首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The interannual and decadal scale variability in the North Atlantic Oscillation (NAO) and its relationship with Indian Summer monsoon rainfall has been investigated using 108 years (1881–1988) of data. The analysis is carried out for two homogeneous regions in India, (Peninsular India and Northwest India) and the whole of India. The analysis reveals that the NAO of the preceding year in January has a statistically significant inverse relationship with the summer monsoon rainfall for the whole of India and Peninsular India, but not with the rainfall of Northwest India. The decadal scale analysis reveals that the NAO during winter (December–January–February) and spring (March–April–May) has a statistically significant inverse relationship with the summer monsoon rainfall of Northwest India, Peninsular India and the whole of India. The highest correlation is observed with the winter NAO. The NAO and Northwest India rainfall relationship is stronger than that for the Peninsular and whole of India rainfall on climatological and sub-climatological scales.Trend analysis of summer monsoon rainfall over the three regions has also been carried out. From the early 1930s the Peninsular India and whole of India rainfall show a significant decreasing trend (1% level) whereas the Northwest India rainfall shows an increasing trend from 1896 onwards.Interestingly, the NAO on both climatological and subclimatological scales during winter, reveals periods of trends very similar to that of Northwest Indian summer monsoon rainfall but with opposite phases.The decadal scale variability in ridge position at 500 hPa over India in April at 75° E (an important parameter used for the long-range forecast of monsoon) and NAO is also investigated.With 4 Figures  相似文献   

2.
Extreme temperatures are changing worldwide together with changes in the mean temperatures. This study investigates the long-term trends and variations of the monthly maximum and minimum temperatures and their effects on seasonal fluctuations in various climatological regions in India. The magnitude of the trends and their statistical significance were determined by parametric ordinary least square regression techniques and the variations were determined by the respective coefficient of variations. The results showed that the monthly maximum temperature increased, though unevenly, over the last century. Minimum temperature changes were more variable than maximum temperature changes, both temporally and spatially, with results of lesser significance. The results of this study are good indicators of Indian climate variability and its changes over the last century.  相似文献   

3.
Climate change has the potential ability to alter the occurrence and severity of extreme events. Though predicting changes of such extreme events is difficult, understanding them is important to determine the impacts of climate change in various sectors. This paper presents the change in rainfall extremes in the monsoon season in south-west Indian peninsula. Daily rainfall data were analysed for the entire Kerala state in India to determine if the extreme rainfall had changed over the 50-year period. Several indices were derived from the data to identify the extreme rainfalls. The trends of all the extreme indices were assessed by parametric ordinary least square regression technique, which were tested for significance at 95% level. Results showed significant decrease in monsoon rainfall extremes in Kerala that would affect the tendency of change in seasonal total rainfall. This study provides a comprehensive knowledge on extreme monsoon precipitation in Kerala, which could also be employed to study changing climate at local scale in other regions.  相似文献   

4.
Regional changes in extreme monsoon rainfall deficit and excess in India   总被引:1,自引:0,他引:1  
With increasing concerns about climate change, the need to understand the nature and variability of monsoon climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with the changes in frequency and magnitudes of extreme monsoon rainfall deficiency and excess in India from 1871 to 2005. Five regions across India comprising variable climates were selected for the study. Apart from changes in individual regions, changing tendencies in extreme monsoon rainfall deficit and excess were also determined for the Indian region as a whole. The trends and their significance were assessed using non-parametric Mann–Kendall technique. The results show that intra-region variability for extreme monsoon seasonal precipitation is large and mostly exhibited a negative tendency leading to increasing frequency and magnitude of monsoon rainfall deficit and decreasing frequency and magnitude of monsoon rainfall excess.  相似文献   

