首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Discharge was calculated from a mountainous area, including discharge from glaciers, in the Qilian Shan (Qilian Mountains) of northwest China. The studied Yingluoxia basin is 9983 km2 in area, with glaciers making up 0·3% of the basin. The calculation method was based on the heat balance, requiring only daily temperature and precipitation. Calculated annual discharge from the basin corresponded well with the observed data. Calculated annual discharge from glaciers was 3·6% of the total discharge from the basin. The temporal trend of the calculated equilibrium line altitude (ELA) at the July 1st Glacier (western side of the Yingluoxia basin) was similar to that of the observed ELA. The calculated annual mass balance of glaciers within the Yingluoxia basin has a larger negative value than the other glaciers in China, as the ratio of accumulation area to the total glacier area in the Yingluoxia basin is much lower than in neighbouring basins to the west. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
冰川作为地球系统中重要的组成部分,是全球气候变化的敏感指示器和调节器.冰川运动的遥感监测也是进行冰川研究的重要内容.本文主要采用偏移追踪的方法,利用2003-2010年期间7对雷达单视复数数据监测了青藏高原珠穆朗玛峰地区的卓琼冰川运动情况.经验证,本研究获得的冰川流速结果可靠.卓琼冰川的流向自西向东,流速自冰川末端向上游积累区逐渐增加,流速大小主要来自距离向的贡献.研究结果显示,卓琼冰川在2003-2005年期间流速较大,最大流速达到45 m·a~(-1),而在2005-2010年期间流速有所降低,最大流速在35~40 m·a~(-1)范围内波动;卓琼冰川年际间流速变化基本一致,冰川中部存在流速突变情况,突变幅度为3~7 m·a~(-1),但该尺度的突变并不会影响卓琼冰川的总体运动趋势.此外,本文还分析了气象以及地理位置因素对卓琼冰川运动的影响.  相似文献   

3.
A raster‐based glacier sub‐model was successfully introduced in the distributed hydrological model FEST‐WB to simulate the water balance and surface runoff of large Alpine catchments. The glacier model is based on temperature‐index approach for melt, on linear reservoir for melt water propagation into the ice and on mass balance for accumulation; the initialization of the volume of ice on the basin was based on a formulation depending on surface topography. The model was first tested on a sub‐basin of the Rhone basin (Switzerland), which is for 62% glaciated; the calibration and validation were based on comparison between simulated and observed discharge from 1999 to 2008. The model proved to be suitable to simulate the typical discharge seasonality of a heavily glaciated basin. The performance of the model was also tested by simulating discharge in the whole Swiss Rhone basin, in which glaciers contribution is not negligible, in fact, in summer, about the 40% of the discharge is due to glacier melt. The model allowed to take into account the volume of water coming from glaciers melt and its simple structure is suitable for analysis of the effects of climate change on hydrological regime of high mountain basins, with available meteorological forcing from current RCM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
利用2009—2017年GPS水平速度场和1990—2018年跨断层短水准资料, 分析西昌地区现今三维地壳活动及主要断裂的活动性。 结果表明: 在西昌地区, GPS水平运动场及应变场的大小和方向发生变化。 E向运动速率由北部的平均约8 mm/a减小到南部的平均约4 mm/a; S向运动以安宁河—则木河断裂为界, 西侧点位的运动速率明显大于东侧的点位。 相对华南地块的水平形变场也显示西昌地区水平运动的差异性。 主应变场在西昌地区以SW—NE向拉张和NW—SE向挤压为主。 大凉山次级块体东侧的张应变和压应变均大于西侧; 最大剪应变率在此次级块体以条带形式展布, 条带上的最大剪应变率大于东、 西两侧; GPS水平运动速率和变形宽度相比1999—2007年资料得到的结果大, 表明安宁河—则木河断裂带处于剪切应变积累阶段, 闭锁程度有所提高。 跨断层水准资料显示, 该断裂存在新的活动迹象, 应力持续积累。 综合分析两种资料结果, 推测区域地震危险性将进一步增强。  相似文献   

