首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Hejiazhuang pluton is located in the South Qinling Tectonic Belt(SQTB)in the north side of the Mianxian-Lueyang Suture Zone,and consists dominantly of granodiorites.LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopic analyses reveal that these granodiorites of the Hejiazhaung pluton emplaced at~248 Ma,and show a large variation in zirconεHf(t)values from4.8 to 8.8.These granodiorite samples are attributed to high-K to mid-K calc-alkaline series,and characterized by high SiO2(66.6%–70.0%),Al2O3(15.04%–16.10%)and Na2O(3.74%–4.33%)concentrations,with high Mg#(54.2–61.7).All samples have high Sr(627–751 ppm),Cr(55–373 ppm)and Ni(17.2–182 ppm),but low Y(5.42–8.41 ppm)and Yb(0.59–0.74 ppm)concentrations with high Sr/Y ratios(84.90–120.66).They also display highly fractionated REE patterns with(La/Yb)N ratios of 18.9–34.0 and positive Eu anomalies(δEu=1.10–2.22)in the chondrite-normalized REE patterns.In the primitive mantle normalized spidergrams,these samples exhibit enrichment in LILEs but depletion in Nb,Ta,P and Ti.These geochemical features indicate that the granodioritic magma of the Hejiazhuang pluton was derived from the partial melting of hybrid sources comprising the subducted oceanic slab and sediments,and the melts were polluted by the mantle wedge materials during their ascent.The emplacement ages and petrogenesis of the Hejiazhuang pluton prove that the initial subduction of the Mianlue oceanic crust occurred at~248 Ma ago,and the SQTB was still under subduction tectonic setting in the Early Triassic.  相似文献   

2.
The Jurassic Shir‐Kuh granitoid batholith in Central Iran intrudes Lower Jurassic sandstones and shales. The batholith consists of three main facies: (i) a granodioritic facies to the north; (ii) a monzogranitic facies spread throughout the batholith; and (iii) a leucogranitic facies along the northwestern margin. The granodiorites are composed mainly of plagioclase, quartz, K‐feldspar, biotite, and some muscovite, garnet, cordierite, ilmenite, zircon, apatite, and monazite. This facies contains variable amounts of restite minerals which are mainly defined by calcic plagioclase cores and small aggregates of biotite. The monzogranites, with mineral assemblages similar to those in the granodiorites, range from relatively mafic (cordierite‐bearing) to felsic (muscovite‐rich) rocks. The leucogranites, exposed as small stock and dykes, consist mainly of quartz, K‐feldspar, and sodic plagioclase. The batholith is peraluminous, calc‐alkaline, and typical of S‐type, as indicated by Na2O content (2.74%), molecular Al2O3/(CaO + Na2O + K2O) (A/CNK) ratio (1.17), K2O/Na2O ratio (1.39), and isotopic data ([87Sr/86Sr]i = 0.715). The rocks are characterized by enrichment in large ion lithophile elements such as Rb, Th and K and depletion in high field strength elements such as Nb and Ti. Chondrite‐normalized rare earth element (REE) patterns are characterized by light rare earth element (LREE) enrichment, with values of (La/Yb)N between 4.5 and 19.53, unfractionated heavy rare earth element (HREE) with values of (Gd/Yb)N between 0.98 and 2.88, and a distinct negative Eu. The parental magma of the Shir‐Kuh Granite was derived from a plagioclase‐rich metasedimentary source (local anatexis of metagreywacke) in the crust, with heat input from mantle melt components. The separation of restite crystals from the primary melt followed by the fractional crystallization appears to have been an effective differentiation process in the batholith.  相似文献   

