首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The elastic and inelastic seismic response of plan‐asymmetric regular multi‐storey steel‐frame buildings has been investigated under bi‐directional horizontal ground motions. Symmetric variants of these buildings were designed according to Eurocodes 3 and 8. Asymmetric buildings were created by assuming a mass eccentricity in each of the two principal directions. The torsional response in the elastic and inelastic range is qualitatively similar with the exception of the stiff edge in the strong direction of torsionally stiff buildings and the stiff edge in the weak direction of torsionally flexible buildings. The response is influenced by the intensity of ground motion, i.e. by the magnitude of plastic deformation. In the limiting case of very strong ground motion, the behaviour of initially torsionally stiff and initially torsionally flexible buildings may become qualitatively similar. A decrease in stiffness due to plastic deformations in one direction may substantially influence the behaviour in the orthogonal direction. The response strongly depends on the detailed characteristics of the ground motion. On average, torsional effects are reduced with increasing plastic deformations, unless the plastic deformations are small. Taking into account also the dispersion of results which is generally larger in the inelastic range than in the elastic one, it can be concluded that (a) the amplification of displacements determined by the elastic analysis can be used as a rough estimate also in the inelastic range and (b) any favourable torsional effect on the stiff side of torsionally stiff buildings, which may arise from elastic analysis, may disappear in the inelastic range. The conclusions are limited to fairly regular buildings and subject to further investigations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Based on an asymmetric multistorey frame building model, this paper investigates the influence of a building's higher vibration modes on its inelastic torsional response and evaluates the adequacy of the provisions of current seismic building codes and the modal analysis procedure in accounting for increased ductility demand in frames situated at or near the stiff edge of such buildings. It is concluded that the influence of higher vibration modes on the response of the upper-storey columns of stiff-edge frames increases significantly with the building's fundamental uncoupled lateral period and the magnitude of the stiffness eccentricity. The application of the equivalent static torsional provisions of certain building codes may lead to non-conservative estimates of the peak ductility demand, particularly for structures with large stiffness eccentricity. In these cases, the critical elements are vulnerable to excessive additional ductility demand and, hence, may be subject to significantly more severe structural damage than in corresponding symmetric buildings. It is found that regularly asymmetric buildings excited well into the inelastic range may not be conservatively designed using linear elastic modal analysis theory. Particular caution is required when applying this method to the design of stiff-edge frame elements in highly asymmetric structures.  相似文献   

3.
A study is presented of the influence of stiffness and strength eccentricities on the inelastic torsional response of buildings under the action of two simultaneous orthogonal horizontal ground motion components. Asymmetric buildings were obtained from their respective symmetric systems and were characterized by their stiffness and strength torsional eccentricities in both orthogonal directions. Based on the results of inelastic response of both building types (symmetric and asymmetric), the seismic reliability functions are determined for each system, and their forms of variation with different global system parameters are evaluated. Illustrative examples are presented about the use of this information for the formulation of seismic design criteria for in‐plan asymmetric multistory systems, in order to attain the same reliability levels implicit for symmetric systems designed in accordance with current seismic design codes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The study of the torsional response of buildings in the inelastic range of behaviour is of great interest since the ability of structures to resist strong earthquakes mainly relies on their ductility and capacity for energy dissipation. Furthermore, an examination of the performance of structures during past earthquakes demonstrates that plan-asymmetric buildings suffered greater damage due to torsional response. The paper deals with this subject by analysing a model which idealizes a one-storey building with resisting elements oriented along two perpendicular directions. In addition to the parameters of the elastic behaviour, the inelastic system response depends on full yield capacity and plan-wise strength distribution. The influence of the criterion adopted for the design of resisting elements on local ductility demand and damage has been evaluated by parametric analysis. In particular, a comparison has been carried out between systems with equal design levels for all elements and systems with design levels dependent on the element location. For a given elastic behaviour and total capacity, the strength distributions in plan have been defined which minimize ductility demand and structural damage. Finally, based on these findings, responses from models designed according to several seismic codes have been compared.  相似文献   

5.
The work presented in this paper investigates the effect of the foundation flexibility on the coupled lateral-torsional response of single-storey buildings excited by translational ground motion. The eccentricity between the centre of mass and the centre of resistance is considered to be the only cause of coupling of the lateral and torsional response of the building. The study is confined to the steady-state response of rigidly supported and flexibly supported torsionally coupled buildings subjected to harmonic free-field ground displacement perpendicular to the direction of the eccentricity. In the case of the flexibly supported building the foundation medium is assumed to be an elastic homogeneous isotropic half-space. The effect of the controlling parameters on lateral-torsional coupling is investigated. It is concluded that for a particular range of values of these parameters (representing most cases of actual buildings) their effect on the coupling of lateral and torsional response is not qualitatively affected by increases in the flexibility of the foundation medium.  相似文献   