5.
The impact of surface melt patterns and the Indian summer monsoon (ISM) is examined on the varying contributions of end member (snow, glacier ice, and rain) to proglacial streamflow during the ablation period (June–October) in the Chhota Shigri glaciated basin, Western Himalaya. Isotopic seasonality observed in the catchment precipitation was generally reflected in surface runoff (supraglacial melt and proglacial stream) and shows a shift in major water source during the melt season. Isotopically correlated (δ18O–δD) high deuterium intercept in the surface runoff suggests that westerly precipitation acts as the dominant source, augmenting the other snow- and ice-melt sources in the region. The endmember contributions to the proglacial stream were quantified using a three-component mixing. Overall, glacier ice melt is the major source of proglacial discharge. Snowmelt is the predominant source during the early ablation season (June) and the peak ISM period (August and September), whereas ice melt reaches a maximum in the peak melt period (July). The monthly contribution of rain is on the lower side and shows a steady rise and decline with onset and retreat of the monsoon. These results are persistent with the surface melt pattern observed in Chhota Shigri glacier, Upper Chandra basin. Moreover, the role of the ISM in Chhota Shigri glacier is unvarying to that observed in other glacierized catchments of Upper Ganga basin. Thus, this study augments the significant role of the ISM in glacier mass balance up to the boundary of the central-western Himalayan glaciated region.  相似文献   

6.
The retreat of mountain glaciers and ice caps has dominated the rise in global sea level and is likely to remain an import component of eustatic sea‐level rise in the 21st century. Mountain glaciers are critical in supplying freshwater to populations inhabiting the valleys downstream who heavily rely on glacier runoff, such as arid and semi‐arid regions of western China. Owing to recent climate warming and the consequent rapid retreat of many glaciers, it is essential to evaluate the long‐term change in glacier melt water production, especially when considering the glacier area change. This paper describes the structure, principles and parameters of a modified monthly degree‐day model considering glacier area variation. Water balances in different elevation bands are calculated with full consideration of the monthly precipitation gradient and air temperature lapse rate. The degree‐day factors for ice and snow are tuned by comparing simulated variables to observation data for the same period, such as mass balance, equilibrium line altitude and glacier runoff depth. The glacier area–volume scaling factor is calibrated with the observed glacier area change monitored by remote sensing data of seven sub‐basins of the Tarim interior basin. Based on meteorological data, the glacier area, mass balance and runoff are estimated. The model can be used to evaluate the long‐term changes of melt water in all glacierized basins of western China, especially for those with limited observation data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We used in situ measurements and remote-sensing data sets to evaluate the mass budgets of the Lambert, Mellor and Fisher Glaciers and the basal melting and freezing rates beneath their flowbands on the Amery Ice Shelf. Our findings show the Lambert and Mellor Glaciers upstream of the ANARE Lambert Glacier Basin (LGB) traverse may have positive imbalances of 3.9±2.1 Gt a-1 and 2.1±2.4 Gt a-1, respectively, while the Fisher Glacier is approximately in balance. The upstream region as a whole has a positive imbalance of 5.9±4.9 Gt a-1. The three same glaciers downstream of the ANARE LGB traverse line are in negative imbalance, where the whole downstream region has a negative imbalance of -8.5±5.8 Gt a-1. Overall the mass budgets of the Lambert, Mellor, and Fisher Glaciers are close to bal-ance, and the collective three-glacier system is also nearly in balance with a mass budget of -2.6±6.5 Gt a-1. The significant positive imbalances for the interior basin upstream of the ice-movement stations established in the early 1970s (GL line) reported previously are possibly due to an overestimate of the total accumulation and an underestimate of the ice flux through the GL line. The mean melting rate is -23.0±3.5 m ice a-1 near the southern grounding line, which decreases rapidly downstream, and transitions to refreezing at around 300 km from the southern extremity of the Amery Ice Shelf. Freezing rates along the flowbands are around 0.5±0.1 to 1.5±0.2 m ice a-1. The per-centage of ice lost from the interior by basal melting beneath the flowbands is about 80%±5%. The total basal melting and refreezing beneath the three flowbands is 50.3±7.5 Gt ice a-1 and 7.0±1.1 Gt ice a-1, respectively. We find a much larger total basal melting and net melting than the results for the whole Amery Ice Shelf derived from previous modeling and oceanographic measurements.  相似文献   

