首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of fluid inclusions in graphite-bearing charnockites from the southwestern part of the Madurai Granulite Block in southern India reveals a probable relation with the formation and break down of graphite during the high-grade metamorphism. The first-generation monophase pure CO2 inclusions, the composition of which is confirmed by laser Raman spectroscopy, recorded moderate density (0.77–0.87 g/cc) corresponding to low tapping pressure (around 2 kb) than that of the peak granulite-facies metamorphism. The precipitation of graphite, as inferred from graphite inclusions and δ13C values of the graphite from the outcrops, is interpreted as the cause of this lowering of fluid density. An intermediate generation of pseudosecondary inclusions resulted from the re-equilibration or modification of the first-generation fluids and the CO2 formed is interpreted to be the oxidation product from graphite. The youngest generation of fluids which caused widespread retrogression of the granulites is a low-temperature (350 °C) high-saline (32.4–52.0 wt% NaCl equivalent) brine. Carbon isotope data on the graphite from the charnockites show δ13C values ranging from −11.3 to −19.9‰, suggesting a possibility of mixing of carbon sources, relating to earlier biogenic and later CO2 fluid influx. Combining the information gathered from petrologic, fluid inclusion and carbon stable isotope data, we model the fluid evolution in the massive charnockites of the southwestern Madurai Granulite Block.  相似文献   

2.
This paper presents the results of physical parameters such as bulk porosity, true density, optical reflectance, dynamic elastic moduli, X-ray diffractograms and EPR spectra, determined for shungite. All shungite samples studied are considerably denser materials than anthracite — high rank coal with similar carbon content. Bright shungites were porous with the very dense matrix, while the dull shungite is compact, almost non-porous material. Elastic moduli of the dull shungite are generally higher than those of bright shungites and anthracite. All shungites studied (including anthracite) exhibit the directional dependence of elasticity. The maximum reflectance values of bright shungites are higher than those for dull shungite and anthracite. That corresponds with the denser matrix of these samples and suggests the greatest ordering of graphene layers in the case of bright shungites and also suggests some similarity to meta-anthracite from Paleozoic basins. Reflectance anisotropy of shungites studied are generally lower than that of anthracite. Ordering of graphene layers in bright shungite, as a high rank coal variety, is obvious, but lower anisotropy than that of anthracite is a surprise. X-ray studies confirm a high density of bright shungite. Interplanar distances dhkl of the shungite (d002 = 3.48 Å) are closer to those of anthracite (d002 = 3.52 Å) than to those of graphite (d002 = 3.35 Å). All results described here show the differences in molecular structure and degree of graphitisation of carbonaceous matter in bright, semi-bright and dull varieties of shungite. Our data could play a key role in production of materials composed of carbon nanoparticles.  相似文献   

3.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

4.
The primary occurrence of ruby in the Mogok area, northern Myanmar is exclusively found in marble along with spinel–forsterite-bearing marble and phlogopite–graphite marble. These marble units are enclosed within banded biotite–garnet–sillimanite–oligoclase gneisses. Samples of these marbles collected for C–O stable isotope analysis show two trends of δ13C–δ18O variation resulting most likely from fluid–rock interactions. Ruby-bearing marble and phlogopite–graphite marble follow a trend with coupled C–O depletion, whereas spinel–forsterite-bearing marble follows a δ18O depletion trend with relatively constant δ13C values. Ruby formation might have resulted from CO2-rich fluid–rock interaction, while spinel–forsterite-bearing marble was genetically related to CO2-poor fluid–rock interaction. Both fluids may have arisen from external sources. Based on graphite Raman spectral thermometry, the estimated temperature for phlogopite–graphite marble, and probably ruby-bearing marble, was lower than 607 °C, and for spinel–forsterite-bearing marble, lower than 710 °C. Contrasting C/O diffusion between graphite/ruby/spinel/forsterite and calcite, local variations of isotopic compositions of newly formed minerals as a result of non-pervasive fluid infiltration, and open-system isotopic disturbance during cooling may have affected C-/O-isotopic fractionations between minerals. The estimated high formation temperatures for ruby and spinel/forsterite imply that the parental fluids may have been related to nearby igneous intrusions and/or metamorphic processes. Whether these two types of fluid were genetically related is unclear based on the present data.  相似文献   