6.
In this paper, torsional response of nonductile structures with soft‐first‐storey subjected to bidirectional ground motions is studied using a simplified two‐storey model with two‐way eccentricities. The stiffness ratio of second storey to first storey is varied to create different levels of soft‐first‐storey effect, while the stiffness eccentricity is varied to create torsional effects. Different overstrength ratios are used in the simplified models to study the response of structure with different structural capacity. Hysteretic model with strength deterioration and stiffness degradation properties is used to capture the deterioration of element stiffness and strength. Ductility capacity of 2.0 is used as the models are for nonductile structures. In general, displacement amplification of irregular model with respect to regular model increases as stiffness ratio increases, while no consistent trend of changes in displacement amplification is found with increase in stiffness eccentricity. It is found that the displacement amplification due to only soft‐first‐storey effect can be conservatively taken as 1.5. Coupling of torsional and soft‐first‐storey effects is more significant in affecting the displacement amplification of elements at flexible side. The trend of changes in displacement amplification of elastic system is similar to that of inelastic system. The displacement amplification of elements at the flexible side is larger than that at the stiff side. The elements at the flexible side in the direction of shorter uncoupled lateral period have larger displacement response than those in the orthogonal direction. Ductility demand–capacity curves subsequently constructed can be used to approximately assess the seismic performance of existing structures and as guidelines for designing structures in Singapore to withstand the maximum credible earthquake considering the coupling of torsional and soft‐first‐storey effects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
平面不规则结构非弹性扭转地震反应研究进展   总被引:1,自引:0,他引:1  
不规则建筑结构在侧向地震荷载作用下由于质量中心和刚度中心的不重合导致平扭耦联反应的发生,使得结构构件的变形需求分布在结构平面内并不一致,从而产生附加的强度和变形需求。尽管不规则建筑结构在地震作用下的扭转问题一直受到研究学者的关注和研究,并取得了很多显著的成果,但仍然存在着一些争议,有待于继续深入研究。本文从结构的分析模型、影响参数及地震动输入等方面回顾总结了平面不规则建筑结构在地震作用下非弹性扭转的研究进展,结合当前的研究工作指出今后研究的发展方向。  相似文献   

8.
Presented in this paper is a detailed parametric study of the coupled lateral and torsional response of single-storey building models subjected to earthquake base loadings. The aim is to assess the influence of torsional coupling on the elastic responses of buildings subjected to transient ground motion records, and to make comparisons with current code provisions which make allowance for coupling effects by means of empirical design procedures. The study of building responses to selected earthquake excitations shows that the qualitative effects of the controlling parameters on the maximum translational and torsional responses of the coupled system are similar to those observed in analyses using idealized response spectra to represent the input ground motion. It is also demonstrated that for particular ranges of the key parameters defining the structural system, typical of the properties of many actual buildings, torsional coupling induces significant amplification of earthquake forces. This amplification is shown to be inadequately accounted for in the current design provisions of major building codes. Recommendations for improving existing design practice for asymmetric structures are outlined.  相似文献   

9.
The effects of plan-wise distribution of stiffness and strength-as determined by the number, location, orientation and yield deformations of resisting elements-on the inelastic response of one-storey systems are evaluated. In particular, various systems are investigated for wide ranges of parameters involved, with the objective of establishing how the response is influenced by: (i) the presence of resisting elements perpendicular to the direction of ground motion; (ii) the number of resisting elements along the direction of ground motion; (iii) the overstrength typical of code-designed buildings; (iv) the relative values of strength and stiffness eccentricities; and (v) whether the asymmetry of the system is due to eccentricity in stiffness or in mass. The results presented for a simple excitation make it possible to explain the inconsistencies in conclusions from various earlier investigations, and to evaluate their applicability to actual buildings.  相似文献   

10.
Using a single mass monosymmetric model, this paper examines the additional seismic inelastic deformations and displacement caused by structural asymmetry of the model. Stiffness eccentricity and resistance eccentricity are used as measures of asymmetry in the elastic and inelastic range respectively. Seven ways of specifying strength distribution among resisting elements are considered, including code provisions from Canada, Mexico, New Zealand and the United States. These specifications are related t o the model resistance eccentricity. It is shown that when torsional shears are included in the strength design of the elements, the structure in general will have small resistance eccentricity, even if it has large stiffness eccentricity in the elastic range. For structures which are designed with allowance for torsional shears, the ductility demands on the elements are similar to those when the structure is symmetrical. However, the edge displacements can be up to three times that if the system is symmetrical. This finding has significant implications in evaluating adequate separation between buildings to avoid the pounding problem during earthquakes.  相似文献   

