首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Carbonyl products have been identified and their formation yields measured in experiments involving the gas phase reaction of ozone with 1,1-disubstituted alkenes at ambient T and p=1 atm. of air. Sufficient cyclohexane was added to scavenge the hydroxyl radical in order to minimize OH-alkene and OH-carbonyl reactions. Formation yields (carbonyl formed/ozone reacted) of primary carbonyls were close to the value of 1.0 that is consistent with the mechanism: O3+R1R2C=CH2 (HCHO+R1R2COO)+(1–)(R1COR2+H2COO) where formaldehyde and the ketone R1 COR2 are the primary carbonyls and R1R2COO and H2COO are the corresponding biradicals. Measured values of were 0.58–0.82 and indicate modest preferential formation of formaldehyde and the disubstituted biradical as compared to the ketone and the biradical H2COO. Carbonyls other than the primary carbonyls were identified. Their formation is discussed in terms of subsequent reactions of the disubstituted biradicals R1R2COO. Similarities and differences between disubstituted and monosubstituted biradicals are outlined.  相似文献   

2.
The Reaction of Unsaturated Aliphatic Oxygenates with Ozone   总被引:1,自引:0,他引:1  
The reaction of ozone with unsaturated aliphatic oxygenates has been studied at ambient T (287–297 K) and p = 1 atm. of air (RH = 55 ± 10%) with sufficient cyclohexane added to scavenge the hydroxyl radical. Reaction rate constants, in units of 10-18 cm3 molecule-1 s-1, are 10.7 ± 1.4 for methyl trans-3-methoxy acrylate, 63.7 ± 9.9 for 4-hexen-3-one (predominantly the trans isomer), 125 ± 17 for trans-4-methoxy-3-buten-2-one, 148 ± 13 for cis-4-heptenal, 439 ± 37 for 3- methyl-2-buten-1-ol and 585 ± 132 for (cis + trans)-ethyl 1-propenyl ether. The influence of the oxygen-containing substituents on reactivity toward ozone is examined. Unsaturated ethers react with ozone faster than their alkene structural homologues; the reverse is observed for unsaturated esters and unsaturated carbonyls. Major reaction products have been identified by liquid chromatography with ultraviolet detection (LC-UV), particle beam-mass spectrometry (PB- MS) and gas chromatography-mass spectrometry (GC-MS) and are methyl formate and methyl glyoxylate from methyl trans-3-methoxy acrylate, acetaldehyde and 2-oxobutanal from 4-hexen-3-one, propanal and succinic dialdehyde from cis-4-heptenal, hydroxyacetaldehyde and acetone from 3-methyl-2-buten-1-ol, and ethyl formate and acetaldehyde from (cis + trans)-ethyl 1-propenyl ether. PB-MS and GC- MS were also employed to identify new reaction products and to confirm the structure of products tentatively identified in a previous study of the reaction of ozone with five unsaturated oxygenates (Grosjean and Grosjean, 1997a): formic acid and methyl glyoxylate from methyl acrylate, formic acid and formic acetic anhydride from vinyl acetate, 2-oxoethyl acetate and 3-oxopropyl acetate from cis-3-hexenyl acetate, ethyl formate and formic acid from ethyl vinyl ether, and methyl formate from trans-4-methoxy-3- buten-2-one. The nature and formation yields of the reaction products are consistent with (and supportive of) the reaction mechanism: O3 + R1R2C=CR3X (R1COR2 + R3C(X)OO) + (1 - )(R3COX + R1C(R2)OO), where R1, R2 and R3 = H or alkyl, X is the oxygen-containing substituent, R1COR2 and R3COX are the primary products and R1C(R2)OO and R3C(X)OO are the carbonyl oxide biradicals. The variations of the coefficient , which ranges from 0.25 to 0.61, are discussed in terms of the number and nature of alkyl and oxygen-containing substituents. Subsequent reactions of the alkyl-substituted biradicals R1C(R2)OO and of the biradicals R3C(X)OO that bear the oxygen-containing substituent are discussed. For the biradical CH3CHOO, the ratio ka/kb for the competing pathways of rearrangement to acetic acid (CH3CHOO CH3C(O)OH, reaction (a) and formation of an unsaturated hydroperoxide (CH3CHOO CH2=CH(OOH), reaction (b) is <0.25 for ethyl 1-propenyl ether and <0.27 for 4-hexen-3-one. Concentrations measured in co- located samples, one downstream of a water impinger and the other without water impinger, show the uptake in water impingers to be high (from 83.2 to >99.9%) and comparable to that for formaldehyde (98.4%) for formic acetic anhydride and for difunctional oxygenated compounds. Uptake in water impingers was lower (19–78%) for monofunctional aldehydes and ketones.  相似文献   