5.
Compositional studies on different forms of magnetite, ulvospinel, ilmenite and hematite mineral phases occurring in 37 lava flows and 6 dykes of the Mandla lobe are presented in this paper. Ilmenite (0001) in equilibrium with titanomanetite show high values of temperature of equilibration, ranging from 1172–974°C, for high alumina quartz normative tholeiitic lava flows of Chemical Type - A; 1129–1229°C for low alumina quartz normative tholeiitic lava flows of Chemical Type - B; 1283–1124°C for tholeiitic lava flows of Chemical Type - F and 1243°C and 99O°C for two diopside olivine normative tholeiite flows of Chemical Type D. High olivine normative flows of Chemical Type - G and H show 1095°C and 1092°C respectively. Whereas, high hypersthene normative tholeiite flow of Chemical me C shows temperature of 1187°C. Data plots disposition over iron-titanium oxide equilibration temperature vs – logfo2, diagram for Mandla lava flows and other parts of the Deccan (Igatpuri, Mahabaleshwer, Nagpur and Sagar areas) revealed that tholeiitic (evolved) basalt of the eastern Deccan volcanic province formed at high temperatures whereas, picritic (primitive) lavas of Igatpuri and tholeiitic basalt of Mahabaleshwar areas were formed at low temperatures. Mahabaleshwer basalts follow FMQ (fayalite-magnetite-quartz) buffer curve but, plots of the Mandla basalts lie above this curve indicating higher temperatures of crystallisation of ilmenite-titanomagnetite than that of the lava flows from other parts of Deccan 'Raps. The eastern Deccan Traps are most evolved types of lava as characterised by its low Mg-number and Ni content whereas, Igatpuri lava flows are picritic (primitive), having high Mg-number and Ni contents. Temperature vs FeO + Fe2O3 / FeO + Fe2O3 + MgO ratio data plots for Mandla and other Deccan lava flows and liquidus data for Hawaiian tholeiites, indicated that Igatpuri basalts lie parallel to the liquidus line of Hawaiian tholeiite but at lower temperatures. Large data plots of Mandla lava flows lie along the liquidus line of the Hawaiian lava. The highly vesicular nature of compound lava flows having large amount of volatile is responsible for low temperature values whereas, lava flows represented by high temperatures show high modal values of glass and opaque minerals.  相似文献   

6.
A ‘soft’ carbon-based high-volatile bituminous (Ro max=0.68%) coal and a ‘hard’ carbon-based Pennsylvania anthracite (Ro max=5.27%) were deformed in the steady state at high temperatures and pressures in a series of coaxial and simple shear deformation experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Tests were carried out in a Griggs-t type solid (NaCl) medium apparatus at T=400–900°C, constant displacement rates of 10-5−10-6 s−1, at confining pressures of 0.6 GPa (coaxial) or 0.8 and 1.0 GPa (simple shear). Coaxial samples were shortened up to 50%, whereas shear strains up to 4.9 were attained in simple shear tests. Experiments lasted up to 118 h. Deformed, high-volatile bituminous coal was extensively coked and no correlation between strain and Ro max, bireflectance or coal texture was observed in any samples. With increasing temperature, Ro max and bireflectance increase in highly anisotropic, coarse mosaic units, but remain essentially constant in the fine granular mosaic, which becomes more abundant at higher temperatures. Graphite-like reflectances are observed locally only in highly reactive macerals and in pyrolytic carbon veins. The degree of molecular ordering attained in deformed bituminous coal samples appears to be determined by the heating-pressurization path rather than by subsequent deformation.Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T>700°C, with average bireflectance values increasing from 1.68% at 700°C to 6.36% at 900°C. Anisotropy is greatest in zones of high strain at all temperatures. In anthracite samples deformed in simple shear over the 600–900°C range at 1.0 GPa, the average Ro max values increase up to 11.9%, whereas average bireflectance values increase up to 10.7%. Bireflectance increases with progressive bedding rotation and, thus, with increasing shear strain. Graphitization occurs in several anthracite samples deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy of highly anisotropic material in one sample confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain, through its tendency to align basic structural units, is the factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 2200°C required in hydrostatic heating experiments at ambient pressure.  相似文献   