8.
This research demonstrates the spatiotemporal variations of albedo on nine glaciers in western China during 2000–2011, by the albedo derived from two types of datasets: Landsat TM/ETM + images and MOD10A1 product. Then, the influence factors of glacier albedo and its relationship with glacier mass balance are also analyzed by the correlation approach, which is frequently used in geostatistics. The paper finds that there are different spatiotemporal variations over the glaciers in western China: (1) For a single glacier, the albedo varies gently with altitude on its tongue and increases fast in the middle part, while in the accumulation zones, the albedo value appears in the form of fluctuation. This could provide a quantitative method to retrieve the snowline by determining the threshold albedo value of snowpack and bare ice. (2) For the glaciers in western China, the albedo decreases with distance to the center of Tibetan Plateau (TP). This may relate to the elevation of glacier, for the speed of glacier retreat highly depends on air temperature. (3) In the summer period, albedo on most glaciers declines over the last 12 years, and it decreases much faster in southeastern TP than other regions, for which air temperature overwhelms the black carbon concentration. In addition, the trend of glacier albedo in summer is greatly correlated with that of measured glacier mass balance, which implies that the long‐term albedo datasets by remote sensing technology could be used to monitor and predict the change of glacier mass balance in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   

10.
Min Xu  Hao Wu  Shichang Kang 《水文研究》2018,32(1):126-145
The Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.  相似文献   

11.
山西临汾震区地壳上地幔构造的研究   总被引:5,自引:0,他引:5  
利用郑州-临汾-靖边深地震测深剖面临汾,阳城炮点所获得的太行山至靖边段的观测资料,在以往解释的基础上重新进行了对比解释。研究结果表明:临汾与其东西两侧壳幔结构与构造的差异是极其明显的,其主要特征如下:(1)对仅在临汾以西出现的强震相P2进行了解释,并在PM波之前识别出一组来自下地壳的反射波P5;(2)根据临汾以西Pg与P2波的特征,我们确认在临汾盆地下方及其西侧,中地壳的上部8-12km深度内存在  相似文献   

12.
We present an investigation of changes taking place on the Columbia Glacier, a lake-terminating outlet of the Columbia Icefield in the Canadian Rockies. The Columbia Icefield is the largest, and one of the most important, ice bodies in the Canadian Rockies. Like other ice masses, it stores water as snow and ice during the winter and releases it during warmer summer months, sustaining river flows and the ecosystems that rely on them. However, the Columbia Glacier and Icefield is shrinking. We use Landsat and Sentinel-2 imagery to show that the Columbia Glacier has retreated increasingly rapidly in recent years, and suggest that this looks set to continue. Importantly, we identify a previously undocumented process that appears to be playing an important role in the retreat of this glacier. This process involves the ‘detachment’ of the glacier tongue from its accumulation area in the Columbia Icefield. This process is important because the tongue is cut off from the accumulation area and there is no replenishment of ice that melts in the glacier's ablation area by flow from upglacier. As a consequence, for a given rate of ablation, the ice in the tongue will disappear much faster than it would if the local mass loss by melting/calving was partly offset by mass input by glacier flow. Such a change would alter the relationship between rates of surface melting and rates of glacier frontal retreat. We provide evidence that detachment has already occurred elsewhere on the Columbia Icefield and that it is likely to affect other outlet glaciers in the future. Modelling studies forecast this detachment activity, which ultimately results in a smaller ‘perched’ icefield without active outlets. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
《水文科学杂志》2013,58(1):278-291
Abstract