3.
Summary The total ozone decline during the past twenty years, especially strong during the winter-spring season poleward from 50° N, is well established with known average trends of 5–7% per decade. This study presents a number of additional characteristics such as ozone-mass deficiency (O3MD) from the pre- 1976 base average, and areal extent with negative deviations greater than2 and3. Gridded satellite data combined with ground-based total ozone maps, permit calculations of daily and regional ozone deficiencies from the anthropogenically undisturbed average ozone levels of the 1960s and early 1970s. Then the quantity of the O3MD and the changes in surface area, with deficiencies larger than-10 and-15% are integrated for the 1 January to 15 April period for each of the last 20 years, and compared. In addition, the polar vortex extent during the last 10 years is determined using the PV at 475°K. The quantity of the O3MD within the sunlit part of the vortex is shown to contribute from15 to 35% of the overall ozone deficiency within the-10% contours over the area 35–90°N. The ozone deficiency, integrated for the first 105 days of each year, has increased dramatically from 2,800Mt in the early 1980s to7,800Mt in the 1990s, exceeded 12,000Mt in the winter-springs of 1993 and 1995. The latter quantity is comparable with the average O3MD over the same Southern latitudes in the last ten austral springs. During the 1990s over the 35–90° latitudes the average ozone deficiency in the Southern hemisphere belt is less than over the Northern hemisphere belt by40%. It is known that the main ozone decline is observed in the lower stratosphere and the ozone loss over the Arctic is very sensitive to decreasing stratospheric temperatures; negative 50hPa monthly anomalies greater than 4°C have occurred during 7 of the springs in the last decade, thus possibly facilitating doubling the area with negative ozone deviations greater than-10% in the 1990s to5,000.106km2 and nearly tripling the O3MD as stated above. The changes in total eddy heat fluxes as a proxy indicator of the long wave perturbations are positively correlated with the ozone deficiency in the 45–75°N. The strong anticorrelation between the ozone deficiency in the region>55° N. versus the 35–50° N belt is discussed in relation to possible transport of air masses with low ozone from the sub-tropics, which in some years are the dominant reason for the observed ozone deficiency.With 11 Figures  相似文献   

4.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

5.
Further laboratory studies of emission by O(1 S) and by O2 A 3 u + ,A3 u andc 1 u in the oxygen afterglow lead to the conclusion that Barth's mechanism for the excitation of the auroral green line O 2 * +O(3P=O2+O(1S)–(1) is correct and that levelsv=6 and 7 of O2 A 3 u + are Barth precursors. The value ofk 1=7×10–11 cm3 s–1 deduced for these levels is shown to be in fair agreement with atmospheric measurements.  相似文献   

6.
The kinetics and mechanism of the reactionNO3+CH2=C(CH3)–CH=CH2productswere studied in two laboratories at 298 K in the pressure range 0.7–3 torr using the discharge-flow mass-spectrometric method. The rate constant obtained under pseudo-first-order conditions with excess of either NO3 or isoprene was: k 1=(7.8±0.6)×10–13 cm3 molecule–1 s–1. The product analysis indicated that the primary addition of NO3 occurred on both -bonds of the isprene molecule.  相似文献   

7.
Concurrent measurements of the surface energy balance components (net radiation, heat storage, and sensible and latent heat fluxes) were made in three communities (open water, Phragmites australis, Scirpus acutus) in a wetland in north-central Nebraska, U.S.A., during May-October, 1994. The Bowen ratio – energy balance method was used to calculate latent and sensible heat fluxes. This paper presents results from the open water area. The heat stored in water (G) was found to play a major role in the energy exchange over the water surface. During daytime, G consumed 45–60% of R n , the net radiation (seasonally averaged daytime G was about 127 W m–2). At night, G was a significant source of energy (seasonally averaged nighttime G was about -135 Wm). The diurnal pattern of latent heat flux ( E) did not follow that of R n . On some days, E was near zero during midday periods with large R n . The diurnal variability in E seemed to be significantly affected by temperature inversions formed over the cool water surface. The daily evaporation rate (E) ranged from 2 to 8 mm during the measurement period, and was generally between 70 and 135% of the equilibrium rate.  相似文献   

