首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Investigation of meteorological extreme events over coastal regions of Iran   总被引:1,自引:0,他引:1  
In this study, in order to detect probable trends and effects of climatic extreme events of precipitation and temperature as well as maximum relative humidity, dew point temperature, sunshine hours, and wind speed, 12 stations on the northern and southern coastlines of Iran were investigated from 1977 to 2007. For this purpose, 27 indices of precipitation and temperature, which are specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability, were calculated by using RClimDex software. The Mann?CKendall method was also used to detect possible trends in the data time series. The results indicate that temperature indices are absolutely consistent with warming. Warm nights, hot days, and hot day and night frequencies increased, while cold spell and cool day and night frequencies declined. The minimum temperature experienced a considerable rise both in its maximum and minimum values. The minimum temperature had a higher increase than the maximum temperature. Therefore, diurnal temperature ranges have experienced dramatic declines. In the northern coastal sites, hot day frequency and hottest day temperature showed higher magnitudes than those of the southern sites as a result of the significant increase in the maximum sunshine hours in northern stations. This enhancement led to a considerable increase in the maximum wind speed. Consequently, relative humidity declined in the northern sites. Precipitation indices indicate few significant trends over the studied period. Temporal precipitation distribution was different from station to station. Three precipitation patterns were detected at individual stations, although an overall regional rainfall pattern was not detectable. On the whole, the results of this study emphasize that the water resources in the studied area are going to become problematic.  相似文献   

2.
Trends in air temperature and precipitation data are investigated for linkages to global warming and climate change. After checking for serial correlation with trend-free pre-whitening procedure, the Mann–Kendall test is used to detect monotonic trends and the Mann–Whitney test is used for trend step change. The case study is Maharlo watershed, Southwestern Iran, representing a semi-arid environment. Data are for the 1951–2011 period, from four temperature sites and seven precipitation sites. A homogeneity test investigates regional similarity of the time series data. The results include mean annual, mean annual maximum and minimum and seasonal analysis of air temperature and precipitation data. Mean annual temperature results indicate an increasing trend, while a non-significant trend in precipitation is observed in all the stations. Furthermore, significant phase change was detected in mean annual air temperature trend of Shiraz station in 1977, indicating decreasing trend during 1951–1976 and increasing trend during 1977–2011. The annual precipitation analysis for Shiraz shows a non-significant decrease during 1951–1976 and 1977–2011. The result of homogeneity test reveals that the studied stations form one homogeneous region. While air temperature trends appear as regional linkage to global warming/global climate change, more definite outcome requires analysis of longer time series data on precipitation and air temperature.  相似文献   

3.
1951-2005年内蒙古东部气候变化特征分析   总被引:4,自引:1,他引:3       下载免费PDF全文
选取1951-2005年内蒙古东部4盟市48个地面气象观测站的地面气象观测资料,采用趋势分析法分析了内蒙古东部地区气温、降水、风速和日照时数的变化趋势及空间分布特征。结果表明:近50 a来内蒙古东部地区气温升高,且极端最低温度升高的程度大于极端最高气温升高的程度;呼伦贝尔东部和赤峰西南部降水增加较明显,通辽降水减少最明显;平均风速变小,仅通辽呈风速增大的趋势;日照时数和降水量的变化趋势相反。  相似文献   

4.
西藏色齐拉山地区立体气候特征初步分析   总被引:1,自引:0,他引:1  
利用西藏色齐拉山地区不同海拔高度的8个自动站和3个实测气象站1年的近地面观测资料,分析了该地区气温、地温、降水量、湿度和风速等气象要素的季节变化特征,探讨了东、西坡局地气候特征差异形成的原因。结果表明:色齐拉山地区1月为最冷月、7月为最暖月;月平均最高气温、最低气温与平均气温的季节变化一致。气温日较差大年较差小。年平均气温直减率东、西坡分别为0.54℃/100m和0.73℃/100m,西坡大于东坡。地气温差冬季西坡大于东坡,夏季东坡大于西坡。年、月平均地温直减率西坡仍大于东坡;东坡除夏季7、8月份外,地温直减率小于气温直减率;西坡除冬季(12月和1月),地温直减率大于气温直减率。降水量东坡比西坡多,海拔2500m以上地区4~10月降水总量随着海拔高度的升高呈增加趋势,增加率为20.9mm/100m。空气相对湿度冬季低夏季高,年变化呈单峰型。东、西坡冬季风速较强夏季相对较弱,初春风速最大。东、西坡气候差异与海拔高度、坡向、下垫面性质有关。   相似文献   