3.
Dong  YunPeng  Zhang  GuoWei  Yang  Zhao  Zhao  Xia  Ma  HaiYong  Yao  AnPing 《中国科学:地球科学(英文版)》2007,50(2):234-245

The mafic-ultramafic assemblages, which thrustthrust into the Wushan-Tangzang boundary fault as some blocks and outcropped in the Yuanyangzhen, Lijiahe, Lubangou and Gaojiahe area, consist mainly of meta-peridotites, gabbros and basalts. The meta-peridotites are characterized by high SiO2 and MgO contents, low ΣREE, as well as their chondrite-normalized rare earth element patterns show some similarities to that of middle oceanic meta-peridotite. The basalts from the Yuanyangzhen, Lijiahe and Lubangou area are characterized by relatively high TiO2 content, low Al2O3 content and Na2O>>K2O. Above all, it is the slight enrichment or flat REE distribution patterns and the unfractionated in HFS elements in the primitive-normalized trace elements distribution patterns that indicate these basalts are similar to that of the typical E-MORB. In comparison, the basalts from the Gaojiahe section are featured by depletion in Nb and Ta contents and enrichment in Th content which show that these were derived from an island-arc setting. From studies of the regional geology, petrology, geochemistry, geo-chronology and all above evidence, it can be suggested that the mafic-ultramafic rocks from the Wushan area are mainly dismembered E-MORB type ophiolite, which represent the fragments of the lithosphere of the Early-Paleozoic Qinling ocean. It is preferred that these rocks were formed in an initial mid-ocean ridge setting during the beginning stage of the oceanic basin spreading. This ophiolite together with the Gaojiahe island-arc basalts shows that there exists an ophiolitic mélange along the Wushan-Tangzang boundary fault, and marks the suture zone after the closure of the Qinling ocean in early Paleozoic.

  相似文献   

4.
Hofmann[1] found that the depleted mantle (DM) and bulk continental crust (BCC) are simply compen-satory in terms of many elements and elemental ratios. High-field-strength elements (HFSE) (e.g., Zr, Hf, Nb, Ta and Ti) are immobile and thus useful to track the primary features of the ancient mafic volcanics. It has been long considered that Nb-Ta behave as identical twins during magmatic processes, based on their matching atomic radii and valence state and hence coherent geochemical affi…  相似文献   

5.
Cheong-Bin  Kim  V. J. Rajesh    M. Santosh 《Island Arc》2008,17(1):26-40
Abstract Geochemical and Sr–Nd–Pb isotope characteristics, as well as K–Ar geochronology of a massive pitchstone (volcanic glass) stock erupted into Late Cretaceous lapilli tuff and rhyolite in the Gohado area, southwestern Okcheon Belt, South Korea, are reported. The pitchstones are highly evolved with SiO2 contents ranging from ~72 to 73 wt%, K2O/Na2O ratios of 1.04–1.23 and low MgO/FeOt values (0.17–0.20). The pitchstones are weakly peraluminous and the ASI (molar Al2O3/Na2O + K2O + CaO) values are significantly lower than 1.1. The pitchstones also display a general calc‐alkaline nature with significant alkali contents. The rare earth elements (REE) compositions show moderately fractionated nature with (La/Yb)N ranging from 11 to 16. Chondrite normalized REE patterns show relative enrichment of light REE over heavy REE and moderate Eu anomaly (Eu/Eu* ratio varies from 0.53 to 0.57). A distinct negative Nb anomaly is observed for all pitchstones on a primitive mantle normalized trace element diagram, typical of subduction‐related magmatism and crustal‐derived granites. All these features are characteristic of I‐type granites derived from a continental arc. The pitchstones have Zr contents of 98.5–103.5 ppm with zircon thermometry yielding temperatures of 749–755°C (mean 752°C). The K–Ar analyses of representative pitchstone samples yielded ages of 58.7 ± 2.3 and 62.4 ± 2.1 Ma with a mean age of 61 Ma. The rocks show nearly uniform initial 87Sr/86Sr isotopic ratios of 0.7104–0.7106 and identical 143Nd/144Nd initial ratio of 0.5120. The rocks display negative εNd (61 Ma) values of ?12. The depleted mantle model ages (TDM) range from 1.54 Ga to 1.57 Ga. The Pb isotope ratios are 206Pb/204Pb = 18.522–18.552, 207Pb/204Pb = 15.642–15.680 and 208Pb/204Pb = 38.794–38.923. These ratios suggest that the Gohado pitchstones were formed in a continental arc environment by partial melting of a 1.54 Ga to 1.57 Ga parental sources of lower crustal rocks probably of mafic or intermediate compositions.  相似文献   