5.
Food security in India is tightly linked to rainfall variability. Trends in Indian rainfall records have been extensively studied but the subject remains complicated by the high spatiotemporal variability of rainfall arising from complex atmospheric dynamics. For various reasons past studies have often produced inconsistent results. This paper presents an analysis of recent trends in monthly and seasonal cumulative rainfall depth, number of rainy days and maximum daily rainfall, and in the monsoon occurrence (onset, peak and retreat). A modified version of the Mann-Kendall test, accounting for the scaling effect, was applied to 29 variables derived from square-degree-resolution daily gridded rainfall (1951–2007). The mapping of gridded trend slopes and the regional average Kendall test were used concurrently to assess the field significance of regional trends in areas exhibiting spatial homogeneity in trend directions. The statistics we used account for temporal and spatial correlations, and thus reduce the risk of overestimating the significance of local and regional trends. Our results i/ improve available knowledge (e.g. 5 %-field-significant delay of the monsoon onset in Northern India); ii/ provide a solid statistical basis to previous qualitative observations (e.g. 1 %-field-significant increase/decrease in pre-monsoon rainfall depth in northeast/southwest India); and, iii/ when compared to recent studies, show that the field significance level of regional trends (e.g. in rainfall extremes) is test-dependent. General trend patterns were found to align well with the geography of anthropogenic atmospheric disturbances and their effect on rainfall, confirming the paramount role of global warming in recent rainfall changes.  相似文献   

6.
Trend analysis of rainfall and temperature and its relationship over India   总被引:1,自引:0,他引:1  
This study investigated the trends in rainfall and temperature and the possibility of any rational relationship between the trends over the homogeneous regions over India. Annual maximum temperature shows an increasing trend in all the homogeneous temperature regions and corresponding annual rainfall also follow the same pattern in all the regions, except North East. As far as monthly analysis is concerned, no definite pattern has been observed between trends in maximum and minimum temperature and rainfall, except during October. Increasing trends of maximum and minimum temperature during October accelerate the water vapor demand and most of the lakes, rivers, ponds and other water bodies with no limitation of water availability during this time fulfills the water vapor demand and shows an increasing trend of rainfall activity. This study shows there exists no direct relationship between increasing rainfall and increasing maximum temperature when monthly or seasonal pattern is concerned over meteorological subdivisions of India, however we can make a conclusion that the relation between the trends of rainfall and temperature have large scale spatial and temporal dependence.  相似文献   

7.
Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial–temporal analyses of rainfall have been studied by using 107 (1901–2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.  相似文献   

8.
B. G. Hunt 《Climate Dynamics》2014,42(9-10):2271-2285
Output from a multi-millennial control simulation of the CSIRO Mark 2 coupled model has been used to investigate quantitatively the relation between the Indian summer monsoon rain and El Nino/Southern Oscillation events. A moving window correlation between these two features revealed marked interannual and multi-decadal variability with the correlation coefficient varying between ?0.8 and +0.2. This suggests that current observations showing a decline in this correlation are due to natural climatic variability. A scatter diagram of the anomalies of the Indian summer monsoon rainfall and NINO 3.4 surface temperature showed that in almost 40 % of the cases ENSO events were associated with rainfall anomalies opposite to those implied by the climatological correlation coefficient. Case studies and composites of global distributions of surface temperature and rainfall anomalies for El Nino (or La Nina) events highlight the opposite rainfall anomalies over India that can result from very similar ENSO surface temperature anomalies. Composite differences are used to demonstrate the unique sensitivity of Indian summer monsoon rainfall anomalies to ENSO events. The problem of predicting such anomalies is discussed in relation to the fact that time series of the monsoon rainfall, both observed and simulated, consist of white noise. Based on the scatter diagram it is concluded that in about 60 % of the cases seasonal or annual prediction of monsoon rainfall based on individual ENSO events will result in the correct outcome. Unfortunately, there is no way, a priori, of determining for a given ENSO event whether the correct or a rogue prediction will result. Analysis of the present model’s results suggest that this is an almost world-wide problem for seasonal predictions of rainfall.  相似文献   

9.
Peninsular India and Sri Lanka receive major part of their annual rainfall during the northeast monsoon season (October–December). The long-term trend in the northeast monsoon rainfall over the Indian Ocean and peninsular India is examined in the vicinity of global warming scenario using the Global Precipitation Climatology Project (GPCP) dataset available for the period 1979–2010. The result shows a significant increasing trend in rainfall rate of about 0.5 mm day?1 decade?1 over a large region bounded by 10 °S–10 °N and 55 °E–100 °E. The interannual variability of seasonal rainfall rate over peninsular India using conventional rain gauge data is also investigated in conjunction to the Indian Ocean dipole. The homogeneous rain gauge data developed by Indian Institute of Tropical Meteorology over peninsular India also exhibit the considerable upward rainfall trend of about 0.4 mm day?1 decade?1 during this period. The associated outgoing longwave radiation shows coherent decrease in the order of 2 W?m?2 decade?1 over the rainfall increase region.  相似文献   