5.
近40年黄河源区气候要素分布特征及变化趋势分析   总被引:19,自引:7,他引:12  
徐宗学  和宛琳 《高原气象》2006,25(5):906-913
用Mann-Kendall统计检验方法对黄河源区13个气象站点1959—1997年日照、气温、降水、蒸发的分布特征和变化趋势进行了分析,结果表明:近40年黄河源区年平均日照时数表现为微弱的下降趋势,空间分布呈明显的从北部向南部减少的态势,变化趋势从中部向西部、东部、北部逐渐减少;年平均气温呈明显的上升趋势,空间分布规律从西向东、从南向北逐渐增加,变化趋势为中部、南部地区上升趋势最小,北部、东部、西部上升幅度较大;多年平均降水呈较弱的下降趋势,空间分布规律从东南向西北逐渐减少,变化趋势表现为大部分地区降水量呈下降趋势;年平均蒸发量的下降趋势幅度较大,空间分布规律从北部向南部逐渐减少,变化趋势表现为大部分地区呈减少趋势,以北部地区最为明显。另外,本文也应用线性倾向估计方法对黄河源区各气候要素进行了分析,这两种方法得到的结果基本一致。  相似文献   

6.
20世纪60~90年代辽东地区气候年代际变化特征分析   总被引:11,自引:6,他引:5       下载免费PDF全文
利用1961~2000年辽东地区13个观测台站的逐月降水和气温资料,分析了辽东地区降水和气温的年代际变化。并利用高桥公式计算出辽东地区的蒸发量,得出了该地区蒸发量和降水蒸发差的年代际变化特征;同时利用干燥度指标研究了辽东地区气候干旱对气候变暖的响应。结果表明:近40 a来辽东地区气候变化呈暖干变化趋势,即气温升高、降水减少,尤其以20世纪90年代变化最为明显。  相似文献   

7.
Trend analysis of temperature parameters in Iran   总被引:1,自引:1,他引:0  
In this study, long-term annual and monthly trends in mean maximum, mean minimum and mean temperature are investigated at 35 synoptic stations in Iran. The statistical significance of trends is assessed by the Mann–Kendall test. Most stations, especially those in western and eastern parts of country, had significant positive trends in monthly temperature time series in summer season. However, the maximum number of stations with the positive trend were observed in April (30 stations), and then in August (29 stations) while the negative trends were seen in February (16 stations) and March (15 stations). On annual scale, most stations in western and southern parts of Iran had significant positive trend. Overall, about 71%, 66% and about 40% of stations had statistically significant trends in mean annual temperature, mean annual minimum temperature and in mean annual maximum temperature, respectively. These results, however, indicate that the climate in Iran is growing warmer, especially in summer.  相似文献   

8.
用大理、理塘和林芝的地面自动气象站资料,对比分析3站气温、相对湿度、本站气压、瞬时风速、地面温度的日变化特征。结果表明:大理、理塘和林芝气温最低值和相对湿度最大值的出现时间分别为7时、7时左右和8时左右,气温最高值和相对湿度最小值出现的时间均在16时左右。3站气压日变化呈“双峰双谷型,”2个高峰值时段分别出现在10时左右和凌晨0~1时,2个低谷值时段分别出现在17时左右和5时左右。风速在凌晨至7时左右较低,之后至傍晚不断增大并出现极大值,日落后逐渐减小。3站地面温度7时左右出现最低值,14时左右出现最高值。从季节变化情况看,气温和地面温度出现最高值、最低值的月份及变化幅度最大的月份基本相同。地面温度增、降幅度最大的季节分别是春季、秋季。气压随季节变化幅度较气温、相对湿度小。初春风速较大,秋季风速较小,风速对相对湿度有一定影响,大理和林芝相对湿度出现最小值的月份与风速出现最大值的月份相同。各要素值基本是大理最大,林芝次之,理塘最小,这与3站的纬度、海拔高度和下垫面性质有关。   相似文献   