7.
Carbonaceous matter (CM) from ca. 3.5 Ga hydrothermal black cherts of the Pilbara Craton of Western Australia and the Barberton Greenstone Belt of South Africa yielded transmission electron microscopy (TEM) images that are suggestive of microbial remains and possible remnants of microbial cell walls. These are compared to a potential modern analogue, the hyperthermophilic Methanocaldococcus jannaschii, derived from an active seafloor hydrothermal environment and cultured under similar conditions. A striking resemblance to the early Archaean forms was evident in wall structure and thermal degradation mode. Cell disintegration of the cultures occurred at 100 °C marking the limits of life. Complete disintegration, deformation and shrinkage occurred at 132 °C. A multidisciplinary approach to the characterisation of the CM was undertaken using organic petrology, TEM coupled with electron dispersive spectral analysis (EDS), high resolution TEM (HRTEM) to determine molecular ordering, and elemental and carbon isotope geochemistry. Reflectance measurements of the CM to determine thermal stress yielded a range of values corresponding to several populations, and pointing to different sources and processes. The δ13C values of Dresser Formation CM (−36.5 to −32.1‰) are negatively correlated with TOC (0.13–0.75%) and positively correlated with C/N ratio (134–569), which is interpreted to reflect the relative abundance of high Ro/oxidised/recycled CM and preferential loss of 12C and N during thermal maturation. TEM observations, inferred carbon isotopic heterogeneity and isotope fractionations of −27 to −32‰ are consistent with the activity of chemosynthetic microbes in a seafloor hydrothermal system where rapid silicification at relatively low temperature preserved the CM.  相似文献   

8.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

9.
“Hard” carbon-based Pennsylvania anthracite was deformed in the steady-state at high temperatures and pressures in a series of coaxial and simple shear experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T 700°C, with average bireflectance values (%) increasing from 1.68 at 700°C to 6.36 at 900°C. Romin is lowest and bireflectance is highest in zones of high strain (e.g., kink bands) at all temperatures.In anthracite samples deformed in simple shear over the 600°–900°C range at 1.0 GPa, average Romax (%) values increase up to 11.9, whereas average bireflectance (%) values increase up to 10.7. Bireflectance increases with increasing shear strain and locally exceeds 12.5%. Graphitization occurs in several anthracite sample deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain is the dominant factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 1600°C required for graphitization of other hard carbons in earlier hydrostatic heating experiments at 0.5 GPa pressure.  相似文献   

10.
Sulfur and carbon contents and isotope ratios are reported for five Archean iron-formations, Helen, Nakina and Finlayson, Lumby and Bending Lake areas, distributed across 850 km of the Canadian shield all 2.7 Ga-old.A δ34S profile through a complete stratigraphic column (oxide facies excluded) of the Helen iron-formation shows a δ34S range of 30.2‰, mean δ34S value of 2.5‰ and a standard deviation (δi) of 7.3‰ In sharp contrast to the sulfide and siderite facies, the oxide facies in the column shows a uniform δ34S value close to zero. The δ34S values obtained for the other four iron-formations are again wide ranging, highly variable in the sulfide and pyrite—siderite facies, but uniform and close to zero for the oxide facies.The carbon in the oxide, siderite, chert facies has δ13C values of +2.3 to −1.1‰ in the range of Phanerozoic marine carbonates. However, the carbonates in the graphite rich sulfide facies have δ13C values as low as −7.6‰. The mixing of reduced carbon with marine carbonate is suggested to explain the light carbonate values. The reduced carbon associated with the light carbonate is also relatively light at up to δ13Corg = 33.5‰, but is in the range of other Precambrian values. Distal, high temperature, abiogenic sulfate reduction as a source of highly fractionated sulfides in the Archean iron-formations is ruled out on the basis of both isotopic and geologic evidence. It is concluded that only the bacterial reduction of sulfate at low temperatures could produce the wide ranging, highly variable δ34S values exhibited by these sulfides over large areas.  相似文献   

