰芯、树轮、沉积物分析和冰川波动等各单点古气候代用资料,以及重建的综合温度变化曲线,分析了近 2000年青藏高原温度变化的整体性和区域性特征。全青藏高原综合温度曲线显示中世纪暖期(1150-1400年)、小冰期(1400-1900年)以及公元 3~5世纪冷期的存在。青藏高原温度变化具有明显的区域性特征。在 9~11世纪,青藏高原东北部以温暖为特征,而青藏高原南部和西部表现为寒冷。青藏高原南部和西部分别于1150-1400年(此时段在高原东北部表现为弱暖期)和1250-1500年经历了气候变暖。与中国东部文献记录的最新综合研究结果比较,高原东北部与中国东部的温度变化最为一致。而且,许多重大气候事件,如1100-1150年、1500-1550年、1650-1700年和1800-1850年的冷事件在高原和中国东部同时出现,而后 3次冷期与小冰期期间中国西部发生的冰川前进相匹配。  相似文献   

11.
Late Holocene temperature fluctuations on the Tibetan Plateau   总被引:3,自引:0,他引:3  
Proxy data of palaeoclimate, like ice cores, tree rings and lake sediments, document aspects of climate changes on the Tibetan Plateau during the last 2000 years. The results show that the Tibetan Plateau experienced climatic episodes such as the warm intervals during AD 800–1100 and 1150–1400, the “Little Ice Age” between AD 1400 and 1900, and an earlier cold period between the 4th and 6th centuries. In addition, temperatures varied from region to region across the plateau. A warm period from AD 800 to 1100 in the northeastern Tibetan Plateau was contemporaneous with cooling in the southern Tibetan Plateau, which experienced warming between AD 1150 and 1400. Large-scale trends in the temperature history from the northeastern Tibetan Plateau resemble those in eastern China more than the trends from the southern Plateau. The most notable similarities between the temperature variations of the Tibetan Plateau and eastern China are cold phases during AD 1100–1150, 1500–1550, 1650–1700 and 1800–1850.  相似文献   

12.
《Quaternary Science Reviews》2007,26(17-18):2281-2300
We review Late Cenozoic climate and environment changes in the western interior of China with an emphasis on lacustrine records from Lake Qinghai. Widespread deposition of red clay in the marginal basins of the Tibetan Plateau indicates that the Asian monsoon system was initially established by ∼8 Ma, when the plateau reached a threshold altitude. Subsequent strengthening of the winter monsoon, along with the establishment of the Northern Hemisphere ice sheets, reflects a long-term trend of global cooling. The few cores from the Tibetan Plateau that reach back a million years suggest that they record the mid-Pleistocene transition from glacial cycles dominated by 41 ka cycles to those dominated by 100 ka cycles.During Terminations I and II, strengthening of the summer monsoon in China's interior was delayed compared with sea level and insolation records, and it did not reach the western Tibetan Plateau and the Tarim Basin. Lacustrine carbonate δ18O records reveal no climatic anomaly during MIS3, so that high terraces interpreted as evidence for extremely high lake levels during MIS3 remain an enigma. Following the Last Glacial Maximum (LSM), several lines of evidence from Lake Qinghai and elsewhere point to an initial warming of regional climate about 14 500 cal yr BP, which was followed by a brief cold reversal, possibly corresponding to the Younger Dryas event in the North Atlantic region. Maximum warming occurred about 10 000 cal yr BP, accompanied by increased monsoon precipitation in the eastern Tibetan Plateau. Superimposed on this general pattern are small-amplitude, centennial-scale oscillations during the Holocene. Warmer than present climate conditions terminated about 4000 cal yr BP. Progressive lowering of the water level in Lake Qinghai during the last half century is mainly a result of negative precipitation–evaporation balance within the context of global warming.  相似文献   

13.
Rapid warming in mid-latitude central Asia for the past 100 years   总被引:5,自引:0,他引:5  
Surface air temperature variations during the last 100 years (1901–2003) in mid-latitude central Asia were analyzed using Empirical Orthogonal Functions (EOFs). The results suggest that temperature variations in four major sub-regions, i.e. the eastern monsoonal area, central Asia, the Mongolian Plateau and the Tarim Basin, respectively, are coherent and characterized by a striking warming trend during the last 100 years. The annual mean temperature increasing rates at each sub-region (representative station) are 0.19°C per decade, 0.16°C per decade, 0.23°C per decade and 0.15°C per decade, respectively. The average annual mean temperature increasing rate of the four sub-regions is 0.18°C per decade, with a greater increasing rate in winter (0.21°C per decade). In Asian mid-latitude areas, surface air temperature increased relatively slowly from the 1900s to 1970s, and it has increased rapidly since 1970s. This pattern of temperature variation differs from that in the other areas of China. Notably, there was no obvious warming between the 1920s and 1940s, with temperature fluctuating between warming and cooling trends (e.g. 1920s, 1940s, 1960s, 1980s, 1990s). However, the warming trends are of a greater magnitude and their durations are longer than that of the cooling periods, which leads to an overall warming. The amplitude of temperature variations in the study region is also larger than that in eastern China during different periods.  相似文献   

