首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Index species of zooplankton of the Oyashio water are found in and beneath the salinity minimum layer in Sagami Bay. In order to clarify the intrusion path of the intermediate Oyashio Water (or the water of the Mixed Water Region), the oceanographic conditions off the Boso Peninsula are studied by using available hydrographic data obtained mainly by Japan Meteorological Agency. The cross-sectional salinity distribution along KJ line which extends southeastward from off the tip of the peninsula always indicates the existence of a low salinity patch just off the coast in the salinity minimum layer. This water is well separated from the offshore low salinity water which is considered as the water in the western margin of the so-called North Pacific Intermediate Water. We refer to the former water as the coastal salinity-minimum-layer (SML) water and to the latter as the offshore SML water. The coastal SML water is usually bounded by the current zone of the Kuroshio. The existence of the coastal SML water seems to indicate the possible pathway of the intermediate Oyashio water along the Boso Peninsula into Sagami Bay. The detailed water type analysis is made in T-S plane, S-st plane, and O2-st plane. There is no significant difference in distribution ranges of the water types between the coastal SML water and the offshore SML water. However, the water types of the coastal SML water is not uniformly distributed, and the water can be classified into two groups: group A with relatively high oxygen content and relatively low salinity value and group B with relatively low oxygen content and relatively high salinity value. Group A is thought to be associated with strong event-like intrusions, the details of which will be discussed in Part II.  相似文献   

2.
Intermediate intrusion of low salinity water (LSW) into Sagami Bay was investigated on the basis of CTD data taken in Sagami Bay and off the Boso Peninsula in 1993–1994. In October 1993, water of low temperature (<7.0°C), low salinity (<34.20 psu) and high dissolved oxygen concentration (>3.5 ml I−1) intruded along the isopycnal surface of {ie29-1} at depths of 320–500 m from the Oshima East Channel to the center of the bay. On the other hand, the LSW was absent in Sagami Bay in the period of September–November 1994, though it was always found to the south off the Boso Peninsula. Salinity and dissolved oxygen distributions on relevant isopycnal surfaces and water characteristics of LSW cores revealed that the LSW intruded from the south off the Boso Peninsula to Sagami Bay through the Oshima East Channel. The LSW cores were distributed on the continental slope along 500–1000 m isobaths and its onshore-offshore scales were two to three times the internal deformation radius. Initial phosphate concentrations in the LSW revealed its origin in the northern seas. These facts suggest that the observed LSW is the submerged Oyashio Water and it flows southwestward along the continental slope as a density current in the rotating fluid. The variation of the LSW near the center of Sagami Bay is closely related to the Kuroshio flow path. The duration of LSW in Sagami Bay is 0.5 to 1.5 months.  相似文献   

3.
Since the Intermediate Oyashio Water (IOW) gradually accumulates in Sagami Bay, it can reasonably be supposed that the IOW also flows out from Sagami Bay, even though it may be altered by mixing with other waters. We have occasionally observed a water less than 34.2 psu with a potential density of 26.8 at the southeastern area off Izu Peninsula in July 1993 by the training vessel Seisui-maru of Mie University. Observational data supplied by the Japan Meteorological Agency and the Kanagawa Prefectural Fisheries Experimental Station show that the IOW of less than 34.1 psu was observed at northern stations of the line PT (KJ) off the Boso Peninsula and to the east of Oshima in the late spring 1993. Based upon these observations, it is concluded that the IOW flows out from Sagami Bay into the Shikoku Basin along southeastern area off the Izu Peninsula. The less saline water (<34.2 psu) was also observed to the west of Miyake-jima during the same cruise, and the westward intrusion of IOW from south of the Boso Peninsula to the Shikoku Basin through the gate area of the Kuroshio path over the Izu Ridge was detected. This event indicated that the IOW branched south of the Boso Peninsula and flowed into Sagami Bay and/or into the gate area over the Izu Ridge. The southward intrusion of IOW into the south of the Boso Peninsula is discussed in relation to the latitudinal location of the main axes of the Kuroshio and the Oyashio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Seasonal and interannual variations in physicochemical properties (i.e., temperature, salinity, dissolved oxygen and dissolved inorganic nutrients), chlorophyll a (Chl-a), particulate carbon and nitrogen (PC and PN, respectively), and primary production were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from January 2002 to December 2008. These abiotic/biotic variables, except for NH4 +–N, repeated similar seasonal variations for all 7 years. On the basis of the analysis of data obtained on 167 sampling dates, depth-integrated primary production in this water can be easily estimated from Chl-a at the surface using the regression equations obtained in the present study. Intermittently high values of dissolved inorganic nutrients, Chl-a, PC, PN and primary productivity at the surface during the summer stratified period were induced by high freshwater discharge from the rivers after rainfalls and by the expansion of nutrient-rich Tokyo Bay Water. Temperature, salinity and dissolved inorganic nutrients showed drastic variations within a scale of a few days and/or weeks, and these variations were related to sea levels that represent the intrusion of the Kuroshio Water, Intermediate Oyashio Water or deep water from the continental slope. However, there was no consistent trend in the variations in Chl-a, PC, PN and primary production due to the complex effects of these waters.  相似文献   