Hydrological and glaciological data were gathered in the watershed (1.37 km2) of the Antizana Glacier 15 (0.7 km2) in the periods 1997–2002 and 1995–2005, respectively. In addition, tracer experiments were carried out to analyse the flow through permeable morainic deposits located between the glacier snout and the runoff gauging station. Over 11 years, the mean specific net balance of the glacier was negative (–627 mm w.e.), despite the occurrence of positive values in the La Niña years (1999–2000). From the glacier net mass balance between 1997 and 2002, it was found that the mean flow originating from ice melt was significantly higher than the mean discharge measured at the hydrological station. Analyses of tracer experiments and of the different components of the hydrological balance suggest groundwater flow that originates below the glacier accounts for the remaining water. This result is important for regional analyses of available water resources and for the relationship between hydro-cryospheric processes and volcanic activity.  相似文献   

14.
This paper summarizes results obtained for Greenland??s mass balance observed with NASA??s GRACE mission. We estimate a Greenland ice sheet mass loss at ?201 ± 19 Gt/year including a discernible acceleration of ?8 ± 7 Gt/year2 between March 2003 and February 2010. The mass loss of glacier systems on the South East of Greenland has slowed down while the mass loss increases toward the North along the West side of Greenland. The mass balance can be compared with results obtained by a regional climate model of the Greenland system and ice sheet altimeter data obtained from NASA??s ICEsat mission. Our GRACE-only results differ to within 15% from these independently calculated values; we will comment on the possible causes and the quality of the glacial isostatic adjustment model which is used to correct geodetic datasets.  相似文献   

15.
Debris cover on glaciers is an important component of glacial systems as it influences climate–glacier dynamics and thus the lifespan of glaciers. Increasing air temperatures, permafrost thaw and rock faces freshly exposed by glacier downwasting in accumulation zones result in increased rockfall activity and debris input. In the ablation zone, negative mass balances result in an enhanced melt-out of englacial debris. Glacier debris cover thus represents a clear signal of climate warming in mountain areas. To assess the temporal development of debris on glaciers of the Eastern Alps, Austria, we mapped debris cover on 255 glaciers using Landsat data at three time steps. We applied a ratio-based threshold classification technique and analysed glacier catchment characteristics to understand debris sources better. Across the Austrian Alps, debris cover increased by more than 10% between 1996 and 2015 while glaciers retreated in response to climate warming. Debris cover distribution shows significant regional variability, with some mountain ranges being characterised by mean debris cover on glaciers of up to 75%. We also observed a general rise of the mean elevation of debris cover on glaciers in Austria. The debris cover distribution and dynamics are highly variable due to topographic, lithological and structural settings that determine the amount of debris delivered to and stored in the glacier system. Despite strong variation in debris cover, all glaciers investigated melted at increasing rates. We conclude that the retarding effects of debris cover on the mass balance and melt rate of Austrian glaciers is strongly subdued compared with other mountain areas. The study indicates that, if this trend continues, many glaciers in Austria may become fully debris covered. However, since debris cover seems to have little impact on melt rates, this would not lead to prolonged existence of debris-covered ice compared with clean ice glaciers.  相似文献   

16.
Abstract

Ice-capped volcanoes of the Chilean Lake District have shown significant glacier retreat during recent decades, probably in response to tropospheric warming and precipitation decrease. Volcán Mocho-Choshuenco (39°55′S, 72°02′W) is one of the main active volcanoes in this part of the country. A mass balance programme was initiated on its southeastern glacier in 2003, in view of its representative conditions as an ice body that is presumably not affected by current volcanic activity. The glaciers of this volcano have been retreating and shrinking in recent decades; by 2003 there had been a reduction of 40% of the original area of 28.4 km2 in 1976. A maximum decrease of area was observed in the most recently analysed period, a rate of 0.45 km2 year-1 between 1987 and 2003. The glacier average net mass balance of 2003/04 yielded ?0.88 m w.e. (water equivalent) per year (±0.18), with an average net accumulation and ablation of 2.59 and ?3.47 m w.e. per year, respectively. This is the first direct measurement of glacier mass balance in southern Chile, where very little is known about glacier variations and glacier–volcano interactions.  相似文献   

