首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two CCD spectra of the star BM Ori were obtained with the echelle spectrograph of the 6-m telescope. In one of the spectra, a large proportion of lines are distorted by emission. The emission component is blueshifted by 50 km s?1, suggesting hot-gas outflow from the atmosphere. The equivalent-width ratio of measured lines in the spectra outside and during eclipse is consistent with the assumption that ~2/3 of the primary star’s area is obscured during eclipse, as follows from light curves. Measured line equivalent widths were used to estimate atmospheric parameters of the secondary star, T eff=7300 K, log g=5.2, and microturbulence ξt=6 km s?1, and to determine its chemical composition. The C, Na, Al, Si, S, Ca, Fe, Ni, and Zn abundances are solar, within the error limits. Li, Sc, Ti, V, Cr, Mn, Co, and Y are overabundant, while Mg, Cu, and Ba are underabundant. In general, the secondary is similar in chemical composition to the star V 1016 Ori. Based on the secondary’s mass determined by solving the radial-velocity curve and on log g estimated spectroscopically from iron ionization equilibrium, we calculated its photospheric radius, R 2 = 0.5R . However, the spectroscopic log g=5.2 disagrees with log g=3.5 calculated from the luminosity and effective temperature and with log g=3.0 calculated from light and radial-velocity curves. If the secondary’s photospheric radius is indeed small; this argues for the hypothesis that the eclipsing body is a dust envelope. The radial velocities measured from the two spectra are systematically higher than those calculated from the radial-velocity curve by +34 and +24 km s?1. It is likely that the secondary’s atmosphere occasionally shrinks.  相似文献   

2.
3.
We analyze IUE spectra of the star 1016 Ori. Together with previously obtained visible spectra, they have allowed the wavelength range from 1150 to 7000 Å to be studied. Atmospheric parameters of the star were refined: logg=4.5(1), T eff=30000(1000) K, and ξt=15(5) km s?1. We measured the equivalent widths of ~500 lines and used them to compute the chemical composition. It turned out that the He, B, Mg, P, and S abundances were nearly solar; Ne, Ti, and Cr were overabundant; and C, N, O, Al, Si, Mn, Fe, Ni, and Zn were underabundant.  相似文献   

4.
Two CCD spectra of the star V1016 Ori were obtained with the echelle spectrograph of the 6-m (BTA) telescope. An analysis of these spectra allowed us to estimate the star's atmospheric parameters (T eff=29700 K, logg=4.4) and projected rotational velocity (Vsini=60 km s?1) and to determine its chemical composition. Chemical anomalies were found. The Fe abundance is nearly solar; He, C, O, Mg, Al, Si are underabundant; and Ne, S, Zn are overabundant. The “spectroscopic” radius of the primary is in satisfactory agreement with its radius determined from the light and radial-velocity curves if the small star is assumed to lie in front of the giant star during an eclipse. The paradox of the primary's anomalous radius is thus resolved. A table of line equivalent widths and a portion of the star's spectrum are given in Appendices 1 and 2.  相似文献   

5.
The peculiarities of non-Hubble bulk motions of galaxies are studied by analyzing a sample of 1271 thin edge-on spirals with distances determined using a multiparametric Tully-Fisher relation that includes the amplitude of the galaxy rotation, the blue and red diameters, surface brightness, and morphological type. In the purely dipole approximation, the bulk motion of galaxies relative to the cosmic microwave background frame can be described by the velocity of 336±96 km s?1 in the direction l=321°, b=?1° within radius R max =10000 km s?1. An analysis of more complex velocity field models shows that the anisotropy of the Hubble expansion described by the quadrupole term is equal to ~5% on scale lengths R max=6000–10000 km s?1. The amplitude within the Local Supercluster (R max=3000 km s?1) is as high as ~20%. The inclusion of the octupole component reduces the dipole amplitude to 134±111 km s?1 on scale lengths of ~8000 km s?1. The most remarkable feature of the galaxy velocity field within R max=8000 km s?1 is the zone of minimum centered on l=80°, b=0° (the constellation of Cygnus) whose amplitude reaches 18% of the mean Hubble velocity.  相似文献   