8.
We have devised a partial differential equation for the prediction of dust concentration in a thin layer near the ground. In this equation, erosion (detachment), transport, deposition and source are parameterised in terms of known quantities. The interaction between a wind prediction model in the boundary layer and this equation affects the evolution of the dust concentration at the top of the surface layer. Numerical integrations are carried out for various values of source strength, ambient wind and particle size. Comparison with available data shows that the results appear very reasonable and that the model should be subjected to further development and testing.Notation (x, y, z, t) space co-ordinates and time (cm,t) - u, v components of horizontal wind speed (cm s–1) - u g, vg components of the geostrophic wind (cm s–1) - V=(u2+v2)1/2 (cm s–1) - (û v)= 1/(h – k) k h(u, v)dz(cm s–1) - V * friction velocity (cm s–1) - z 0 roughness length (cm) - k 1 von Karman constant =0.4 - V d deposition velocity (cm s–1) - V g gravitational settling velocity (cm s–1) - h height of inversion (cm) - k height of surface layer (cm) - potential temperature (°K) - gr potential temperature at ground (°K) - K potential temperature at top of surface layer (°K) - P pressure (mb) - P 0 sfc pressure (mb) - C p/Cv - (t)= /z lapse rate of potential temperature (°K cm–1) - A(z) variation of wind with height in transition layer - B(z) variation of wind with height in transition layer - Cd drag coefficient - C HO transfer coefficient for sensible heat - C dust concentration (g m–3) - C K dust concentration at top of surface layer (g m–3) - D(z) variation with height of dust concentration - u, v, w turbulent fluctuations of the three velocity components (cm s–1) - A 1 constant coefficient of proportionality for heat flux =0.2 - Ri Richardson number - g gravitational acceleration =980 cm s–2 - Re Reynolds number = - D s thickness of laminar sub-layer (cm) - v molecular kinematic viscosity of air - coefficient of proportionality in source term - dummy variable - t time step (sec) - n time index in numerical equations On sabbatical leave at University of Aberdeen, Department of Engineering, September 1989–February 1990.  相似文献   

9.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

10.
Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons   总被引:15,自引:0,他引:15  
Measurements of aerosol formation during thephotooxidation of -pinene, -pinene,d-3-carene, d-limonene, ocimene, linalool, terpinene-4-ol, andtrans-caryophyllene were conducted in anoutdoor smog chamber. Daylight experiments in thepresence of and dark experiments withelevated ozone concentrations were performed. Theevolution of the aerosol was simulated by theapplication of a gas/particle absorption model inconnection with a chemical reaction mechanism. Thefractional aerosol yield is shown to be a function ofthe organic aerosol mass concentration andtemperature. Ozone and, for selected hydrocarbons, theNO3 reaction of the compounds were found torepresent efficient routes to the formation ofcondensable products. For initial hydrocarbon mixingratios of about 100 ppb, the fractional aerosol yieldsfrom daylight runs have been estimated to be 5%for open-chain hydrocarbons, such as ocimene andlinalool, 5–25% for monounsaturated cyclicmonoterpenes, such as -pinene, d-3-carene, orterpinene-4-ol, and 40% for a cyclic monoterpenewith two double bonds like d-limonene. For the onlysesquiterpene investigated, trans-caryophyllene, afractional aerosol yield of close to 100% wasobserved. The majority of the compounds studied showedan even higher aerosol yield during dark experimentsin the presence of ozone.  相似文献   

11.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   

12.
The design and performance of a smog chamber for the study of photochemical reactions under simulated environmental conditions is described. The chamber is thermostated for aerosol experiments, and it comprises a gas chromatographic sample enrichment system suitable for monitoring hydrocarbons at the ppbv level. By irradiating NO x /alkane-mixtures rate constants for the reaction of OH radicals with n-alkanes are determined from n-pentane to n-hexadecane to be (k±2)/10–12 cm3 s–1=4.29±0.16, 6.2±0.6, 7.52 (reference value), 8.8±0.3, 10.2±0.3, 11.7±0.4, 13.7±0.3, 15.1±0.5, 17.5±0.6, 19.3±0.7, 22.3±1.0, and 25.0±1.3, respectively at 312 K. Rate constants, (k±2)/10–17 cm3 s–1, for the reaction of ozone with trans-2-butene (21.2±1.0), cis-3-methylpentene-(2) (47.2±1.7), cyclopentene (62.4±3.5), cyclohexene (7.8±0.5), cycloheptene (28.3±1.5), -pinene (8.6±1.3), and -pinene (1.4±0.2) are determined in the dark at 297 K using cis-2-butene (13.0) as reference standard.  相似文献   