11.
The accurate evaluation of code torsional provisions for plan-eccentric structures exhibiting inelastic response relies on the adoption of appropriate systems defining both the torsionally balanced (reference) and torsionally unbalanced cases. Whilst a considerable number of analytical studies of this problem have been presented in the literature, inconsistencies have arisen in their conclusions. It is evident from a review of previous studies that one factor contributing significantly to these discrepancies arises in the definition of the structural layout. An issue of particular importance is whether the transverse load-resisting elements oriented perpendicular to the assumed (lateral) direction of earthquake loading should, for purposes of realism, be included in model definitions. Given the diverse approaches in the existing literature, clarification of this issue is required in order to advance the understanding of inelastic torsional response behaviour and to assist the interpretation and comparison of previous studies. This paper aims to provide such clarification, based on analyses of a series of models defined rigorously according to code design provisions. Such models have been subjected to both uni- and bi-directional ground motion input. It is concluded that for the flexible-edge element, accurate estimates of additional ductility demand arising from torsional effects may be obtained from uni-directional models (in which both the transverse elements and the corresponding earthquake component are neglected) only for medium-period to long-period systems. Such estimates may be over-conservative for short-period systems, which constitute a large proportion of systems for which code static torsional provisions are utilized. It is further concluded that models incorporating the transverse elements but analysed under uni-directional lateral loading may underestimate by up to 100% the torsional effects in such systems, but are reasonably accurate for medium- and long-period structures.  相似文献   

12.
Precast concrete panels form attractive facades for steel frame buildings and are generally regarded as non-structural by structural engineers. However, panels have been found to add lateral stiffness until their capacity or that of their connections is exceeded. Consequently, the computed dynamic response based on a model of the structural framing alone may be quite different from that experienced by the actual structure. As a case study, the influence of precast concrete panels on lateral and torsional stiffness of a 25-storey building was investigated. The effect of cladding on dynamic properties and linear seismic response was explored by varying panel stiffness. Cladding stiffness was added to the bare frame model until analytical frequency values matched vibration test results. Then, using the cladding stiffness values obtained, an accidental eccentricity between centres of mass and rigidity at each floor level was imposed and linear seismic response computed. Torsional response effects were increased substantially. Finally, a modified cladding panel connection was developed based on previously-reported studies for panelized construction. The influence of the proposed connection on overall structural response was determined for different ground motion inputs.  相似文献   

13.
14.
An attempt has been made to explore the general trends in the seismic response of plan‐asymmetric structures without any restrictions imposed by a particular code. Systems with structural elements in both orthogonal directions under bi‐directional excitation were studied. Idealized single‐storey models with bi‐axial eccentricity were employed. The systems were torsionally stiff and, in the majority of cases, mass‐eccentric. The main findings are: in general, inelastic torsional response is qualitatively similar to elastic torsional response. Quantitatively, the torsional effect on the flexible side, expressed as an increase of displacements due to torsion, decreases slightly with increasing plastic deformation, unless the plastic deformations are small. The response on the stiff side generally strongly depends on the effect of several modes of vibration and on the influence of the ground motion in the transverse direction. These influences depend on the structural and ground motion characteristics in both directions. Reduction of displacements due to torsion, typical for elastic torsionally stiff structures, usually decreases with increasing plastic deformations. As an additional effect of large plastic deformations, a flattening of the displacement envelopes in the horizontal plane usually occurs, indicating that torsional effects in the inelastic range are generally smaller than in the elastic range. The dispersion of the results of inelastic torsional response analysis is generally larger than that of elastic analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Damage assessments after past earthquakes have frequently revealed that plan configuration irregular buildings have more severe damage due to excessive torsional responses and stress concentration than regular buildings. The plan configuration irregularities introduce major challenges in the seismic design of buildings. One such form of irregularity is the presence of re-entrant corners in the L-shaped buildings that causes stress concentration due to sudden changes in stiffness and torsional response amplification; hence causes early collapse. A constructive research into re-entrant corner and torsional irregularity problems is essentially needed greater than ever. Therefore, the focus of this study is to investigate structural seismic response demands for the class of L-shaped buildings through evaluating the plan configuration irregularity of re-entrant corners and lateral–torsion coupling effects on measured seismic response demands. The measured responses include story drift, inter-story drift, story shear force, overturning moment, torsion moment at the base and over building height, and torsional irregularity ratio. Three dimensional finite element model for nine stories symmetric buildings as reference model is developed. In addition, six L-shaped building models are formulated with gradual reduction in the plan of the reference building model. The results prove that building models with high irregularity are more vulnerable due to the stress concentration and lateral torsional coupling behavior than that with regular buildings. In addition, the related lateral shear forces in vertical resisting elements located on the periphery of the L-shaped buildings could be significantly increased in comparison with the corresponding values for a symmetric building.  相似文献   