11.
Carbon isotope fractionations between calcite and graphite in the Panamint Mountains, California, USA, demonstrate the importance of mass balance on carbon isotope values in metamorphosed carbon-bearing minerals while recording the thermal conditions during peak regional metamorphism. Interbedded graphitic marbles and graphitic calcareous schists in the Kingston Peak Formation define distinct populations on a δ13C(gr)–δ13C(cc) diagram. The δ13C values of both graphite and calcite in the marbles are higher than the values of the respective minerals in the schists. δ13C values in both rock types were controlled by the relative proportions of the carbon-bearing minerals: calcite, the dominant carbon reservoir in the marble, largely controlled the δ13C values in this lithology, whereas the δ13C values in the schists were largely controlled by the dominant graphite. This is in contrast to graphite-poor calcsilicate systems where carbon isotope shifts in carbonate minerals are controlled by decarbonation reactions. The marbles record a peak temperature of 531±30 °C of a Jurassic low-pressure regional metamorphic event above the tremolite isograd. In the schists there is a much wider range of recorded temperatures. However, there is a mode of temperatures at c. 435 °C, which approximately corresponds to the temperatures of the principal decarbonation metamorphic reactions in the schists, suggesting that the carbon exchange was set by loss of calcite and armouring of graphite by newly formed silicate minerals. The armouring may explain the relatively large spread of apparent temperatures. Although the modal temperature also corresponds to the approximate temperature of the Cretaceous retrograde event, retrograde exchange is thought less likely due to very slow exchange rates involving well-crystallized graphite, armouring of graphite by silicates during the earlier event, and because of other barriers to retrograde carbon exchange. Thus, only the calcite–graphite carbon isotope fractionations recorded by the marbles demonstrate the high-temperature conditions of the low-pressure Jurassic metamorphic event that was associated with the emplacement of granitic plutons to the west of the Panamint Mountains.  相似文献   

12.
Geochronological data, major and trace element abundances, Nd and Sr isotope ratios, δ18O whole rock values and Pb isotope ratios from leached feldspars are presented for garnet-bearing granites (locality at Oetmoed and outcrop 10 km north of Omaruru) from the Damara Belt (Namibia). For the granites from outcrop 10 km N′ Omaruru, reversely discordant U–Pb monazite data give 207Pb/235U ages of 511±2 Ma and 517±2 Ma, similar to previously published estimates for the time of regional high grade metamorphism in the Central Zone. Based on textural and compositional variations, garnets from these granites are inferred to be refractory residues from partial melting in the deep crust. Because PT estimates from these xenocrystic garnets are significantly higher (800°C/9–10 kbar) than regional estimates (700°C/5 kbar), the monazite ages are interpreted to date the peak of regional metamorphism in the source of the granites. Sm–Nd garnet–whole rock ages are between 500 and 490 Ma indicating the age of extraction of the granites from their deep crustal sources. For the granites from Oetmoed, both Sm–Nd and Pb–Pb ages obtained on igneous garnets range from 500 to 490 Ma. These ages are interpreted as emplacement ages and are significantly younger than the previously proposed age of 520 Ma for these granites based on Rb/Sr whole rock age determinations. Major and trace element compositions indicate that the granites are moderately to strongly peraluminous S-type granites. High initial 87Sr/86Sr ratios (>0.716), high δ18O values of >13.8‰, negative initial Nd values between −4 and −7 and evolved Pb isotope ratios indicate formation of the granites by anatexis of mid-crustal rocks similar to the exposed metapelites into which they intruded. The large range of Pb isotope ratios and the lack of correlation between Pb isotope ratios and Nd and Sr isotope ratios indicate heterogeneity of the involved crustal rocks. Evidence for the involvement of isotopically highly evolved lower crust is scarce and the influence of a depleted mantle component is unlikely. The crustal heating events that produced these granites might have been caused by crustal thickening and thrusting of crustal sheets enriched in heat-producing elements. Very limited fluxing of volatiles from underthrust low- to medium-grade metasedimentary rocks may have also been a factor in promoting partial melting. Furthermore, delamination of the lithospheric mantle and uprise of hot mantle could have caused localized high-T regions. The presence of coeval A-type granites at Oetmoed that have been derived at least in part from a mantle source supports this model.  相似文献   

