首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In three sections in the Kara Sea, the contents of the dissolved and particulate organic carbon (the DOC and POC, respectively), as well as of the organic carbon of the bottom sediments (Corg) were determined. The contents of varied from 6.3 to 2400 μg/l for the DOC and from 0.84 to 12.2 mg of C/l for the POC. The average concentrations for all the samples tested amounted to 200 μg/l for the DOC (n = 78, σ = 368) and 2.7 mg/l for the POC (n = 92, σ = 2.7). The concentrations of Corg in the samples of the upper layer of the bottom sediments of the area treated varied from 0.13 to 2.10% of the dry substance at an average value of 0.9% (n = 21, σ= 0.49%). It is shown that the distribution of the different forms of organic matter (OM) is an indicator of the supply and spreading of the particulate matter in the Kara Sea and that the DOC and POC of the Kara Sea are formed under the impact of the runoff of the Ob and Yenisei river waters. It is found that the distribution of the OM of the bottom sediments in the surveyed area of the Kara Sea is closely related to their grain-size composition and to the structure of the currents in the area studied. The variations in the Corg content in the bottom sediment cores from the zone of riverine and marine water mixing represent the variability of the OM burial.  相似文献   

2.
This report presents a new analysis of the results of two hydrochemical surveys over the Ob Bay in 2010 performed by the Institute of Fisheries and Oceanography (VNIRO) and the Institute of Oceanology (IO RAS). The unique world feature of the Ob River-Ob Bay system is shown. The water volume in the bay exceeds the average annual runoff of the Ob River, being somewhat under the total runoff of all the inflowing rivers. Because of this, the complete renovation of the waters in the bay requires a long time. The within-year distribution of the runoff is characterized by both the flood waters and those of the Ob River winter runoff characterized by much different hydrochemical parameters registered even in the course of summer surveys in the bay. This fact, but not the biological transformation of the waters, as assumed previously, is the primary cause of the variability of the water composition in the bay. The summer waters of the Ob River reach the sea-ward boundary of the bay only in the next spring, enter the Kara Sea with the spring flood, and form lenses of desalinated waters in the sea. The autumn expeditions by the IO RAS found that the waters in the lenses were quite similar to the autumn waters in the bay, although these were the Ob River waters of different years, which was disregarded formerly.  相似文献   

3.
The biogeochemical behavior of the group of heavy metals and metalloids in the water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary-Kara Sea section on the basis of the data obtained during cruise 54 of the R/V Akademik Mstislav Keldysh in September–October 2007. The changes in the ratios of the dissolved and suspended particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as the growth of the fraction of adsorbed forms in the near-bottom suspended particulate matter under the mixing of the riverine and marine waters. The features of the metals’ accumulation in the typical benthic organisms of the Ob River estuary and the Kara Sea were revealed, and their concentrating factors were calculated based on the specific conditions of the environment. It was shown that the shells of the bivalves possessing a higher biomass compared to the other groups of organisms in the Ob River estuary play an important role in the deposition of heavy metals. The mollusks of the Ob River estuary accumulate Cd and Pb at the background level, whereas the Cu and Zn contents appear to be over the background level.  相似文献   

4.
The distribution of the suspended particulate matter concentration in the Kara Sea is analyzed based on ship and satellite data. The statistical relationships between the suspended matter concentration and the optical characteristics were revealed. Charts of the distribution of the suspended matter concentration in the Kara Sea were plotted, which confirmed that the application of optical methods for analyzing the spatial distribution of the suspended matter is effective. The most turbid waters were observed in the Ob Gulf, Yenisei Bay, the Baidaratskaya Gulf, and the adjacent regions. The smallest concentrations of suspended matter were observed in the central and western parts of the Kara Sea.  相似文献   