6.
We analyze ultraviolet spectra of DF Tau, a binary system whose primary component is a classical T Tauri star. The spectra were obtained from the Hubble Space Telescope and the IUE satellite. The stellar emission in the wavelength range covered is shown to originate in an accretion shock wave. The gas infall velocity is ~250 km s?1. The accreted-gas density is typically N 0≤1011 cm?3, but it can occasionally be higher by one and a half orders of magnitude. The continuum intensity near λ=1900 Å was found to be virtually constant for such a significant change in N 0. The star’s photometric variability is probably attributable to variations in accreted-gas density and velocity, as well as to variations in the area of a hot spot on the stellar surface and in its orientation relative to the observer. The mean accretion rate is $\dot M \sim 3 \times 10^{ - 9} M_ \odot yr^{ - 1}$ . The interstellar extinction for DF Tau is $A_V \simeq 0\mathop .\limits^m 5$ , the stellar radius is ≤2R , and the luminosity of the primary component is most likely no higher than 0.3 L . We argue that the distance to DF Tau is about 70 pc. Upper limits are placed on the primary’s coronal emission measure: EM(T=107 K)<3×1054 cm?3 and EM(T=1.3×106 K)<3×1055 cm?3. Absorption lines originating in the stellar wind were detected in the star’s spectrum. Molecular hydrogen lines have essentially the same radial velocity as the star, but their full width at half maximum is FWHM ?50 km s?1. We failed to explain why the intensity ratio of the C IV λ1550 doublet components exceeds 2.  相似文献   

7.
The ultraviolet spectra of the star RU Lup obtained with the Hubble Space Telescope are analyzed. Emission lines are identified. The presence of absorption components with a nearly zero residual intensity in the Mg II resonance doublet lines is indicative of mass outflow with a velocity V ?300 km s?1. These lines also exhibit a broad (?1400 km s?1 at the base) component originating in the star itself. The profiles of the (optically thin) Si II] and Si III]1892 Å lines for the first time unequivocally prove that these lines originate in an accretion shock wave rather than in the chromosphere, with the gas infall velocity being V 0?400 km s?1. The intensity ratio of the C IV 1550 Å and Si IV 1400 Å resonance doublet components was found to be close to unity, suggesting a high accreted-gas density, logN 0>12.5. Molecular H2 Lyman lines formed in the stellar wind were detected. The H I Lα luminosity of RU Lup was found from their intensities to exceed 10% of L bol. Radiation pressure in the Lα line on atomic hydrogen may play a significant role in the initial acceleration of stellar-wind matter, but the effect of Lα emission on the dynamics of molecular gas is negligible.  相似文献   

8.
We have studied the fine structure of the active H2O supermaser emission region in Orion KL with an angular resolution of 0.1 mas. We found central features suggestive of a bipolar outflow, bullets, and an envelope which correspond to the earliest stage of low-mass star formation. The ejector is a bright compact source ≤0.05 AU in size with a brightness temperature T b ?1017 K. The highly collimated bipolar outflow ~30 has a velocity v ej ?10 km s?1, a rotation period of ~0.5 yr, a precession period of ~10 yr, and a precession angle of ~33°. Precession gives rise to a jet in the shape of a conical helix. The envelope amplifies the radio emission from the components by about three orders of magnitude at a velocity v=7.65 km s?1.  相似文献   