13.
The solubility of a 44° API (0.806 sp. gr.) whole crude oil has been measured in methane with water present at temperatures of 50 to 250°C and pressures of 740 to 14,852 psi, as have the solubilities of two high molecular weight petroleum distillation fractions at temperatures of 50 to 250°C and pressures of 4482 to 25,266 psi. Both increases in pressure and temperature increase the solubility of crude oil and petroleum distillation fractions in methane, the effect of pressure being greater than that of temperature. Unexpectedly high solubility levels (0.5–1.5 grams of oil per liter of methane—at laboratory temperature and pressure) were measured at moderate conditions (50–200°C and 5076–14504 psi). Similar results were found for the petroleum distillation fractions, one of which was the highest molecular weight material of petroleum (material boiling above 266°C at 6 microns pressure). Unexpectedly mild conditions (100°C and 15,200 psi; 200°C and 7513 psi) resulted in cosolubility of crude oil and methane. Under these conditions, samples of the gas-rich phase gave solubility values of 4 to 5 g/l, or greater.Qualitative analyses of the crude-oil solute samples showed that at low pressure and temperature equilibration conditions, the solute condensate would be enriched in C5–C15 range hydrocarbons and in saturated hydrocarbons in the C15+ fraction. With increases in temperature and especially pressure, these tendencies were reversed, and the solute condensate became identical to the starting crude oil.The data of this study, compared to that of previous studies, shows that methane, with water present, has a much greater carrying capacity for crude oil than in dry systems. The presence of water also drastically lowers the temperature and pressure conditions required for cosolubility.The data of this and/or previous studies demonstrate that the addition of carbon dioxide, ethane, propane, or butane to methane also has a strong positive effect on crude oil solubility, as does the presence of fine grained rocks.The n-paraffin distributions (as well as the overall composition) of the solute condensates are controlled by the temperature and pressure of solution and exsolution, as well as by the composition of the original starting material. It appears quite possible that primary migration by gaseous solution could ‘strip’ a source rock of crude-oil like components leaving behind a bitumen totally unlike the migrated crude oil. The data of this study demonstrate previous criticisms of primary petroleum migration by gas solution are invalid; that primary migration by gaseous solution cannot occur because methane cannot dissolve sufficient volumes of crude oil or cannot dissolve the highest molecular weight components of petroleum (tars and asphaltenes).  相似文献   

14.
A carbon and oxygen isotope survey based on 42 samples from the Amba Dongar carbonatite complex of Gujarat, India, indicates that the magmatic differentiation series sövite → alvikite → ankeritic carbonatite is beset with a distinct isotope trend characterized by a moderate rise in 13C coupled with a sizeable increase in 18O. From an average of −4.6 ± 0.4 ‰ [PDB] for the least differentiated (coarse) sövite member, δ13C values slowly increase in the alvikite (−3.7 ± 0.6 ‰) and ankeritic fractions (−3.0 ± 1.1 ‰), whereas δ18O rises from 10.3 ± 1.7 ‰ [SMOW] to 17.5 ± 5.8 ‰ over the same sequence, reaching extremes between 20 and 28 ‰ in the latest generation of ankeritic carbonatite. While an apparent correlation between δ13C and δ18O over the δ18O range of 7–13 ‰ conforms with similar findings from other carbonatite complexes and probably reflects a Rayleigh fractionation process, the observed upsurge of 18O notably in the ankeritic member is demonstrably related to a late phase of low-temperature hydrothermal activity involving large-scale participation of 18O-depleted groundwaters. As a whole, the Amba Dongar carbonatite province displays the characteristic 13C/12C label of deep-seated (primordial) carbon, reflecting the carbon isotope composition of the subcontinental upper mantle below the Narmada Rift Zone of the Indian subcontinent.  相似文献   