10.
Various hydrological and meteorological variables such as rainfall and temperature have been affected by global climate change. Any change in the pattern of precipitation can have a significant impact on the availability of water resources, agriculture, and the ecosystem. Therefore, knowledge on rainfall trend is an important aspect of water resources management. In this study, the regional annual and seasonal precipitation trends at the Langat River Basin, Malaysia, for the period of 1982–2011 were examined at the 95 % level of significance using the regional average Mann–Kendall (RAMK) test and the regional average Mann–Kendall coupled with bootstrap (RAMK–bootstrap) method. In order to identify the homogeneous regions respectively for the annual and seasonal scales, firstly, at-site mean total annual and separately at-site mean total seasonal precipitation were spatialized into 5 km?×?5 km grids using the inverse distance weighting (IDW) algorithm. Next, the optimum number of homogeneous regions (clusters) is computed using the silhouette coefficient approach. Next, the homogeneous regions were formed using the K-mean clustering method. From the annual scale perspective, all three regions showed positive trends. However, the application of two methods at this scale showed a significant trend only in the region AC1. The region AC2 experienced a significant positive trend using only the RAMK test. On a seasonal scale, all regions showed insignificant trends, except the regions I1C1 and I1C2 in the Inter-Monsoon 1 (INT1) season which experienced significant upward trends. In addition, it was proven that the significance of trends has been affected by the existence of serial and spatial correlations.  相似文献   

11.
El Ni?o(厄尔尼诺)事件对东亚和南亚次年夏季降水影响及其机理已经得到充分研究,但其对夏季青藏高原降水是否有显著影响还不清楚。本研究根据1950年后El Ni?o事件次年衰减期演变速度,对比分析衰减早型与晚型El Ni?o事件对南亚季风区与青藏高原夏季(6~9月)季节平均和月平均气候影响差异。结果显示在衰减早型次年夏季热带太平洋海温转为La Ni?a(拉尼娜)型且持续发展,引起Walker环流上升支西移,印度洋和南亚季风区上升运动加强,同时激发异常西北太平洋反气旋(NWPAC),阿拉伯海异常气旋和伊朗高原异常反气旋性环流响应,增加7~9月对流层偏南气流和印度洋水汽输送,导致南亚和高原西南侧降水偏多。衰减晚型次年6~8月热带太平洋El Ni?o型海温仍维持,印度洋暖异常海温显著,对应的印度洋和南亚季风区上升运动较弱,NWPAC西伸控制南亚季风区,阿拉伯海和中西亚分别呈现异常反气旋和气旋性环流,导致青藏高原西风加强,水汽输送减少,南亚北部和高原降水一致偏少。结果表明:(1)El Ni?o显著影响次年青藏高原西南部夏季季节和月平均降水与温度,是印度和高原西南部夏季降水显著相关的重要原因;(2)El Ni?o衰减快慢速度对南亚和青藏高原西南部夏季季节内降水的影响有着重要差异。  相似文献   

12.
Regional variations in fluctuations of seasonal rainfall over Nigeria   总被引:1,自引:0,他引:1  
Summary Previous work on rainfall variations over Nigeria has concentrated on country-wide averages, which approach has tended to mask the regional contrasts in the country's rainfall. In this paper, variations of rainy season rainfall over the Southern, Middle Belt, and Northern regions of Nigeria as well as the country as a whole are examined over a 72-year secular period (1916–1987). The extent and nature of nonrandom changes, such as fluctuations, trend and persistence, are investigated.The trend analysis showed a tendency towards decreasing seasonal rainfall totals in all the regions, though only those for the Northern region and the country as a whole were significant. No significant persistence was however evident in any of the regions.Power spectrum analysis revealed the occurrence of significant oscillations with time periods of 2.53 to 2.67 and 3.69 to 4.36 years only in the Middle Belt, and 8.00 to 9.60 years in all the regions. The climatological identity of the Middle Belt and the implications of its rainfall oscillations for the large scale agricultural projects planned for the region are pointed out.With 3 Figures  相似文献   