6.
The Nanling Mountains lying in the southern part of South China are an economically important gran-ite-related multi-metallogenic province. The Nanling Mountains granites can be described as: temporally spanning from Caledonian to Yanshanian and spatially distributed as three EW trending zones: the north one in Zhuguangshan-Qingzhangshan, the middle one in Dadongshan-Guidong, and the south one in Fogang-Xinfengjiang with two neighboring zones’ midline having an interval of ca. latitude …  相似文献   

7.
皖南新元古代花岗闪长岩沿祁门-歙县-三阳深断裂呈串珠状出露。本文在对其岩石学、地球化学细致分析的基础上,探讨了岩体的岩石成因和产出环境。皖南新元古代花岗闪长岩主要由石英、钾长石和斜长石组成,普遍含富铝矿物黑云母和堇青石,副矿物包括锆石、磷灰石、钛铁矿、独居石、磷钇矿、极少的磁铁矿等。地球化学分析数据显示,岩石总体具高硅、高钾、高铝和低钠、低镁、低钙的特征;岩石富碱(ALK=6.63%),高K2O/Na2O比值(1.33)。里特曼指数δ为0.8~2.91,碱度率AR为1.56~3.14,属高钾钙碱性系列。岩石铝饱和指数(A/CNK-1.31)大于1.1,具强过铝质S型花岗岩的特征。岩石稀土元素呈轻稀土富集、重稀土亏损的特征,∑LREE/∑HREE比值为5.36~8.36,具较强的负铕异常(δEu=0.39~0.7),配分模式为右倾“V”字形态;微量元素明显富集Rb、Th而亏损Ba、Nb、Ta、Sr等,为低Sr高Yb型花岗岩。地球化学特征显示其岩浆源于围岩-中元古代牛屋组浅变质千枚岩的部分熔融,反映陆-陆碰撞挤压造山环境,为晋宁运动晚期华夏板块向北俯冲与扬子板块碰撞造山的火山弧产物。  相似文献   

8.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

9.
GHODRAT TORABI 《Island Arc》2012,21(3):215-229
Late Permian trondhjemites in the Anarak area occur as stocks and dykes, which cross cut the Anarak ophiolite and its overlying metasedimentary rocks, and are exposed along the northern Anarak east–west main faults. These leucocratic intrusive bodies have enclaves of all ophiolitic units and metamorphic rocks. They are composed of amphibole, plagioclase (oligoclase), quartz, zircon and muscovite. Secondary minerals are chlorite (pycnochlorite), epidote, albite, magnetite and calcite. Whole‐rock major‐ and trace‐element analyses reveal that they are characterized by high SiO 2 (67.8–71.0 wt%), Al 2 O 3 (14.9–17.1 wt%) and Na 2 O (5.3–8.6 wt%), low K 2 O (0.1–1.5 wt%; average: 0.8 wt%), low Rb/Sr ratio (0.01–0.40; average: 0.09), low Y (3–6 ppm), negative Ti, Nb and Ta anomalies, slightly negative or positive Eu anomaly, LREE enrichment and fractionated HREE. These rocks present 2 to 40 times enrichment in inclined chondrite‐normalized REE patterns. Geochemical characteristics of the Anarak trondhjemites all reflect melting of a mafic protolith at more than 10 kbar. The field evidence and whole‐rock chemistry reveal that these rocks have been crystallized from magmas derived from melting of subducted Anarak oceanic crust. This study reveals that melting of garnet amphibolite was an important element of continent formation in the study area.  相似文献   

10.
The South China, including Yangzi Craton and the Cathaysian Block, belongs to the southern part of East Asia continent. It borders Pacific plate on the east side and Qinling-Dabie Orogen on the north side. During the middle-late Cretaceous, a number of downfaulted red basins (the terrestrial sedimentary basins in Fig. 1) and volcanic- sedimentary basins had been developed in South China[1,2], in which the con-temporaneous basaltic rocks were generally distributed (Fig. 1). Although the …  相似文献   

11.