16.
The inelastic response of one-storey systems with one axis of asymmetry subjected to bi-directional base motion is studied in this paper. The effect of the system parameters on response is also evaluated: uncoupled torsional-to-lateral frequency ratio, stiffness eccentricity, and yield strength of the lateral resisting elements. The ensemble of earthquake records used consists of 15 two-component strong ground motions. The response to uni-directional excitation is considered first to examine the influence of the system parameters and to serve as a basis to examine the results of the bi-directional case, which are presented in terms of average spectra for bi- over uni-directional lateral-deformation ratios. It is shown that the effect of inelastic behaviour is, on the average, noteworthy for stiff structures, in turn, the same structures are the most affected by the action of bi-directional ground motions. The effect of the relative intensity of the two orthogonal ground motion components is also studied. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Seismic building codes include design provisions to account for the torsional effects arising in torsionally unbalanced (asymmetric) buildings. These provisions are based on two alternative analytical procedures for determining the design load for the individual resisting structural elements. A previous study has shown that the linear elastic modal analysis procedure may not lead to conservative designs, even for multistorey buildings with regular asymmetry, when such structures are excited well into the inelastic range of response. The equivalent static force procedure as recommended by codes may also be deficient in accounting for additional ductility demand in the critical stiff-edge elements. This paper addresses the non-conservatism of existing static torsional provisions and examines aspects of element strength distribution and its influence on inelastic torsional effects. A recommendation is made for improving the effectiveness of the code-type static force procedure for torsionally unbalanced multistorey frame buildings with regular asymmetry, leading to a design approach which estimates conservatively the peak ductility demand of edge elements on both sides of the building. The modified approach also retains the simplicity of existing code provisions and results in acceptable levels of additional lateral design strength. It has recently been adopted by the new Australian earthquake code, which is due to be implemented early in 1993.  相似文献   

18.
Performance-based earthquake engineering requires accurate estimation of structural response associated with different damage states because of strong ground motion. In recent work (Meza-Fajardo and Papageorgiou, 2018, EESD), we demonstrated that a significant contribution to the response of elastic soil-structure systems for high-rise buildings is attributed to base rocking associated with Rayleigh waves. The present paper presents results of a study investigating the effects of Rayleigh waves on the response of soil-structure systems with nonlinear behavior at the level of the superstructure. By introducing a rigid-elastic rotational spring at the base of the building, we take into account the stiffness reduction due to damage to the lateral load-resisting system at its root, and with it, increased displacement demands. Considering different levels of ductility and post-yield stiffness, we investigate the impact of rocking because of Rayleigh waves on maximum and residual interstory drift ratios. Our results indicate that rocking due to surface waves should be an important consideration for design and evaluation of tall buildings, as inelastic action elongates their effective natural period, and consequently, they are more prone to be damaged by resonance and excitation of extended duration because of Rayleigh waves.  相似文献   

19.
The elastic torsional stiffness of a structure has important influence on the seismic response of an asymmetric structure, both in the elastic and inelastic range. For elastic structures it is immaterial whether the stiffness is provided solely by structural elements in planes parallel to the direction of earthquake or by a combination of such elements in parallel and orthogonal planes. The issue of how the relative contribution of structural elements in orthogonal planes affects the torsional response of inelastic structures has been the subject of continuing study. Several researchers have noted that structural elements in orthogonal planes reduce the ductility demands in both the flexible and stiff edge elements parallel to the earthquake. Some have noted that the beneficial effect of structural elements in orthogonal planes is more pronounced when such elements remain elastic. These issues are further examined in this paper through analytical studies on the torsional response of single-storey building models. It is shown that, contrary to the findings of some previous studies, the torsional response of inelastic structures is affected primarily by the total torsional stiffness in the elastic range, and not so much by whether such stiffness is contributed solely by structural elements in parallel planes or by such elements in both parallel and orthogonal planes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The maximum ductility demand and the edge displacement of a simple single mass eccentric model is evaluated when the system is subjected to ground motions represented by the El Centro 1940 and Taft 1952 earthquake records. The resisting elements are taken to be bilinear hysteretic. It is found that the ductility demand depends to a great extent on the energy content of the ground motions, particularly in the period range beyond the elastic period of the system. Unlike elastic response, the coincidence of uncoupled torsional and lateral frequencies does not lead to exceptionally high inelastic response. An increase by a factor of two in ductility demand is not uncommon for a system with large eccentricity as compared to a symmetrical system. Therefore, system eccentricity has a larger effect on ductility demand than earlier studies indicated. Using Clough's model to allow for stiffness degradation effect, results are found to be within 20 per cent of those calculated based on the bilinear hysteretic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号