5.
In this study we test Talley's hypothesis that Oyashio winter mixed-layer water (26.5–26.6σ θ) increases its density to produce the North Pacific Intermediate Water (NPIW) salinity minimum (26.7– 26.8σθ) in the Mixed Water Region, assuming a combination of cabbeling and double diffusion. The possible density change of Oyashio winter mixed-layer water is discussed using an instantaneous ratio of the change of temperature and salinity along any particular intrusion (R l ). We estimate the range of R l DD required to convert Oyashio winter mixed-layer water to the NPIW salinity minimum due to double diffusion, and then assume double-diffusive intrusions as this conversion mechanism. A double-diffusive intrusion model is used to estimate R l DD in a situation where salt fingering dominates vertical mixing, as well as to determine whether Oyashio winter mixed-layer water can become the NPIW salinity minimum. Possible density changes are estimated from the model R l DD by assuming the amount of density change due to cabbeling. From these results, we conclude that Oyashio winter mixed-layer water contributes to a freshening of the lighter layer of the NPIW salinity minimum (around 26.70σθ) in the MWR.  相似文献   

6.
Megalobenthic samples trawled from the bathyal zone in Sagami Bay contain some probable subarctic elements, such asSebastolobus macrochir, Clidoderma asperrimum, Solaster paxillatus, Macoma calcarea, Cryptonatica clausa, Eunatica pallida, Volutomitra alaskana, Paralomis multispina andPandalus hyspinotus, among others. The mechanism and process of invasion of such cold-water species into the deep-sea zone in Sagami Bay are not simple. There are some evidences that these animals are propagating in Sagami Bay. The occurrences of subarctic fish there are not unusual because of their strong swimming ability. The benthic animals that have planktonic larval stages might be dispersed in the same process as in the Oyashio plankton translocated by Oyashio Undercurrent. However, the mechanism and process of dispersions of egg-carrying crustaceans and egg-case producing gastropods remain unanswered. Perhaps, the palaeo-oceanographical and evolutional considerations will help to solve the problem.Contribution B-557 from Tokai Regional Fisheries Research Laboratory.  相似文献   

7.
The salinity minimum frequently occurring in the Mixed Water Region between the Oyashio and Kuroshio Fronts seems to originate from the salinity minimum at the density of 26.8σθ called the North Pacific Intermediate Water. We examined water exchange of this region with the Oyashio and the Kuroshio Extension using mixing ratio RK defined as (θ - θOY)/(θK - θOY) × 100, where θOY, θK, and θ represent potential temperature of the Oyashio and Kuroshio Waters and their mixture on the isopycnal surfaces, respectively. CTD data were obtained by repeated observation from January 1990 to May 1991. RK increases southward from the Oyashio Front to the Kuroshio Front with the range of −20 to 120%. The gradient of RK on the isopycnal surfaces is large around the Oyashio Front above the 26.8σθ surface, while it is large around the Kuroshio Front below it. This agrees with the average RK in the Mixed Water Region decreasing greatly with the increase of density at densities less dense than 26.8σθ. We calculated thickness and volume transport of the Oyashio between the isopycnal surfaces near the coast of Hokkaido. They increase largely with density at densities less dense than 26.8σθ. It is supposed that the salinity minimum in the Mixed Water Region is the upper limit of the water largely influenced by the Oyashio Water. Its density could depend only on the density structure of the Oyashio.  相似文献   

8.
A series of numerical experiments were conducted with a high-resolution (eddy-permitting) North Pacific model to simulate the formation and spreading of the salinity minimum associated with the North Pacific Intermediate Water (NPIW). It was found that two factors are required to simulate a realistic configuration of the salinity minimum: a realistic wind stress field and small-scale disturbances. The NCEP reanalyzed wind stress data lead to better results than the Hellerman and Rosenstein wind stress data, due to the closer location of the simulated Oyashio and Kuroshio at the western boundary. Small-scale disturbances formed by relaxing computational diffusivity included in the advection scheme promote the large-scale isopycnal mixing between the Oyashio and Kuroshio waters, simulating a realistic configuration of the salinity minimum. A detailed analysis of the Oyashio water transport was carried out on the final three-year data of the experiment with reduced computational diffusivity. Simulated transport of the Kuroshio Extension in the intermediate layer is generally smaller than the observed value, while those of the Oyashio and the flow at the subarctic front are comparable to the observed levels. In the Oyashio-Kuroshio interfrontal zone the zonally integrated southward transport of the Oyashio water (140-155°E) is borne by the eddy activity, though the time-mean flow reveals the existence of a coastal Oyashio intrusion. In the eastern part (155°E-180°) the zonally integrated transport of the Oyashio water indicates a southward peak at the southern edge of the Kuroshio Extension, which corresponds to the branching of the recirculating flow from the Kuroshio Extension.  相似文献   