5.
The areas that we studied in the North Atlantic (53 and 60°N) and in the Labrador Sea in the summer were characterized by a wide variability of the concentrations of dissolved and particulate organic matter and its elemental composition both in the surface and in the deep waters. The concentrations of dissolved and particulate Corg varied within 69–360 μM and 0.7–25.6 μM, respectively; the Norg and Porg contents varied within 1.4–22.2 μM and 0.02–0.86 μM, respectively. The maximal concentrations were registered in the photic layer and in the zones of mixing between the waters of different genesis. The particulate matter contribution to the total organic matter (OM) content varied from 0.5 to 15.4%. The waters of the photic layer contained more particulate Corg than those of the near-bottom layer. The values of the C/N molar ratios from the surface to the bottom over the entire aquatic area surveyed varied 5-to 6-fold; at that, the values of the C/P molar ratios varied more than tenfold. In the most productive waters, the values of the C/N ratios were close to the Redfield ratios (6–10). The values of the C/P molar ratios varied from 160 in the photic layer to 4831 in the deep waters. The pronounced non-uniformity in the spatial distribution of the OM and its elemental composition is caused not only by the penetration of the waters of different origins but also by the changes in the microplankton metabolism under mixing of these waters.  相似文献   

6.
The concentration distribution was studied for dissolved oxygen, phosphorus forms, and particulate matter in Curonian Bay of the Baltic Sea in poorly known consolidated ice cover conditions during the winter seasons of 2010, 2011, and 2013. The surface and near-bottom waters were sampled at 51 stations. The ice cover exerts no significant effect on the typical seasonal variation of all considered parameters in the basin. The concentrations of mineral and organic phosphorus in the bay appeared to be lower by factors of 2–4 compared to summer values. A two- to threefold decrease in the concentrations of organic phosphorus since 2010 to 2011 and then to 2013 was recorded in the bay, which resulted from a decrease in phosphorus production by phytoplankton. Despite water being isolated from air by ice, the absence of wave mixing, and the decrease in oxygen production owing to the seasonal winter decrease in the intensity photosynthetic processes, no oxygen deficiency was found in the basin. This is because oxygen supplied to the bay by river runoff and production by photosynthesis in the bay exceed the utilization for oxidation of organic matter resulting from low bioproductivity of the waters during winter. The winter decrease in the fraction of biogenic particulate matter is seen as a four- to sevenfold drop in its total concentration in the waters compared to summer seasons. The absence of wave roiling of bottom sediments also caused a decrease in the secondary supply of biogenic particulate matter from sediments into near-bottom waters. No negative trends of geoecological conditions in the bay were revealed by the studied parameters under consolidated ice cover conditions.  相似文献   

7.
The organic matter (OM) pool has been studied in two sub-arctic north Norwegian fjords, Balsfjord and Ullsfjord, in July 2001 and June 2003. Besides general OM parameters such as dissolved organic carbon (DOC), particulate organic carbon and nitrogen (POC and PON), the distribution of specific compounds such as folic acid and surface active substances (SAS) was followed. The results are supported with data of salinity, temperature, and chlorophyll a (Chl a). This approach allowed assessment of the fate of the OM pool, and its distinct vertical, spatial, and seasonal variations. Fjord waters could be vertically divided into two layers: the upper mixed layer (UML), until 40 m depth, and the deep aphotic layer. Spatial variability between the two fjords is a consequence of different influences of shelf waters on the fjords. Significant enrichment of POC and PON concentrations (3–5 times), as well as those of particulate SAS and folic acid (up to 3.2 times) in the UML was recorded during the period of new production, in early June. Depletion of particulate OM in deep waters was ascribed to fast dissolution or remineralization in the UML or upper part of aphotic layer. OM in July 2001 was characterized with 15.9% higher DOC pool compared to June 2003, and had refractory properties, suggesting the fjords to be an important source of organic matter for the continental shelf ecosystem. The DOC pool in these subarctic fjords represents the major component of the OM pool. The DOC concentrations in fjords are lower than those in previously studied warmer seas (e.g. the Adriatic Sea), whereas the concentrations of folic acid and SAS are comparable to those in the Adriatic Sea.  相似文献   