9.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

10.
We present the results of spectroscopic and photometric observations for the young compact planetary nebula Hen 3–1357 and its central star SAO 244567. High-resolution spectroscopy has allowed the expansion velocity of the nebula, V exp = 8.4 ± 1.5 km s?1, and the heliocentric velocity of the object, V r = +12.6 ± 1.7 km s?1, to be determined. The gas shell parameters (N e , T e ), the extinction in the Hβ line, and the O, N, Ne, Ar, S, Cl, He, and C abundances have been determined from low-resolution spectra taken in 1992 and 2011. We have found significant changes in the relative intensities of forbidden lines in the spectrum of Hen 3–1357 within the last 20 years: the low-excitation [O I], [O II], and [N II] lines became stronger relative to Hβ by a factor of ~2, while the [O III] lines weakened by a factor of ~ 2, suggesting a decrease in the excitation class of the nebula. The V-band photometry performed under the ASAS-3 program revealed a decline in the yearly mean brightness of SAO 244 567 from 2001 to 2009 by $0_.^m 5$ and rapid variability with an amplitude of a few tenths of a magnitude. Published observational data in a wide spectral range, from the near ultraviolet to the radio band, suggest an appreciable weakening of the flux from the star and the nebula.  相似文献   

11.
We present LTE analysis of high resolution optical spectra for B-type hot PAGB stars LS IV-04 1 and LB3116 (LSE 237). The spectra of these high Galactic latitude stars were obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph. The standard 1D LTE analysis with line-blanketed LTE model atmospheres and spectral synthesis provided fundamental atmospheric parameters of Teff= 15 000±1000 K, log g= 2.5±0.2, ξ = 5.0±1.0 km s?1, [M/H] = ?1.81 dex, and v sin i= 5 km s?1 for LSIV-04 1 and Teff= 16 000±1000 K, log g= 2.5±0.1, v sin i= 25 km s?1, and [Fe/H] = ?0.93 dex for LB 3116. Chemical abundances of ten different elements were obtained. For LS IV-04 1, its derived model temperature contradicts with previous analysis results. The upper limits for its nitrogen and oxygen abundances were reported for the first time. The magnesium, silicon and calcium were overabundant (i.e. [Mg/Fe] = 0.8 dex, [Si/Fe] = 0.5 dex, [Ca/Fe] = 0.9 dex). With its metal-poor photosphere and VLSR ≈ 96 km s?1, LSIV-04 1 is likely a population II star and most probably a PAGB star. LTE abundances of LB 3116 were reported for the first time. The spectrum of this helium rich star shows 0.9 dex enhancement in the nitrogen. The photosphere of the star is slightly deficient in Mg, Si, and S. (i.e. [Mg/Fe] = ?0.2 dex, [Si/Fe] = ?0.4 dex, [S/Fe] = ?0.2 dex). The Al is slightly enhanced. The phosphorus is overabundant, i.e. [P/Fe] ≈ 1.7 ± 0.47 dex, hence LB3116 may be the first example of a PAGB star which is rich in phosphorus. With its high radial velocity (i.e.VLSR = 73 km s?1), and the deficiencies observed in C, Mg, Si, and S indicate that LB 3116 is likely a hot PAGB star at high galactic latitude.  相似文献   

12.
We analyzed the monitoring data for the maser S255 obtained in the H2O line at λ=1.35 cm with the 22-m radio telescope at the Pushchino Radio Astronomy Observatory in 1981–2002. The maser was most active during 1998–2002. Since 2001, the H2O spectra have been extended and complex; their triplet structure has been disrupted. The extent of the spectra was 24 km s?1 (from ?6 to 18 km s?1). We calculated orbital parameters for some of the components. We estimated the mass of the central star to be (6–7)M and the outer Keplerian-disk radius to be ~160 AU.  相似文献   