15.
An Apollo 17 picritic orange glass composition has been used to experimentally investigate the conditions at which graphite would oxidize to form a CO-rich gas, and ultimately produce lunar fire-fountain eruptions. Isothermal decompression experiments run above the A17 orange glass liquidus temperature (>1350 °C) suggest that the initial CO-rich gas phase produced by graphite oxidation would be generated during magma ascent at a pressure of 40 MPa, 8.5 km beneath the lunar surface. Additional experiments with 2000 ppm S and 1000 ppm Cl showed that the presence of these dissolved gas species would not affect the depth of graphite oxidation, verifying that the first volcanic gas phase would be generated by the oxidation of graphite.A simple ideal chemical mixing model for calculating melt FeO activity in a Fe-metal/silicate melt system was tested with a series of 0.1 MPa controlled oxygen fugacity experiments. Agreement between the model and experiments allows the model to be used to calculate oxygen fugacity in picritic lunar glass compositions such as the A17 orange glass. Using this model in a reanalysis of chemical equilibria between the natural A17 orange glass melt and the metal spherules (Fe85Ni14Co1) trapped within the glass beads indicates a log oxygen fugacity of −11.2, 0.7 log units, more oxidized than previous estimates. At the A17 orange glass liquidus temperature (1350 ± 5 °C), this fO2 corresponds to a minimum pressure of 41 MPa on the graphite–C–O surface. The fact that the same critical graphite oxidation pressure was determined in decompression experiments and from the Fe–FeO activity model for the natural A17 orange glass–metal assemblage strongly supports this pressure (8.5 km depth) for volcanic gas formation in lunar basalts. Generation of a gas by oxidation of C in ascending magma is likely to have been important in getting dense lunar magmas to the surface as well as in generating fire-fountain eruptions. The vesicles common in many lunar basalts and the ubiquitous Fe-metal in these rocks are also likely generated by the oxidation of carbon. The presence of carbon in the lunar basalts and the recent discovery of ppm levels of water in lunar basalts indicate that at least parts of the lunar interior still contained volatiles at 3.9 bybp.  相似文献   

16.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   

17.
The Ilam Formation (Santonian–Campanian in age), part of the Bangestan Group, is disconformably overlain by the Sarvak Formation and underlain by the Gurpi Formation in the Tang-E Rashid, Peyon area, Izeh (Zagros), southwest of Iran.Facies analyses indicate that the Ilam carbonates formed in four microfacies belts: tidal flat, lagoon, shoal and open marine, in a platform ramp environment. Major and minor elements and carbon and oxygen isotope values were used to determine the original carbonate mineralogy of the Ilam Formation. Petrographic evidence and elemental and oxygen and carbon isotope values indicate that aragonite was the original carbonate mineralogy in the Ilam Formation. The elemental and isotopic compositions of the Ilam carbonates also illustrate that they have stabilized in the marine phreatic environment. Variations of Sr/Ca and δ18O values versus Mn suggest that diagenetic alteration occurred in a closed system. Temperature calculation based on the oxygen isotope value of the least-altered sample indicates that the very early shallow burial fluid temperature was around 28 °C.Recognition of the exact boundary between the Ilam and Sarvak Formations is difficult, due to similar lithologies and the absence of the Surgah Formation in the study area. However, elemental and oxygen and carbon isotope analysis were used to determine the boundary between these formations. The δ18O and δ13C values, along with elemental results, clearly indicate a subaerial exposure surface, below which meteoric diagenesis affected the sediments.  相似文献   