8.
The geochemistry of dissolved copper-organic complexes was investigated in the estuarine waters of Narragansett Bay. A transect survey was conducted in August 1980, while one mid-bay station was monitored from March through August of that year. The transect data indicated that most of the copper-organic complexes enter the bay via sewage effluent which is discharged into the Providence River at the head of the bay. Organic copper concentrations in the estuary ranged from 0.12 to 2.30 μg kg?1 and comprised from 14 to 70% of the total dissolved copper. The concentration of copper-organic complexes was not directly related to the amount of dissolved organic matter; and recently generated organic material from phytoplankton production within the bay had a negligible influence on the fraction of dissolved copper which was organically bound.The major source of total copper to the bay is anthropogenic inputs from sewage effluents. Particulate and dissolved copper concentrations ranged from 0.06 to 2.42 and 0.23 to 16.4 μg kg?1, respectively, giving average values of about 40% particulate and 60% dissolved copper. Particulate copper concentrations decreased rapidly from the upper to the lower bay as a result of both removal and dilution. About 75% of the dissolved copper entering the bay is rapidly removed in the Providence River and upper bay, and the remaining portion (which is largely organic copper) follows conservative mixing in the mid to lower bay. The data suggest that copper binding by dissolved organic matter may be an important control on the riverine flux of dissolved copper through estuaries into coastal and oceanic waters.  相似文献   

9.
The considered area of the Russian sector of the Arctic Basin was characterized in August–September of 2008 by the wide horizontal and vertical variability of the concentrations of dissolved and particulate organic matter (OM), as well as of its elemental and biochemical composition. The concentration ranges amounted to 51.6–434 and 2.2–18.6 μM, respectively, for the dissolved and particulate Corg; up to 1.9–30.2 μM for Norg; and up to 0.08–1.53 μM for Porg. The maximum values were characteristic for the Russian Arctic shelf. The analysis of the authors’ and published data showed that a pronounced accumulation of OM, mainly in the dissolved form, took place in the Arctic Basin within the past 12 years. The concentrations of dissolved OM were higher in the western sector of the Russian Arctic than those in the eastern sector. The main biochemical components in all the waters constituting the Arctic Ocean are carbohydrates and lipids for dissolved OM and proteins and carbohydrates for particulate matter.  相似文献   

10.
The isotope characteristics (δD, δ18О) of Kara Sea water were studied for quantitative estimation of freshwater runoff at stations located along transect from Yamal Peninsula to Blagopoluchiya Bay (Novaya Zemlya). Freshwater samples were studied for glaciers (Rose, Serp i Molot) and for Yenisei and Ob estuaries. As a whole, δD and δ18O are higher in glaciers than in river waters. isotope composition of estuarial water from Ob River is δD =–131.4 and δ18O =–17.6‰. Estuarial waters of Yenisei River are characterized by compositions close to those of Ob River (–134.4 and–17.7‰), as well as by isotopically “heavier” compositions (–120.7 and–15.8‰). Waters from studied section of Kara Sea can be product of mixing of freshwater (δD =–119.4, δ18O =–15.5) and seawater (S = 34.9, δD = +1.56, δ18O = +0.25) with a composition close to that of Barents Sea water. isotope parameters of water vary significantly with salinity in surface layer, and Kara Sea waters are desalinated along entire studied transect due to river runoff. concentration of freshwater is 5–10% in main part of water column, and <5% at a depth of >100 m. maximum contribution of freshwater (>65%) was recorded in surface layer of central part of sea.  相似文献   

11.
The optical properties and distribution of dissolved organic matter in the surface waters of the Kara Sea and bays of Novaya Zemlya archipelago were studied during the 63th cruise of the R/V Akademik Mstislav Keldysh. The fluorescence of dissolved organic matter has been studied over wide excitation (230–550 nm) and emission (240–650 nm) wavelength ranges. Based on the results of fluorescence measurements, we propose a simple technique for estimating the relative content of humic compounds entering the Kara Sea shelf region with Ob and Yenisei river runoff. We have found that the blue shift parameters of the DOM fluorescence are Δ270–310 = 28 ± 2 nm and Δ355–310 = 29 ± 2 nm. The highest contents of humic compounds in surface waters were measured on the transect across the desalinated layer of the Kara Sea, near the continental slope on the transect along the St. Anna Trough, and in the area of Sedova, Oga and Tsivol’ki bays. Traces of labile terrigenous organic matter were found in the region of the Voronin Trough, in the bays of the Severny Island of Novaya Zemlya, as well as in some freshwater reservoirs and ice samples of the archipelago. We established a conservative distribution of dissolved organic matter, whose content in water varied from 1.25 to 8.55 mg/L.  相似文献   