9.
用大理、理塘和林芝的地面自动气象站资料,对比分析3站气温、相对湿度、本站气压、瞬时风速、地面温度的日变化特征。结果表明:大理、理塘和林芝气温最低值和相对湿度最大值的出现时间分别为7时、7时左右和8时左右,气温最高值和相对湿度最小值出现的时间均在16时左右。3站气压日变化呈"双峰双谷型,"2个高峰值时段分别出现在10时左右和凌晨0~1时,2个低谷值时段分别出现在17时左右和5时左右。风速在凌晨至7时左右较低,之后至傍晚不断增大并出现极大值,日落后逐渐减小。3站地面温度7时左右出现最低值,14时左右出现最高值。从季节变化情况看,气温和地面温度出现最高值、最低值的月份及变化幅度最大的月份基本相同。地面温度增、降幅度最大的季节分别是春季、秋季。气压随季节变化幅度较气温、相对湿度小。初春风速较大,秋季风速较小,风速对相对湿度有一定影响,大理和林芝相对湿度出现最小值的月份与风速出现最大值的月份相同。各要素值基本是大理最大,林芝次之,理塘最小,这与3站的纬度、海拔高度和下垫面性质有关。  相似文献   

10.
利用1961~2017年我国东北地区96个站点逐日降水、相对湿度和气温等资料,运用趋势分析、Mann-Kendall突变检验等方法,分析了东北地区夏季小雨、中雨、大雨、暴雨的气候变化特征,并对东北地区小雨量减少进行了成因分析,得出主要结论如下:东北地区夏季总降水量与各量级降水频率和贡献率均呈显著的正相关,总降水量的多寡受大雨频率及贡献率的影响最为显著。小雨量和中雨量的减少是导致东北地区夏季总降水量减少的主要原因,暴雨量受暴雨贡献率增加影响呈增加趋势。小雨量和小雨贡献率在1993年前后出现了年代际突变,小雨贡献率的突变是造成小雨量年代际突变的内在因素。东北地区总降水量呈减少趋势的站点有72个;小雨量呈减少趋势的站点有85个,显著减少的站点数达到25个;中雨量呈减少趋势的站点有70个,显著减少的站点只有9个;大雨量呈增加与减少趋势的站点数相当;而暴雨量呈增加趋势的站点数大于减少的站点数。从云形成机制角度出发,分别讨论大气水汽、温度、气溶胶浓度变化对东北地区小雨量减少的影响。结果表明,在全球变暖背景下东北地区气温增加和气溶胶浓度增加是导致该地区小雨量减少的主要原因。  相似文献   

11.
Streamflow trends and climate linkages in the Zagros Mountains,Iran   总被引:1,自引:0,他引:1  
This paper examines trends in streamflow and their links with local climate in the Karkheh River and its major tributaries, which originate from the Zagros Mountains, Iran. Streamflow records from five mainstream stations for the period 1961–2001 were used to examine trends in a number of streamflow variables. The studied variables were mean annual and monthly flows, 1 and 7 days maximum and minimum flows, timing of the 1-day maxima and minima, and the number and duration of high and low flow pulses. Similarly, the precipitation and temperature data from seven climate stations for the period from 1950s to 2003 were used to examine trends in climatic variables and their correlation with the streamflow. The Spearman Rank test was used for the detection of trends and the correlation analysis was based on the Pearson method. The results reveal a number of significant trends in streamflow variables both increasing (e.g. December flows) and decreasing (e.g. May flows) for all stations. However, some trends were not spatially uniform. For example, decline in low flow characteristics were more significant in the upper parts of the basin, whereas increasing trends in floods and winter flows were noteworthy in the middle parts of the basin. Most of these trends could be attributed to precipitation changes. The results show that the decline in April and May precipitation causes the decline in the low flows while the increase in winter (particularly March) precipitation coupled with temperature changes lead to increase in the flood regime. The observed trends at the Jelogir station on the Karkheh River reflect the combined effect of the upstream catchments. The significant trends observed in a number of streamflow variables at Jelogir, 1-day maximum, December flow and low pulse count and duration, point to the changes in hydrological regime of the entire Karkheh River system and are attributed to the changes in climatic variables.  相似文献   