The Madang Cenozoic sodic alkaline basalt occurred in the eastern margin of the Tibetan Plateau, where is a key tectonic transform region of Tibet, North China, and Yangtze blocks. The basalts are characterized by the variation in SiO2=42%–51%, Na2O/K2O>4, belonging to the sodic alkaline basalt series. The rocks are enriched in Ba, Th, Nb, Ta, relative to a slight depletion in K, Rb in the trace and rare earth element (REE) spider diagrams that are similar to the typical oceanic island alkaline basalt. The Sr-Nd-Pb isotopic compositions suggest that they are derived from a mixed mantle reservoir. The western Qinling-Songpan tectonic region was controlled by Tibet, North China and Yangtze blocks since Cenozoic, therefore, the region was in the stage of the substance converge from the mantle to upper crust, producing a mixed mantle reservoir in the studied area. The Madang basalts occurred in the specific tectonic background, they result from partial melting of a mixed asthenospheric mantle reservoir in the western Qinling-Songpan tectonic node.

  相似文献   

12.
The properties and tectonic significance of the fault bound zone on the northern margin of the Central Tianshan belt are key issues to understand the tectonic framework and evolutionary history of the Tianshan Orogenic Belt. Based on the geological and geochemical studies in the Tianshan orogenic belt, it is suggested that the ophiolitic slices found in the Bingdaban area represent the remaining oceanic crust of the Early Paleozoic ocean between the Hazakstan and Zhungaer blocks. Mainly composed of basalts, gabbros and diabases, the ophiolites were overthrust onto the boundary fault between the Northern Tianshan and Central Tianshan belts. The major element geochemistry is characterized by high TiO2 (1.50%–2.25%) and MgO (6.64%–9.35%), low K2O (0.06%–0.41%) and P2O5 (0.1%–0.2%), and Na2O>K2O as well. Low ΣREE and depletion in LREE indicate that the original magma was derived from a depleted mantle source. Compared with a primitive mantle, the geochemistry of the basalts from the Bingdaban area is featureded by depletion in Th, U, Nb, La, Ce and Pr, and unfractionated in HFS elements. The ratios of Zr/Nb, Nb/La, Hf/Ta, Th/Yb and Hf/Th are similar to those of the typical N-MORB. It can be interpreted that the basalts in the Bingdaban area were derived from a depleted mantle source, and formed in a matured mid-oceanic ridge setting during the matured evolutionary stage of the Northern Tianshan ocean. In comparison with the basalts, the diabases from the Bingdaban area show higher contents of Al2O3, ΣREE and HFS elements as well as unfractionated incompatible elements except Cs, Rb and Ba, and about 10 times the values of the primitive mantle. Thus, the diabases are thought to be derived from a primitive mantle and similar to the typical E-MORB. The diabases also have slight Nb depletion accompanying no apparent Th enrichment compared with N-MORB. From studies of the regional geology and all above evidence, it can be suggested that the diabases from the Bingdaban area were formed in the mid-oceanic ridge of the Northern Tianshan ocean during the initial spreading stage. Supported by the Major State Research Program of PRC (Grant No. 2001CB409801), the National Natural Science Foundation of China (Grant Nos. 40472115 and 40234041) and the State Research Program of China Geological Survey (Grant No. 2001130000-22)  相似文献   

13.
The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al2O3/(CaO + Na2O + K2O)] ~ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu)N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.  相似文献   

14.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   

15.
Preliminary data on major elements, Cs, Ba, Rb, Pb, Sr, REE, Y, Th, U, Zr, Ht, Sn, Nb, W, Mo, Cr, V, Sc, Ni, Co and Cu contents for eight samples coming from the Upper Cretaceous volcanic belt of the Pontic Chain (Northern Turkey) are reported. SiO, versus K2O relationship shows that the analyzed samples belong to the calc-alkaline and shoshonite series. The calc-alkaline rocks appear to represent two distinct magma types one close in composition to typical island are calc-alkaline magmas and one with high incompatible elements concentration and tractionated heavy REE patterns which suggest a genesis by partial melting at high pressure with a garnet bearing residue. Shoshonitic rocks show Na2O/K2O close to one, high incompatible elements concentration, and TiO2%. Al2O3%, Ni and Co contents, Ni/Co and V/Ni ratios and REE patterns similar to typical island are andesites which suggest for these rocks similar genetical processes as the island are calc-alkaline magmas.  相似文献   