13.
The axial rotation of a star plays an important role in its evolution, the physical conditions in its atmosphere and the appearance of its spectrum.We analyzed the CCD spectra of two stars for which their projected rotational velocity differs remarkably when derived from Ca II λ3933 Å and Mg II λ4481 Å lines. We estimated the projected rotational velocity of HD182255 to be 15.5 kms?1, although in various spectra of this star the line widths correspond to values as high as 28.5 km s?1. We found the HeI λ4471.498 Å line to be shifted to longer wavelengths by 0.046 Å, thus indicating a presence of the 3He I isotope in the atmosphere of this star with the 3He : 4He ratio from 0.2 to 0.6.We also found an absorption feature at the position of the forbidden line He I λ4470.02Å. We found the lines ofMg II and CII originating from higher excited levels to be missing in the spectra of HD 182255. For HD 214923 we determined the projected rotational velocity v sin i = 165km s?1 from the profiles of the metallic lines and Ca II λ3933Å, whereas for helium lines v sin i ≈ 130km s?1 is more appropriate. Radial velocity analysis results in three long periods of ≈ 105, 34, and 15 days, and a short period of ≈ 22 hours, close to the pulsational one mentioned earlier in the literature.  相似文献   

14.
We present photoelectric and spectroscopic observations of the protoplanetary object V 1853 Cyg, a B supergiant with an IR excess. Over two years of its observations, the star exhibited rapid irregular light variations with amplitudes $\Delta V = 0\mathop .\limits^m 3$ , $\Delta B = 0\mathop .\limits^m 3$ , $\Delta U = 0\mathop .\limits^m 4$ and no correlation between color and magnitude. Its mean magnitude has not changed since the first UBV observations in 1973 (Drilling 1975). Low-resolution spectroscopic observations show that the spectrum of V 1853 Cyg in 2000 corresponded to that of a B1–B2 star with T eff ~ 20000 K. High-resolution spectroscopic observations confirm the conclusion that the profiles of absorption and emission lines are variable. We identified the star’s spectral lines and measured the equivalent widths of more than 40 lines. The star’s radial velocity is 〈V r 〉= ?49 × 5 km s?1, as measured from absorption lines, and ranges from–50 to–85 km s–1 for different lines, as measured from shell emission lines. The velocity of the dust clouds on the line of sight determined from diffuse interstellar bands (DIBs) and from interstellar Na I lines is 〈V r 〉= ?16 × 5 km s?1. The P Cyg profiles of the He I λ5876 Å and λ6678 Å lines suggest an ongoing mass loss by the star. An analysis of the observational data confirms the conclusion that the star belongs to the class of intermediatemass protoplanetary objects.  相似文献   

15.
In this paper of the series we analyze three stars listed among stars with discrepant v sin i: HD9531 and HD31592, which also show radial velocity variations inherent to spectroscopic binaries, and HD129174 which is an Mn-type star with a possible magnetic field. In HD9531 we confirm the radial velocity derived fromthe hydrogen lines as well as fromthe Ca II line at 3933 Å as variable. The profile of the calcium line also appears variable, and with the estimated magnetic induction Be = ?630 ± 1340 G, this suggests that the abundance of calcium possibly varies over the surface of the star. We identified the lines of the secondary component in the spectrum of HD31592 revealing thus it is an SB2 binary with B9.5V and A0V components. While the primary star rotates with v sin i = 50 km s?1, the secondary star is faster with v sin i = 170 km s?1. We find that only 60% of the Mn lines identified in the spectrum of HD129174 can be fitted with a unique abundance value, whereas the remaining lines are stronger or fainter. We also identified two Xe II lines at 5339.33 Å and 5419.15 Å and estimated their log g f.  相似文献   