12.
Rainfall and rainy days trend in Iran   总被引:3,自引:0,他引:3  
In this study, long-term annual and monthly trends in rainfall amount, number of rainy days and maximum precipitation in 24?h are investigated based on the data collected at 33 synoptic stations in Iran. The statistical significance of trend and climate variability is assessed by the Mann-Kendall test. The Linear trend analysis and the Mann-Kendall test indicate that there are no significant linear trends in monthly rainfall at most of the synoptic stations in Iran. However, the maximum number of stations with negative trends have been observed in April (29 station), and then in May (21 stations) and February (21 stations) and with positive trends in December (26 stations) and July (24 stations). The significant linear trends, with a significant level of 0.05, in annual rainfall have been noticed only at five stations. The monthly number of rainy days does not show any significant linear trend for most areas in Iran. The maximum number of stations with monthly negative trends in rainy days has also been observed in April with the minimum in December. In April, out of 24 stations with negative trends, 12 stations have a significant negative trend. Contrary to that, in October there is no significant linear trend. Most stations have positive trends in annual number of rainy days. Also, the monthly maximum precipitation in 24?h does not show any significant linear trend for most areas in Iran. The maximum number of stations with monthly negative trends in maximum precipitation has also been observed in February with the minimum in December. In spite of that, there are almost no significant precipitation variations in Iran during the last 50-odd years, the tendency of decreasing rainfall amount in April and increasing rainfall amount in December and July could indicate an eventual climate change in this area in the future.  相似文献   

13.
This paper outlines a methodology to estimate monthly precipitation surfaces at 1-km resolution for the Upper Shiyang River watershed(USRW) in northwest China.Generation of precipitation maps is based on the application of a four-variable genetic algorithm(GA) trained on 10 years of weather and ancillary data,i.e.,surface air temperature,relative humidity,Digital Elevation Model-derived estimates of elevation,and time of year collected at 29 weather stations in west-central Gansu and northern Qinghai provin...  相似文献   

14.
石河子绿洲空气湿度和降水的长期变化趋势分析   总被引:2,自引:0,他引:2  
分析了石河子绿洲3个地面站(炮台、石河子和莫索湾)41a(1964~2004年)的温度、相对湿度和降水,发现随着石河子垦区绿洲面积的扩大以及新疆增温增湿的气候变化趋势,石河子绿洲也有其比较独特的区域气候特征。主要表现在:(1)41a来温度、降水量呈增加趋势,但空气湿度比较稳定,没有明显的变化;(2)石河子绿洲的温度、降水量以及空气湿度具有明显的季节变化特征。秋季的温度变幅最大,冬季最小。这与新疆大部分地区冬季增温幅度最大有所不同。空气相对湿度变化的季节差异不明显。(3)以莫索湾站代表绿洲边缘,石河子站代表绿洲区,其降水、温度和空气湿度变化有明显差异,显示了比较明显的绿洲“冷岛”和“湿岛”效应。  相似文献   

15.
STUDIES ON CLIMATE CHANGE IN CHINA IN RECENT 45 YEARS   总被引:6,自引:0,他引:6       下载免费PDF全文
Based on the data of monthly mean air temperature and precipitation from about 400 stationsin 1951—1995.and the data of maximum and minimum air temperatures,relative humidity,totalcloud cover and low-cloud cover,sunshine duration,evaporation,wind speed,snow-covered daysand depth,and soil temperatures in 8 layers from 0 m down to 3.2 m from 200 odd stations in 1961—1995.the climate change and its characteristics in China in recent 45 years have been analyzedand studied comprehensively.This paper,as the first part of the work.has analyzed the climatechange and regularities of such meteorological elements as mean air temperature,maximum andminimum air temperatures,precipitation,relative humidity and sunshine duration.The possiblemechanism on climate change in China and the climate change and regularities of othermeteorological elements will be discussed in another paper as the second part.  相似文献   

16.
基于1961~2017年青藏高原腹地雅鲁藏布江河谷地区4个站(拉萨、日喀则、泽当和江孜)夏季(6~8月)月平均气温、降水和相对湿度等观测资料,分析了该地区夏季气候年际和年代际演变特征,并探讨了气温、降水和相对湿度在年际和年代际时间尺度上的相互关系以及与总云量和地面水汽压的联系。结果表明:(1)1961~2017年该地区夏季气候出现了暖干化趋势。气温(相对湿度)显著升高(下降),降水趋势变化不明显;本世纪初气温(相对湿度)均发生了显著的突变。(2)该地区夏季气候因子间在年际和年代际时间尺度上存在密切关系:气温与相对湿度和降水均存在明显的负相关,降水与相对湿度为正相关。(3)该地区夏季气候因子间的年际和年代际变化与同期总云量和地面水汽变化有关。1961~2017年总云量持续减少是气温显著升高的主要原因之一,气温的显著升高和降水变化不明显又造成了相对湿度的显著下降。  相似文献   