14.
根据生物、湖泊及冰川地层记录,分析了青藏高原末次冰消期的气候演化特点,并将其与格陵兰、欧洲气候演化序列进行了对比分析.结果表明,末次冰消期的气候演化大致可分为两个阶段:前一阶段为暖期,但波动频繁;格陵兰、欧洲在经历了H1事件后,迅速转暖,Bolling期比Allerod期气候更为适宜;而青藏高原渐趋回暖,夏季风降水逐渐增加,存在由冰融水与降水增加所形成的高湖面,气候温湿,进入一次湖泊扩涨期;大部分记录指示Allerod期比Bolling期气候更为适宜.后一阶段为冷期,格陵兰、欧洲气候恶化并显示出有回返冰期的气候特点;青藏高原气候严酷、荒漠扩展、冰流推进、湖面下降.气候演化的这种异同性表明:格陵兰、欧洲与青藏高原气候系统彼此存在联系,特别是在冷期;而在暖期,气候演化表现出各自的特点.气候演化格局所呈现的可比性,可能是通过冷期的一致而体现的.  相似文献   

15.
The Tibetan Plateau is an important area for studying global climate change, but the answers to many scientific problems remain unknown. Here, we present new information from the lacustrine sedimentary record in the western Tibetan Plateau, related to the third most-recent glaciations. Continuous sediment data, including sporopollen, particle size, total organic carbon, mass susceptibility, CaCO3, CaSO4, BaSO4 contents and chronological data, were reconstructed and revealed that climate and environmental conditions obviously and distinctly changed between 600 and 700 thousand years ago. In comparison, the data obtained from the Guliya ice core in this area also corresponds to the global glacial climatic characteristics recorded in basin sediments in the eastern and southeastern regions of the plateau and to the information obtained from ice cores in the Antarctic and Arctic regions. In this study, we conclude that the main reason for the glaciations and new tectonic movement must be a geomagnetic polarity reversal 774 thousand years ago (from Matuyama to Brunhes). Indeed, the results of this study suggest that the described reversal event might have influenced the current global climate pattern and will continue to impact climatic changes in the future.  相似文献   

16.
72 ka BP左右的强降温事件是末次冰期最大的气候突变事件,且同时期发生了第四纪以来最强的火山喷发——Toba火山喷发,后者在此次强降温事件中扮演着什么角色一直是古气候学界研究的热点。对此进行深入的研究,有助于全面评价火山喷发的环境效应,进一步完善末次冰期突变事件的成因机制。系统回顾深海岩芯、极地冰芯、洞穴石笋、黄土、湖泊等古气候载体的研究成果,这些记录对72 ka BP左右的强降温事件和/或Toba火山喷发进行了不同程度的描述,并从不同的角度分析二者的关系。从72 ka BP左右的强降温事件和Toba火山喷发的时间上,以及火山喷发对气候变化影响的机理上看,Toba火山喷发确实对这次强降温事件产生了实质性影响。这个影响在格陵兰冰芯记录中表现得尤为明显,并得到了气候模拟的进一步支持。然而,部分低纬海洋记录研究表明,Toba火山喷发前后气候没有发生显著变化,至少低纬地区的气候不如高纬地区变化明显。古生物研究同时显示出Toba火山喷发并未对其生存环境产生灾难性的影响,由此可见,72 ka BP左右的强降温事件驱动机制及其对Toba火山喷发的响应程度尚存争议。今后的研究应重视提高气候记录分辨率和探测Toba火山喷发证据的研究,从解剖事件的内部结构特征入手,进而建立气候模式与火山效应之间的联系,以此来明确“72 ka事件”驱动机制及其对Toba火山喷发的响应关系。  相似文献   

17.
The present paper has made a comparison of major similarities and differences of extreme cold events between the cold and warm periods for recent 50 years, in order to gain a better insight into the impact of the global warming on extreme cold events in China. Two typical events of low temperature, ice freezing and snow disasters that occurred in January 2008 and in the winter of 1954/1955, respectively, are selected as representative cases for the cold period (1950’s–1970’s) and the warm period (1980’s-present). The contrasting study has revealed that these two events both occurred under long-persistent blocking circulation over Eurasian continent, with continuous invasions of strong cold air into China mainland. They nearly brought about similar weather disasters such as extensive low temperature, record-breaking freezing rains and exceptionally heavy snowfalls. However, due to active northward transport of warm and moist air from Bay of Bengal and Indo-China Peninsula in the warm period, the January 2008 case had longer freezing rain days and heavier snowstorms in South China, thus leading to much more severe damage to electric grids and transportations. The case of the 1954/1955 winter was a stronger, extreme cold event than the case of January 2008, in terms of magnitudes of temperature drop and severity of impact on river icing. It was gradually recovered to normal condition while the case of January 2008 had a very rapid recovery to warming condition due to impact of the global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号