16.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

17.
The Tiefosi granitic pluton is located 5 km northwest of Xinyang City,northern Dabie Orogen,and was emplaced in the Proterozoic Qinling Group. SHRIMP zircon U-Pb dating suggests its crystallization at 436 ± 11 Ma. It is composed of monzogranite and syenogranite containing some amounts of muscovite and few mafic minerals. The rocks are characterized by high and restricted SiO2 content,low FeO,Fe2O3 and MgO contents,high K2O/Na2O ratio,and display high-K calc-alkaline and peraluminous (ACNK>1.1) characteristics. They are generally enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). They can be divided into three groups in light of rare earth elements (REE) and trace elements. Group I is moderate in ΣREE and characterized by the absence of Eu anom-aly,high (La/Yb)N ratio,and moderate Rb/Sr and Rb/Ba ratios. Group Ⅱ has moderately negative Eu anomaly,low (La/Yb)N ratio and high ΣREE contents,Rb/Sr and Rb/Ba ratios. Group Ⅲ displays positive Eu anomaly,moderate (La/Yb)N ratio,and low ΣREE,Rb/Sr and Rb/Ba ratios. The calculated εNd(440Ma) values of the rocks vary from 8.8 to 9.9 and Nd depleted mantle model ages are about 2.0 Ga,which resemble those of the paragneisses from the Qinling Group. The results indicate that the Tiefosi granite is crust-derived,syn-collisional S-type granite. Generation of Group I was related to low degree melting of the Qinling Group,while Group Ⅱ was formed by fractionational crystallization of plagioclase from Group I magmas,and Group Ⅲ resulted possibly from magma mingling with plagioclase cumulates. The Tiefosi granite was formed within crustal level related to the collision between the North China and South China blocks in the Early Paleozoic time.  相似文献   

18.
According to the statistics for granitoid distribution map of 1/2000000 Nanling region[1], the granitoids in the Nanling region sum up an area of more than 170000 km2, occupying about one fifth of the entire Nanling region. Granitoid rocks in the Nanlingregion are mainly composed of monzogranites (occu- pying more than 84%), granodiorites (about 11%) and syenogranites (about 3%)[2]. There also exists a small amount of syenites (0.12%) with a sum area of about 94 km2[2]. However, nearly half …  相似文献   

19.
The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range have distinctly different mineralogical and geochemical signatures. The Cu-Pb-Zn-bearing granites are dominated by metaluminous amphibole-bearing granodiorites, which have higher CaO/(Na2O+K2O) ratios, light/heavy rare earth element(LREE/HREE) ratios, and δEu values,lower Rb/Sr ratios, and weak Ba, Sr, P, and Ti depletions, exhibiting low degrees of fractionation. The W-bearing granites are highly differentiated and peraluminous, and they have lower CaO/(Na2O+K2O) ratios, LREE/HREE ratios, and δEu values,higher Rb/Sr ratios, and strong Ba, Sr, P, and Ti depletions. The Cu-Pb-Zn-bearing granites were formed predominantly between155.2 and 167.0 Ma with a peak value of 160.6 Ma, whereas the W-bearing granites were formed mainly from 151.1 to 161.8Ma with a peak value of 155.5 Ma. There is a time gap of about 5 Ma between the two different types of ore-bearing granites.Based on detailed geochronological and geochemical studies of both the Tongshanling Cu-Pb-Zn-bearing and Weijia W-bearing granites in southern Hunan Province and combined with the other Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, a genetic model of the two different types of ore-bearing granites has been proposed. Asthenosphere upwelling and basaltic magma underplating were induced by the subduction of the palaeo-Pacific plate. The underplated basaltic magmas provided heat to cause a partial melting of the mafic amphibolitic basement in the lower crust, resulting in the formation of Cu-Pb-Zn mineralization related granodioritic magmas. With the development of basaltic magma underplating,the muscovite-rich metasedimentary basement in the upper-middle crust was partially melted to generate W-bearing granitic magmas. The compositional difference of granite sources accounted for the metallogenic specialization, and the non-simultaneous partial melting of one source followed by the other brought about a time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granites.  相似文献   

20.
~~Characteristics of the mantle source region of sodium lamprophyres and petrogenetic tectonic setting in northeastern Hunan,China~~  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号