13.
A Forest SO2 Absorption Model (ForSAM) was developed to simulate (1) SO2 plume dispersion from an emission source, (2) subsequent SO2 absorption by coniferous forests growing downwind from the source. There are three modules: (1) a buoyancy module, (2) a dispersion module, and (3) a foliar absorption module. These modules were used to calculate hourly abovecanopy SO2 concentrations and in-canopy deposition velocities, as well as daily amounts of SO2 absorbed by the forest canopy for downwind distances to 42 km. Model performance testing was done with meteorological data (including ambient SO2 concentrations) collected at various locations downwind from a coal-burning power generator at Grand Lake in central New Brunswick, Canada. Annual SO2 emissions from this facility amounted to about 30,000 tonnes. Calculated SO2 concentrations were similar to those obtained in the field. Calculated SO2 deposition velocities generally agreed with published values.Notation c air parcel cooling parameter (non-dimensional) - E foliar absorption quotient (non-dimensional) - f areal fraction of foliage free from water (non-dimensional) - f w SO2 content of air parcel - h height of the surface layer (m) - H height of the convective mixing layer (m) - H stack stack height (m) - k time level - k drag coefficient of drag on the air parcel (non-dimensional) - K z eddy viscosity coefficient for SO2 (m2·s–1) - L Monin-Obukhov length scale (m) - L A single-sided leaf area index (LAI) - n degree-of-sky cloudiness (non-dimensional) - N number of parcels released with every puff (non-dimensional) - PAR photosynthetically active radiation (W m–2) - Q emission rate (kg s–2) - r b diffusive boundary-layer resistance (s m–1) - r c canopy resistance (s m–1) - r cuticle cuticular resistance (s m–1) - r m mesophyllic resistance (s m–1) - r s stomatal resistance (s m–1) - r exit smokestack exit radius (m) - R normally distributed random variable with mean of zero and variance of t (s) - u * frictional velocity scale, (m s–1) - v lateral wind vector (m s–1) - v d SO2 dry deposition velocity (m s–1) - VCD water vapour deficit (mb) - z can mean tree height (m) - Z zenith position of the sun (deg) - environmental lapse rate (°C m–1) - dry adiabatic lapse rate (0.00986°C m–1) - von Kármán's constant (0.04) - B vertical velocities initiated by buoyancy (m s–1) - canopy extinction coefficient (non-dimensional) - ()a denotes ambient conditions - ()can denotes conditions at the top of the forest canopy - ()h denotes conditions at the top of the surface layer - ()H denotes conditions at the top of the mixed layer - ()s denotes conditions at the canopy surface - ()p denotes conditions of the air parcels  相似文献   

14.
Atmospheric oxidation of monoterpenes contributes to formation of tropospheric ozone and secondary organic aerosol, but their products are poorly characterized. In this work, we report a series of outdoor smog chamber experiments to investigate both gaseous and particulate products in the ozone oxidation of four monoterpenes: -pinene, -pinene, 3-carene, and sabinene. More than ten oxygenated products are detected and identified in each monoterpene/O3 reaction by coupling derivatization techniques and GC/MS detection. A denuder/filter pack sampling system is used to separate and simultaneously collect gas and aerosol samples. The identified products, consisting of compounds containing carbonyl, hydroxyl, and carboxyl functional groups, are estimated to account for about 34–50%, 57%, 29–67%, and 24% of the reacted carbon mass for -pinene, sabinene, -pinene, and 3-carene, respectively. The identified individual products account for >83%, 100%, >90%, and 61% of the aerosol mass produced in the ozone reaction of -pinene, sabinene, -pinene, and 3-carene. The uncertainty in the yield data is estimated to be ±50%. Many of the products partition between gas and aerosol phases, and their gas-aerosol partitioning coefficients are determined and reported here. Reaction schemes are suggested to account for the products observed.  相似文献   

15.
The effect of temperature (296–238 K) on the reaction of combustion soot (n-hexane) with ozone at low concentration (6–8 ppm) has been measured. Long optical path FTIR spectroscopy has revealed the rate law for ozone loss beyond initial stages, second order in O3, to be the same over this range of conditions. The reaction rate is 3.5 times lower at 238 K than at 296 K, and reveals an activation energy of 12.9 ± 0.5 kJ mol–1. The effect of humidity on the reaction has been estimated using its recently determined rate law dependence (p0.2). These data, differing from O3 reaction kinetics obtained from other types of carbonaceous particles used as surrogates for atmospheric soot, have implications for the role of combustion soot in atmospheric chemistry. Any involvement of aircraft soot in ozone depletion near the tropopause, for example, should be estimated using these temperature and humidity dependences.  相似文献   