18.
Graphite in the Borrowdale (Cumbria, UK) deposit occurs as large masses within mineralized pipe-like bodies, in late graphite–chlorite veins, and disseminated through the volcanic host rocks. This occurrence shows the greatest variety of crystalline graphite morphologies recognized to date from a single deposit. These morphologies described herein include flakes, cryptocrystalline and spherulitic aggregates, and dish-like forms. Colloform textures, displayed by many of the cryptocrystalline aggregates, are reported here for the first time from any graphite deposit worldwide. Textural relationships indicate that spherulitic aggregates and colloform graphite formed earlier than flaky crystals. This sequence of crystallization is in agreement with the precipitation of graphite from fluids with progressively decreasing supersaturation. The structural characterization carried out by means of Raman spectroscopy shows that, with the exception of colloform graphite around silicate grains and pyrite within the host rocks, all graphite morphologies display very high crystallinity. The microscale SIMS study reveals light stable carbon isotope ratios for graphite (δ 13C = −34.5 to −30.2‰), which are compatible with the assimilation of carbon-bearing metapelites in the Borrowdale Volcanic Group magmas. Within the main mineralized breccia pipe-like bodies, the isotopic signatures (with cryptocrystalline graphite being lighter than flaky graphite) are consistent with the composition and evolution of the mineralizing fluids inferred from fluid inclusion data which indicate a progressive loss of CO2. Late graphite–chlorite veins contain isotopically heavier spherulitic graphite than flaky graphite. This agrees with CH4-enriched fluids at this stage of the mineralizing event, resulting in the successive precipitation of isotopically heavier graphite morphologies. The isotopic variations of the different graphite morphologies can be attributed therefore, to changes in the speciation of carbon in the fluids coupled with concomitant changes in the XH2O during precipitation of graphite and associated hydrous minerals (mainly epidote and chlorite).  相似文献   

19.
Epigenetic, vein-type graphite mineralization originates by deposition from C—O—H fluids in high-temperature environments. Consequently, fluid-deposited graphite is uniformly highly crystalline in volumetrically large occurrences. This work examines the factors controlling graphite crystallinity in fluid-deposited occurrences with reference to some case studies from southern Spain where vein-type graphite is associated with a variety of host rocks. Possible causes influencing high crystallinity of graphite in these occurrences include: (1) large graphite occurrences are generated from large volumes of fluids that maintain their temperatures for long periods of time, which is easier at higher temperatures; (2) high temperature conditions are required for a fluid to precipitate a major part of its dissolved carbon during a small temperature decrease; (3) carbon is incorporated into C—O—H fluids mainly through devolatilization reactions which also require high temperatures; (4) highly crystalline graphite generated at high-T/high-P conditions is less susceptible to resorption as P decreases or by subsequent fluid flow; (5) graphite precipitation involves high activation energy that can be overcome only if the temperature is high enough. These causes can be extrapolated to most vein-type graphite deposits worldwide. Received: 23 February 1998 / Accepted: 28 April 1998  相似文献   

20.
The Early Cretaceous coal deposits of the Khasyn coalfield are intruded by Palaeogene diabase dikes. The coal has vitrinite reflectance values of 2.0–2.5% Ro, and characteristics of normal anthracite at some distance from the dikes, but at direct contact with the dike two morphological coal varieties occur: coal inclusions in the diabase dike and dispersed carbonaceous matter within the dike rock. Both types of coaly matter have properties typical of anthracites: strong anisotropy, altered internal structure and high vitrinite reflectance values ranging from 3.8 to 5.5% Ro. The X-ray diffraction measurements of the interplanar spacing d(002) and the crystallite sizes Lc and La show rather similar values for coal inclusions in the dike and dispersed carbonaceous matter. The additional reflection at 3.37 Å, corresponding to semi-graphite admixture, occurs in the coal and carbonaceous matter inside the dike and is absent in the natural coal outside the dike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号