17.
Indian monsoon is the most prominent of the world’s monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran’s synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960–2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon’s withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall’s precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran’s plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian coastal provinces, which has a different behavior from the overall response of Iran’s climate to the late withdrawal of monsoon. In the phase of early monsoon withdrawal, the subtropical jet is located at the 200 hPa level in 32.5° north latitude; compared with the late withdrawal date, it shows a 2° southward movement. Additionally, the 500 hPa trough is also located in the Eastern Mediterranean, and the MSL pressure anomaly is between ? 4 to ? 7 hPa. The Mediterranean trough in the late withdrawal phase is located in its central zones. It seems that the lack of significant correlation between late withdrawal date of Indian monsoon and late fall’s precipitation onset in the central region of Iran depends on three reasons:1. Lack of adequate weather stations in central region of Iran.2. Precipitation standard deviations over arid and warm regions are high.3. Central flat region of Iran without any source of humidity is located to the lee side of Zagros mountain range. So intensification or development of frontal systems is almost prohibited over there.  相似文献   

18.
利用1961-2010年浙江省68个站冰冻灾害资料及气温、风速和相对湿度等观测资料,采用线性趋势分析、小波分析和相关分析等方法,统计分析1961-2010年浙江省冰冻灾害时空分布特征,在此基础上分析易引起浙江省冰冻灾害发生的气象条件。结果表明:在时间变化上,1961-2010年浙江省年平均冰冻日数呈显著减少趋势,并在20世纪80年代末发生突变减少;浙江省冰冻灾害主要发生在12月至次年2月,其中1月发生最多。在空间分布上,浙江省冰冻日数由西北向东南递减,且在浙江省中北部地区呈舌状分布;对于同纬度地区,天目山附近和浙江省北部的丘陵一带冰冻日数较多,而金衢盆地的冰冻日数相对较少。冰冻日数与最低气温相关最显著,当最低气温为-2 ℃左右,风速≤4.0 m·s-1,相对湿度为80%左右时,易引起浙江省冰冻灾害发生。  相似文献   

19.
1953—2005年内蒙古东部产粮区气候变化特征研究   总被引:3,自引:3,他引:0       下载免费PDF全文
利用系统聚类分析和相关分析方法,根据1953—2005年内蒙古东部产粮区48个气象站的气象资料,进行了气候相似区划分;并得出各区在热量、水分的时间变化上具有较高的区域一致性。据此,以区域内各站点的温度、降水和日照时数的平均值作为区域热水光时间序列,分析了各气候要素变化特征及其对农业可能产生的影响。结果表明:各区域温度呈上升趋势,增温速率(平均增温为0.3—0.4℃/10 a)高于中国平均增温速率(0.22℃/10 a),增温幅度呈从西向东递增的趋势,平均最低气温增幅最大,平均最高气温增温幅度与海拔呈正相关,尤以1988年以后变暖趋势最为明显;降水量基本呈减少趋势,年代际波动较大;20世纪90年代至今,内蒙古东部产粮区生长季降水明显减少,气温迅速升高,暖干化趋势表现明显,温差减小和日照时数减少,水热匹配格局发生改变,粮食产量出现减少趋势的可能性较大。  相似文献   

20.
Based on 1971-2005 monthly mean maximum/minimum temperature,wind speed,relative humidity,sunshine duration,and precipitation data at 25 stations over the Tibetan Plateau,a study of the largest potential evapotranspiration(LPE)is performed by using the Penman-Monteith model.The surface wettability index(SWI)is calculated and examined,together with its space distribution,interannual and seasonal variations,as well as associated causes.The results suggest that the annual area rainfall exhibits a pronounced increasing trend at 15.0 mm per decade; the annual LPE shows a different-degree decrease at-4.6-71.6 mm/10 yr.In the southwestern Ngari prefecture and Nyalam county,the annual SWI displays insignificant decline trends compared to increasing trends in other areas of Tibet(0.02-0.09 per decade).For Tibet,on average,the SWI experiences a noticeable rise at 0.04/10 yr,particularly in 1981-2005.On a seasonal basis,the SWI shows increasing trends,especially in summer.In the 1970s-1980s,the interannual variation is characterized mainly by lower temperature and lower humidity.From the 1990s,air temperature keeps on rising,leading to an appreciable increase in SWI,displayed as a type of warm and humid climate.The salient increases(decrease)of precipitation and relative humidity(mean temperature daily range)are the principal causes of the greatly enhanced SWI in the region.The pronounced decrease in mean wind and sunshine duration also plays an active role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号