16.
We analyze the space velocities of blue supergiants, long-period Cepheids, and young open star clusters (OSCs), as well as the H I and H II radial-velocity fields by the maximum-likelihood method. The distance scales of the objects are matched both by comparing the first derivatives of the angular velocity Ω′ determined separately from radial velocities and proper motions and by the statistical-parallax method. The former method yields a short distance scale (for R0=7.5 kpc, the assumed distances should be increased by 4%), whereas the latter method yields a long distance scale (for R0=8.5 kpc, the assumed distances should be increased by 16%). We cannot choose between these two methods. Similarly, the distance scale of blue supergiants should be shortened by 9% and lengthened by 3%, respectively. The H II distance scale is matched with the distance scale of Cepheids and OSCs by comparing the derivatives Ω′ determined for H II from radial velocities and for Cepheids and OSCs from space velocities. As a result, the distances to H II regions should be increased by 5% in the short distance scale. We constructed the Galactic rotation curve in the Galactocentric distance range 2–14 kpc from the radial velocities of all objects with allowance for the difference between the residual-velocity distributions. The axial ratio of the Cepheid+OSC velocity ellipsoid is well described by the Lindblad relation, while σu≈σv for gas. The following rotation-curve parameters were obtained: Ω0=(27.5±1.4) km s?1 kpc?1 and A=(17.1±0.5) km s?1 kpc?1 for the short distance scale (R0=7.5 kpc); and Ω0=(26.6±1.4) km s?1 kpc?1 and A=(15.4±0.5) km s?1 kpc?1 for the long distance scale (R0=8.5 kpc). We propose a new method for determining the angular velocity Ω0 from stellar radial velocities alone by using the Lindblad relation. Good agreement between the inferred Ω0 and our calculations based on space velocities suggests that the Lindblad relation holds throughout the entire sample volume. Our analysis of the heliocentric velocities for samples of young objects reveals noticeable streaming motions (with a velocity lag of ~7 km s?1 relative to the LSR), whereas a direct computation of the perturbation amplitudes in terms of the linear density-wave theory yields a small amplitude for the tangential perturbations.  相似文献   

17.
We measured the radial velocity of the star θ1 Ori D from IUE spectra and used published observations. Based on these data, we determined the period of its radial-velocity variations, P=20.2675±0.0010 days, constructed the phase radial-velocity curve, and solved it by least squares. The spectroscopic orbital elements were found to be the following: the epoch of periastron passage Ep=JD 2430826.6±0.1, the system's center-of-mass velocity /Gg=32.4±1.0 km s?1, K=14.3±1.5 km s?1, Ω=3.3±0.1 rad, e=0.68±0.09, a1 sin i = 3 × 1010 km, and f1 = 0.0025M. Twice the period, P=40.528±0.002 days, is also consistent with the observations.  相似文献   

18.
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
High resolution optical observations (FWHM ~ 10–13 km s?1) of the I-S gas towards the early-type stars HD 164 794, HD 164816, and HD 165052 in the M8 Nebula are presented. A high velocity componentV LSR=?26 km s?1 has been detected in all 3 stars' spectra. A line profile fitting analysis has been carried out on the observed Caii and Nai absorption lines to determine cloud component column densities and to subsequently determine the physical and chemical conditions of the associated I-S gas.  相似文献   

20.
We present high-resolution (R~20,000) spectra in the blue and the far red of circumnuclear star-forming regions (CNSFRs) in three early-type spirals (NGC3351, NGC2903 and NGC3310), which have allowed the study of the kinematics of the stars and the ionized gas in these structures and, for the first time, the derivation of their dynamical masses for the first two. In some cases, these regions, about 100 to 150 pc in size, are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. The stellar dispersions have been obtained from the Calcium triplet (CaT) lines at λ λ 8494, 8542, 8662 Å, while the gas velocity dispersions have been measured by means of Gaussian fits to the Hβ and [Oiii]λ 5007 Å lines in the high-dispersion spectra. Values of the stellar velocity dispersions are between 30 and 68 km?s?1. We apply the virial theorem to estimate dynamical masses of the clusters, assuming that systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the entire CNSFRs. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ 5007 Å lines. The douby-ionized oxygen, on the other hand, exhibits velocity dispersions comparable to those of the stars or, in some cases, even larger. We have found indications of the presence of two different kinematical components in the ionized gas of the regions. We have mapped the velocity field in the central kpc of the spiral galaxies NGC3351 and NGC2903. For the first object, the radial velocity curve shows deviations from circular motions for the ionized hydrogen consistent with its infall towards the central regions of the galaxy, at a velocity of about 25 km?s?1. For NGC3310, we present preliminary results for the velocity dispersions for one of the two observed slit position angles, two CNSFRs and the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号