13.
Accurately predicting precipitation trends is vital in the economic development of a country. Ground observed data from the Nigeria Meteorological Agency (NIMET) was analyzed to study the long-term spatio-temporal trends of rainfall on annual and seasonal scales for 23 stations in Nigeria during a 40-year period spanning from 1974 to 2013. After testing the presence of autocorrelation, Mann–Kendall (modified Mann–Kendall) test was applied to non-autocorrelated (autocorrelated) series to detect the trends in rainfall data. Theil and Sen’s slope estimator test was used to find the magnitude of change over a time period. Pettitt’s test, Standard Normal Homogeneity Test, and Buishand’s test were further used to test the homogeneity of the rainfall series. The results show an increasing trend in annual rainfall; however, only nine stations have a significant increase during the period of study. On the seasonal time scale, a significant increasing trend was observed in the pre- and post-monsoon seasons, while only nine stations show a significant increasing trend in monsoon rainfall and a significant decreasing trend in the winter rainfall over the last 40 years. During the study period, 15.4 and 13.90 % increase were estimated for annual and monsoonal rainfall, respectively. Furthermore, seven stations exhibit changes in mean rainfall while majority of the stations considered (Eighteen stations) exhibit homogeneous trends in annual and seasonal rainfall over the country. The performance of the different tests used in this study was consistent at the verified significance level.  相似文献   

14.
Rainfall series at 18 stations along the major rivers of the Brazilian Amazon Basin, having data since 1920s or 1930s, are analyzed to verify if there are appreciable long-term trends. Annual, rainy-season, and dry-season rainfalls are individually analyzed for each station and for the region as a whole. Some stations showed positive trends and some negative trends. The trends in the annual rainfall are significant at only six stations, five of which reporting increasing trends (Barcelos, Belem, Manaus, Rio Branco, and Soure stations) and just one (Itaituba station) reporting decreasing trend. The climatological values of rainfall before and after 1970 show significant differences at six stations (Barcelos, Belem, Benjamin Constant, Iaurete, Itaituba, and Soure). The region as a whole shows an insignificant and weak downward trend; therefore, we cannot affirm that the rainfall in the Brazilian Amazon basin is experiencing a significant change, except at a few individual stations. Subregions with upward and downward trends are interspersed in space from the far eastern Amazon to western Amazon. Most of the seasonal trends follow the annual trends, thus, indicating a certain consistency in the datasets and analysis.  相似文献   

15.
Large scale aspects of India-China summer monsoon rainfall   总被引:1,自引:0,他引:1  
This study investigates the dominant modes of variability in monthly and seasonal rainfall over the India-China region mainly through Empirical Orthogonal Function (EOF) analysis. The EOFs have shown that whereas the rain-fall over India varies as one coherent zone, that over China varies in east-west oriented bands. The influence of this banded structure extends well into India.Relationship of rainfall with large scale parameters such as the subtropical ridge over the Indian and the western Pacific regions, Southern Oscillation, the Northern Hemispheric surface air temperature and stratospheric winds have also been investigated. These results show that the rainfall over the area around 40oN, 110oE over China is highly related with rainfall over India. The subtropical ridge over the Indian region is an important predictor over India as well as over the northern China legion.  相似文献   

16.
Using the NCEP/NCAR reanalysis wind and temperature data (1948–2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N–27.5°N, 80°E–90°E) and Ocean (5°S–0°S, 75°E–85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land–sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land–sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus, the study explained the long-term trend in TEJ and its relation with May month temperature over the Indian Ocean and land region and its effect on the trend and spatial distribution of Indian summer monsoon rainfall.  相似文献   

17.
Mann?CKendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889?C1918 (NP1), 1919?C1948 (NP2), 1949?C1978 (NP3) and 1979?C2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June?CSeptember, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889?C2008) mean annual rainfall of CNE India is 1,195.1?mm with a standard deviation of 134.1?mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6?mm/year for Jharkhand and 3.2?mm/day for CNE India. Since rice crop is the important kharif crop (May?COctober) in this region, the decreasing trend of rainfall during the month of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During the month of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November?CMarch) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914?C2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during post-monsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4?C8?years peak periodicity band has been noticed during September over Western UP, and 30?C34?years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.  相似文献   