16.
A discharge-flow tube coupled with resonance fluorescence and chemiluminescence detection has been used to investigate the reactions IO + HO2 products (1) and IO + O(3P) I + O2(2), at T = 296 ± 1 K and P = 1.7 - 2 Torr. The rate constants k-1 and k2 have been found to be (7.1 ± 1.6) × 10-11 cm3 molecule-1 s-1 and (1.35 ± 0.15) × 10-10 cm3 molecule-1 s-1, respectively.  相似文献   

17.
Summary Composite time series combining the results of total ozone measurements taken at Dobson stations located within the latitude band 30°N–60°N, in Europe, and North America, have been examined in order to detect any trends. Various regression trend models were used to identify any trend variations over the regions during the period 1970–1990. The results of fitting the models to the data imply that the model which assumes a linear trend provides precise information about the long-term ozone trends (trends during the period 1970–1990). The study identifies short-term summer trends in the 1980s that are evidently more strongly negative than trends that occur in the 1970s (the differences are statistically significant at the 2 level). The year-round loss (in all analyzed regions) and the winter loss in total ozone (the belt 30°N–60°N) N. America, during the 1980s are about 2–3 times higher than the losses during the 1970s (the differences are statistically significant at the 1 level).With 1 Figure  相似文献   

18.
The effects of deep convection on the potential for forming ozone (ozone production potential) in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud dynamical and photochemical simulations based on observations in 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. The photochemical fate of pollutants actually entrained in a cumulus event of August 1985 during NASA/GTE/ABLE 2A (Case 1) is compared to photochemical ozone production that could have occurred if the same storm had been located closer to regions of savanna burning (Case 2) and forest burning (Case 3). In each case studied, the ozone production potential is calculated for a 24-hour period following convective redistribution of ozone precursors and compared to ozone production in the absence of convection. In all cases there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed NOx, hydrocarbons and CO compared to the case of no convection.In the August 1985 ABLE 2A event, entrainment of a layer polluted with biomass burning into a convective squall line changes the free tropospheric cloud outflow column (5–13 km) ozone production potential from net destruction to net production. If it is assumed that the same cloud dynamics occur directly over regions of savanna burning, ozone production rates in the middle and upper troposphere are much greater. Diurnally averaged ozone production following convection may reach 7 ppbv/day averaged over the layer from 5–13 km-compared to typical free tropospheric concentrations of 25–30 ppbv O3 during nonpolluted conditions in ABLE 2A. Convection over a forested region where isoprene as well as hydrocarbons from combustion can be transported into the free troposphere leads to yet higher amounts of ozone production.  相似文献   

19.
Henry's law constants KH (mol kg–1 atm–1) for the reaction HOCl(g)=HOCl(aq) near room temperature, literature data for the associated enthalpy change, and solubilities of HOCl in aqueous H2SO4 (46 to 60 wt%) at temperatures relevant to the stratosphere (200 KT230 K) are shown to be thermodynamically consistent. Effective Henry's law constants [H*=mHOCl/pHOCl, in mol kg–1 atm–1] of HOCl in aqueous H2SO4 are given by: ln(H*)=6.4946–mH2SO4(–0.04107+54.56/T)–5862 (1/To–1/T) where T(K) is temperature and To=298.15K. The activity coefficient of HOCl in aqueous H2SO4 has a simple Setchenow-type dependence upon H2SO4 molality.  相似文献   

20.
The yields of products have been calculated for the reactions of hydroxyl radicals and ozone with 19 of the two-through-six carbon anthropogenic alkenes. Based on their rate of reaction, mechanisms of reactions and the ambient air distribution for these alkenes their seasonal ambient air yields have been estimated.Aldehydes predominate as products irrespective of season, with smaller yields of several ketones. Other minor products include carboxylic acids, carbon monoxide, carbon dioxide, and alkenes. About a two-fold increase is estimated in the yields of hot biradicals and their products from summer to winter.One sensitivity analysis was made by recomputing yields at a different OH radical to O3 concentration than assumed most likely in the calculations discussed above. In addition, the sensitivity of product yields to an estimated range of seasonally averaged sunset-to-sunrise NO3 radical concentrations was calculated. The effects of free radical reactions are discussed, but these are believed to make a relatively minor contribution within the NO x -rich atmospheres that contain anthropogenic alkenes.The uncertainties in product yields associated with the range of NO3 radical concentrations assumed present is relatively small for aldehydes, as is the decrease in yield of the one carbon hot biradical. Larger uncertainties occur for ketones. Significant decreases in yields occur for larger hot biradicals, especially the branched-chain hot radicals in the presence of NO3 radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号