12.
Nemirovskaya  I. A. 《Oceanology》2021,61(2):183-192

The paper summarizes results on the content and composition of aliphatic hydrocarbons (HCs) in suspended particulate matter (SPM) and bottom sediments in the Kara, Laptev, and East Siberian seas obtained in 2015–2018. It was established that the “losses” in HC concentrations in surface waters in the river (Ob, Yenisei, Lena, Khatanga, Indigirka, Kolyma) and seawater mixing zone in some cases exceeded their river removal by 90%. The composition of HCs in surface waters depends on the characteristics of the river catchment area, sampling season. and time of day (high/low tide) and basically coincides with the SPM distribution. In the pelagic zone of the seas, the HC content is close to the background (2–7 μg/L). The influence of anthropogenic input was established only in the Gulf of Ob, where the composition of alkanes is close to oil with a HC content of 86 μg/mg SPM. In bottom sediments, the particle size distribution determines the HCs, and terrigenous n-alkanes play the dominant role in the molecular composition.

  相似文献   

13.
The hydrochemical features of Ob Inlet in the open-water time were characterized using the data of the surveys during two seasons of different water content. The inlet was subdivided into the “riverine,” “marine,” and intermediate areas being different in the factors determining their hydrochemical regime. The processes occurring in each of the distinguished areas were considered in detail. Special attention was paid to the hydrochemical features in the mixing area of the fresh and saline waters (the frontal zone) within the periods of the maximum and minimum biological activity in the aquatic area of Ob Inlet.  相似文献   

14.
Research has been conducted in Nha Trang Bay (Southern Vietnam, the South China Sea) at the section from the estuary of the Cai River to the marine part of the bay, as well as in the area of coral reefs. The objects of the studies are the river and sea waters, the suspended matter, and the bottom sediments. Data on the dissolved organic carbon and the total nitrogen in the water are obtained. The organic carbon content is estimated in the suspended matter; the organic carbon and the molecular and group composition of the n-alkanes are determined in the bottom sediments. The molecular and group composition of the n-alkanes in the bottom sediments of the landfill have made it possible to identify three types of organic matter (OM): marine, mixed, and of mainly terrigenous origin. All the types of OM are closely related to the specificity of the sedimentation and the hydrodynamics of the waters in this water area.  相似文献   

15.
Suspended matter (SM) and surface sediments were analysed for polycyclic aromatic hydrocarbons (PAH) throughout the Ob and Yenisei River estuaries and in the Kara Sea in order to evaluate the contamination of Arctic shelves by these two major Siberian rivers. PAH concentrations were extremely low, among the lowest measured up to now in the Arctic region. Particle-associated PAH were in many cases non-detectable. A total PAH maximum value of 3·2ngl − 1was found in surface waters. In surficial sediments, they spanned a range from 24 to 115ngg − 2in the Ob River, from 40 to 131ngg − 2in the Yenisei and from 16 to 94ngg − 2in the Kara Sea. Compositional features revealed a contribution of detrital material eroded from soils of the drainage basins and inputs from airborne pyrolytic PAH emitted at lower latitudes and from industrial complexes in Siberia. Particulate and sedimentary PAH distributions were highly variable both in type and concentration. The Ob and Yenisei estuaries are geographically large features where hydro-dynamical and sedimentary processes are complex. As a consequence, inhomogeneities—in the form of patch-structures—develop and make it difficult to resolve the fate of riverborne constituents based on ship measurements only. Remote sensing in conjunction with oceanographic observations may provide further guidance to study large river systems.  相似文献   

16.
The report presents the results of hydrophysical and hydrochemical studies in Blagopoluchiya Bay (Novaya Zemlya Archipelago) based on data of integrated expeditions of the Institute of Oceanology in the Kara Sea in 2007, 2013, and 2014. The main focus was the influence of the Ob and Yenisei rivers, as well as of the runoff of meltwaters from the coasts of the archipelago on the hydrochemical and hydrophysical structures of the bay waters. The features of water exchange between the bay and adjacent aquatic area are considered, along with the renewal mechanisms for deep waters in the bay (deeper than 100 m). The possible occurrence of stagnant effects in deep layers of the bay is evaluated.  相似文献   