9.
A series of numerical experiments were conducted with a high-resolution (eddy-permitting) North Pacific model to simulate the formation and spreading of the salinity minimum associated with the North Pacific Intermediate Water (NPIW). It was found that two factors are required to simulate a realistic configuration of the salinity minimum: a realistic wind stress field and small-scale disturbances. The NCEP reanalyzed wind stress data lead to better results than the Hellerman and Rosenstein wind stress data, due to the closer location of the simulated Oyashio and Kuroshio at the western boundary. Small-scale disturbances formed by relaxing computational diffusivity included in the advection scheme promote the large-scale isopycnal mixing between the Oyashio and Kuroshio waters, simulating a realistic configuration of the salinity minimum. A detailed analysis of the Oyashio water transport was carried out on the final three-year data of the experiment with reduced computational diffusivity. Simulated transport of the Kuroshio Extension in the intermediate layer is generally smaller than the observed value, while those of the Oyashio and the flow at the subarctic front are comparable to the observed levels. In the Oyashio-Kuroshio interfrontal zone the zonally integrated southward transport of the Oyashio water (140–155°E) is borne by the eddy activity, though the time-mean flow reveals the existence of a coastal Oyashio intrusion. In the eastern part (155°E–180°) the zonally integrated transport of the Oyashio water indicates a southward peak at the southern edge of the Kuroshio Extension, which corresponds to the branching of the recirculating flow from the Kuroshio Extension. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
11.
The intermediate water masses in the eastern Atlantic Ocean between 31°N and 53°N were studied by analysis of the distributions of potential temperature, salinity, dissolved nutrients and oxygen. Sub-surface salinity minima are encountered everywhere in the area. At the northern and southern boundary they are connected with the presence of Sub-Arctic Intermediate Water and Antarctic Intermediate Water, respectively, but towards the European ocean margin the sub-surface salinity minima shift to shallower density levels. The sub-surface salinity minima observed west of the Iberian Peninsula represent a water mass formed by winter convection in the Porcupine Sea Bight and the northern Bay of Biscay. These minima gain salt by diapycnal mixing with the underlying Mediterranean Sea Outflow water and with the overlying permanent thermocline. The core of Antarctic Intermediate Water appears to contribute to the formation of Mediterranean Sea Outflow Water since it becomes entrained into the overflow near Gibraltar. This entrainment gives rise to an enhanced concentration of the nutrients in the Mediterranean water in the North Atlantic. The deep salinity minimum, due to the presence of Labrador Sea Water, is restricted mainly to the Porcupine Abyssal Plain. In the Bay of Biscay this water type is strongly modified by enhanced diapycnal mixing near the continental slope. At all intermediate levels the continental slope in the Bay of Biscay seems to be a focal point for water mass modification by diapycnal mixing. Below the core of the Mediterranean Sea Outflow Water the Labrador Sea Water is also strongly modified. Its salinity is strongly enhanced by diapycnal mixing with the overlying core of Mediterranean Sea Outflow Water. An analysis of the oxygen and nutrient data indicates that the large spatial concentration differences at the level of the Labrador Sea Water are caused mainly by ageing of the water. The youngest water is observed at 52°N, and, especially in the Bay of Biscay and off south-west Portugal, the water at levels of about 1700 dbar are strongly enriched in nutrients and depleted in oxygen.  相似文献   

12.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   

13.
Monthly variations of hydrographic structures and water mass distributions were investigated over a nearly 30-year period (January 1982–March 2011) off the Doto area, Japan, to examine temporal evolutions and devolutions of representative water masses in this area. In the continental shelf area, the Coastal Oyashio Water (COW) was distributed along the coast during January–May, when COW has been modified by relatively higher salinity water, which may have originated from the Oyashio Water (OW) off the Kuril Islands. On the other hand, the Surface COW (S-COW) may have formed with COW heated by solar radiation, simultaneously mixing with the Tokachi River freshwater and OW in the continental shelf area, and the area of this S-COW spread offshoreward during June and July, and stayed in the offshore area during June and October. Although coastal density current structures, probably due to the Modified Soya Warm Current Water (M-SWCW) inflows, were conspicuous in the continental shelf area during August–October, those structures were weak after November. These weakening structures may be due to developed surface mixed layer caused by surface cooling, and decay of volume transport of the Soya Warm Current in the Okhotsk Sea, and such weakening accordingly may lead to weakening of higher salinity water inflows from the upstream regions. M-SWCW was radically replaced by COW during December and January with rapid salinity decreases, which suggest extremely lower salinity water inflows, probably due to influences of the East Sakhalin Current Water.  相似文献   