18.
Level 3 (3A25) TRMM Precipitation Radar (PR) data are used for 13 years period (1998–2010) to prepare climatology of TRMM PR derived near surface rain (Total rain) and rain fractions for the 4-months duration of Indian Summer Monsoon season (June–September) as well as for individual months. It is found that the total rain is contributed mostly (99 %) by two rain fractions i.e. stratiform and convective rain fractions for the season as well as on the monthly basis. It is also found that total rain estimates by PR are about 65 % of the gauge measured rain over continental India as well as on sub-regional basis. Inter-annual variability of TRMM-PR rain estimates for India mainland and its sub-regions as well as over the neighboring oceanic regions, in terms of coefficient of variability (CV) is discussed. The heaviest rain region over north Bay of Bengal (BoB) is found to have the lowest CV. Another sub-region of low CV lies over the eastern equatorial Indian ocean (EEIO). The CVs of total rain as well as its two major constituents are found to be higher on monthly basis compared to seasonal basis. Existence of a well known dipole between the EEIO and the north BoB is well recognized in PR data also. Significant variation in PR rainfall is found over continental India between excess and deficit monsoon seasons as well as between excess and deficit rainfall months of July and August. Examination of rainfall fractions between the BoB and Central India on year to year basis shows that compensation in rainfall fractions exists on monthly scale on both the regions. Also on the seasonal and monthly scales, compensation is observed in extreme monsoon seasons between the two regions. However, much less compensation is observed between the north BoB and EEIO belts in extreme rain months. This leads to speculation that the deficit and excess seasons over India may result from slight shift of the rainfall from Central India to the neighboring oceanic regions of north BoB. Contribution of stratiform and convective rain fractions have been also examined and the two fractions are found to contribute almost equally to the total rain. Results are further discussed in terms of the possible impact of the two rain fractions on circulation based on possible difference is vertical profiles of latent heat of two types of rain. Substantial differences in the lower and upper tropospheric circulation regimes are noticed in both deficit and excess monsoon months/seasons, emphasizing the interaction between rainfall (latent heat) and circulation.  相似文献   

19.
Summary Hindcasts for the Indian summer monsoons (ISMs) of 2002 and 2003 have been produced from an ensemble of numerical simulations performed with a global model by changing SST. Two sets of ensemble simulations have been produced without vegetation: (i) by prescribing the weekly observed SST from ECMWF (European Centre for Medium Range Weather Forecasting) analyses, and (ii) by adding weekly SST anomalies (SSTA) of April to the climatological SST during the simulation period from May to August. For each ensemble, 10 simulations have been realized with different initial conditions that are prepared from ECMWF data with five each from April and May analyses of both the years. The predicted June–July monsoon rainfall over the Indian region shows good agreement with the GPCP (observed) pentad rainfall distribution when 5 member ensemble is taken from May initial conditions. The All-India June–July simulated rainfall time series matches favourably with the observed time series in both the years for the five member ensemble from May initial condition but drifts away from observation with April initial conditions. This underscores the role of initial conditions in the seasonal forecasting. But the model has failed to capture the strong intra-seasonal oscillation in July 2002. Heating over equatorial Indian Ocean for June 2002 in a particular experiment using 29th May 12 GMT as initial conditions shows some intra-seasonal oscillation in July 2002 rainfall, as in observation. Further evaluation of the seasonal simulations from this model is done by calculating the empirical orthogonal functions (EOFs) of the GPCP rainfall over India. The first four EOFs explain more than 80% of the total variance of the observed rainfall. The time series of expansion coefficients (principal components), obtained by projecting on the observed EOFs, provide a better framework for inter-comparing model simulations and their evaluation with observed data. The main finding of this study is that the All-India rainfall from various experiments with prescribed SST is better predicted on seasonal scale as compares to prescribed SST anomalies. This is indicative of a possible useful seasonal forecasts from a GCM at least for the case when monsoon is going to be good. The model responses do not differ much for 2002 and 2003 since the evolution of SST during these years was very similar, hence July rainfall seems to be largely modulated by the other feedbacks on the overall circulation.  相似文献   

20.
The inverse relationship between the warm phase of the El Ni?o Southern Oscillation(ENSO) and the Indian Summer Monsoon Rainfall(ISMR) is well established. Yet, some El Ni?o events that occur in the early months of the year(boreal spring) transform into a neutral phase before the start of summer, whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season. This study investigates the distinct influences of an exhausted spring El Ni?o(springtime)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号