17.
The behavior of dissolved cadmium (Cd) in the Danube estuary was investigated through field sampling and mixing experiments using Danube River water and Black Sea water. The experiments were performed by mixing these two end-member waters in various proportions, with the addition of stable or radioactive Cd to the freshwater Danube end-member prior to the mixing. The release of Cd that resulted in maximum concentrations under field conditions was well simulated by mixing experiments. The experimental results were modeled assuming that the release of Cd was the sum of the contribution of physical effects resulting from dilution effects and the contribution of chemical effects resulting from dissolved Cd-complex formation (and isotopic exchange when concerned). In the absence of dissolved Cd-complexing ligands, the release of Cd due to the dilution of the particulate phase during mixing could explain part of the maximum concentrations observed in field conditions. Kinetic effects were established by comparing the theoretical and measured contribution of chemical effects resulting from dissolved Cd-complex formation. The non-equilibrium state observed during the mixing experiment suggested the presence of particulate labile Cd that was not easily mobilized. All these features supported the hypothesis that Cd released in estuaries is controlled both by the dilution of the particulate phase and by kinetic competitive complexation between particulate ligands (covering a large spectrum of nature and strength) and dissolved ligands.  相似文献   

18.
The concentrations of rare earth elements in the dissolved, acid-soluble and residual phases in surface waters of the Changjiang Estuary were determined using ICP-MS. The main purposes of the study are to understand the estuarine geochemistry of rare earth elements and to explore water-particle interactions in the Changjiang estuarine mixing zone. The results show that there are two distinct processes operating on dissolved rare earth elements in the estuary: large scale removal at low salinities due to salt-induced coagulation and remarkable release at mid to high salinities. These processes result in modification of the effective river water flux and the systematical fractionation of the dissolved rare earth elements toward the East China Sea. The increase in concentration of dissolved rare earth elements in the mid to high salinity waters of the Changjiang Estuary suggests a sediment source in the mixing zone of the estuary, which is located over a shallow, broad shelf where there is extensive physical contact between bottom sediment and estuarine waters. Acid-soluble rare earth elements, the concentrations of which also dropped sharply in the low salinity region, appear to be controlled by salt-induced coagulation process and intense deposition of suspended particulate matter in the low salinity region. In the mid to high salinities, all acid-soluble rare earth element concentrations increase slightly with increasing salinity, suggesting that resuspension of sediments occurred. In contrast, the residual rare earth element concentrations are relatively constant with salinity variation in the Changjiang estuarine surface waters.  相似文献   

19.
S. A. Lapin 《Oceanology》2011,51(6):925-934
The assessment of the hydrological regime under the high- and low-water conditions in the Ob’ Inlet was based on the results of two comprehensive surveys performed by the VNIRO and IO RAS in the summer and autumn of 2010. The summer hydrological regime, which is associated with the peak of the biological activity, was compared with the late autumn one, which was closely followed by the freeze up. Special attention was paid to the assessment of the interseasonal variability of the hydrological state and the processes that continued in the area of the mixing of the riverine waters (the outflux from the Ob’ Inlet) and the water of the Kara Sea. We followed the transition of the hydrologic front from the summer stratification (high waters) into the autumn distortion driven by the intensive mixing of the waters under a sharp decrease in the river discharge.  相似文献   

20.
Data are presented on the content of aliphatic and polycyclic aromatic hydrocarbons (AHC and PAH, respectively) in the interstitial waters and bottom sediments of the Kara Sea compared to the distribution of the particulate matter and organic carbon. It was found that the AHC concentrations within the water mass (16 μg/l on average) are mainly formed by natural processes. The AHC distribution represents the variability of the hydrological and sedimentation processes in different regions of the sea. The widest ranges of the concentrations were registered in the Ob Bay-Kara Sea section: in the water (10–310 μg/l for the AHC and 0.4–7.2 ng/l for the PAH) and in the surface layer of the bottom sediments (8–42 μg/l for the AHC and 9–94 ng/g for the PAH). The differentiation of the hydrocarbons (HC) in the different media follows the marginal filter’s regularities; therefore, no oil and pyrogenic compounds are supplied to the open parts of the sea. In the sediment mass, the HC content is determined by the variations in the oxidative conditions in the sediment and its material’s composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号