14.
Oyashio water flowing into the Mixed Water Region (MWR) and the Kuroshio Extension region that forms North Pacific Intermediate Water (NPIW) has been examined, based on four Conductivity-Temperature-Depth profiler (CTD)/Lowered Acoustic Doppler Current Profiler (L-ADCP) surveys of water masses and ocean currents. There are two processes by which the Oyashio water intrudes across the Subarctic Front (SAF): one is a direct cross-nearshore-SAF transport near Hokkaido along the western boundary, and the other is a cross-offshore-SAF process. Seasonal variations were observed in the former process, and the transport of the Oyashio water across SAF near Hokkaido in the density range of 26.6–27.4σθ was 5–10 Sv in spring 1998 and 2001, and 0–4 Sv in autumn 2000, mainly corresponding to the change of the southwestward Oyashio transport. Through the latter process, 5–6 Sv of the Oyashio water was entrained across the offshore SAF from south of Hokkaido to 150° in both spring 2001 and autumn 2000. The total cross-SAF Oyashio water transport contributing to NPIW formation is more than 10 Sv, which is larger than previously reported values. Most of the Oyashio water formed through the former process was transported southeastward through the Kuroshio Extension. It is suggested that the Oyashio intrusion via the latter process feeds NPIW in the northern part of the MWR, mainly along the Subarctic Boundary and SAF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   

16.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In order to examine the formation, distribution and transport of North Pacific Intermediate Water (NPIW), repeated hydrographic observations along several lines in the western North Pacific were carried out in the period from 1996 to 2001. NPIW formation can be described as follows: (1) Oyashio water extends south of the Subarctic Boundary and meets Kuroshio water in intermediate layers; (2) active mixing between Oyashio and Kuroshio waters occurs in intermediate layers; (3) the mixing of Oyashio and Kuroshio waters and salinity minimum formation around the potential density of 26.8σθ proceed to the east. It is found that Kuroshio water flows eastward even in the region north of 40°N across the 165°E line, showing that Kuroshio water extends north of the Subarctic Boundary. Volume transports of Oyashio and Kuroshio components (relative to 2000 dbar) integrated in the potential density range of 26.6–27.4σθ along the Kuroshio Extension across 152°E–165°E are estimated to be 7–8 Sv (106 m3s−1) and 9–10 Sv, respectively, which is consistent with recent work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Over the past 30 years, I have carried out research on the distribution and ecology of marine plankton using research vessels of the Japan Meteorological Agency and the Ocean Research Institute mainly in the Kuroshio and Oyashio areas as well as in Sagami Bay. In this report, some results obtained on the ecological features of blue-green algae, diatoms, chaetognaths etc. in relation to water masses and currents are shown.  相似文献   

19.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

20.
Variations of water and flow in Sagami Bay in relation to the Kuroshio path variations are examined by using 100m-depth temperature and salinity data from 25 stations as well as sea level data from five stations (Minami-Izu, ItÔ, Ôshima, Aburatsubo, Mera). In regard to temperature, anomalies from the mean seasonal variations are used. Results show that water properties are clearly different between the three typical paths of the Kuroshio. The difference is more remarkable in temperature than in salinity; temperature is higher during the typical large-eander (LM) path, and lower during the offshore non-large-meander (NLM) path, compared with the nearshore NLM path. Temperature anomaly and salinity distributions, as well as the Ôshima minus Minami-Izu and Ôshima minus Mera sea-level differences strongly suggest that the flows during the typical LM path are distributed as hitherto described in past studies, that is, water in the mouth region of the bay flows clockwise around Ôshima from the west channel to the east channel, and a counterclockwise eddy exists in the interior. On the other hand, flows during the nearshore and offshore NLM paths seem to be quite different from those during the typical LM path; velocities are very weak, and the directions of circulation is frequently reversed. This tendency also can be seen during parts of LM period in which the Kuroshio takes a non-typical LM path.Water properties in Sagami Bay are most characteristic during transitions between nearshore and offshore NLM paths. During transitions from nearshore to offshore NLM paths, temperatures are extremely high as a whole in the bay, while during reverse transitions, both temperatures and salinities are very low in the entire region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号