17.
2016年11月25日在我国新疆克孜勒苏州阿克陶县发生MS6.7地震(阿克陶MS6.7地震).我们收集国内外地震资料,对主震及4级以上余震进行了重新定位和震源机制反演,对434次余震进行了双差定位,对主震震源过程进行了反演确定和复杂性分析,并基于反演确定的有限动态源模型估计了此次地震的烈度分布.结果表明:这次地震发生在当地一个近乎东西向展布的小型盆地内,很可能由一条新断层或隐伏断层的活动所致.发震断层近乎直立,近东西向展布,总体上表现为右旋走滑.破裂首先向西扩展,紧接着向东,随后向东西两个方向同时扩展,然后西侧破裂首先停止,东侧破裂继续,最后破裂在东侧停止,整个过程持续~20 s,释放地震矩1.08×1019N·m,相当于MW6.6.破裂过程最终形成两个位错高值区,分别位于初始破裂点的东西两侧,西侧高值区规模较小,东侧区规模较大.根据烈度估计,烈度椭圆长轴方向与主震破裂方向以及余震展布方向一致,最大烈度约为IX度,主要集中在震中以东很小的区域,VIII度区呈纺锤形,分布于震中东西两侧,V至VII度区呈椭圆形,总体上东侧烈度大于西侧.  相似文献   

18.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A detailed structural glaciological study carried out on Kvíárjökull in SE Iceland reveals that recent flow within this maritime glacier is concentrated within a narrow corridor located along its central axis. This active corridor is responsible for feeding ice from the accumulation zone on the south‐eastern side of Öræfajökull to the lower reaches of the glacier and resulted in a c. 200 m advance during the winter of 2013–2014 and the formation of a push‐moraine. The corridor comprises a series of lobes linked by a laterally continuous zone of highly fractured ice characterised by prominent flow‐parallel crevasses, separated by shear zones. The lobes form highly crevassed topographic highs on the glacier surface and occur immediately down‐ice of marked constrictions caused by prominent bedrock outcrops located on the northern side of the glacier. Close to the frontal margin of Kvíárjökull, the southern side of the glacier is relatively smooth and pock‐marked by a number of large moulins. The boundary between this slow moving ice and the active corridor is marked by a number of ice flow‐parallel strike‐slip faults and a prominent dextral shear zone which resulted in the clockwise rotation and dissection of an ice‐cored esker exposed on the glacier surface. It is suggested that this concentrated style of glacier flow identified within Kvíárjökull has affinities with the individual flow units which operate within pulsing or surging glaciers. © 2017 The Authors Earth Surface Processes and Landforms © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Streamflow in the Himalayan rivers is generated from rainfall, snow and ice. The distribution of runoff produced from these sources is such that the streamflow may be observed in these rivers throughout the year, i.e. they are perennial in nature. Snow and glacier melt runoff contributes substantially to the annual flows of these rivers and its estimation is required for the planning, development and management of the water resources of this region. The average contribution of snow and glacier melt runoff in the annual flows of the Satluj River at Bhakra Dam has been determined. Keeping in view the availability of data for the study basin, a water balance approach was used and a water budget period of 10 years (October 1986-September 1996) was considered for the analysis. The rainfall input to the study basin over the water budget period was computed from isohyets using rainfall data of 10 stations located at different elevations in the basin. The total volume of flow for the same period was computed using observed flow data of the Satluj River at Bhakra Dam. A relationship between temperature and evaporation was developed and used to estimate the evapotranspiration losses. The snow-covered area, and its depletion with time, was determined using satellite data. It was found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Bhakra Dam is about 59%, the remaining 41% being from rain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号