首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
汶川地震发震断层为高角度逆断层,这种断层滑动和发生强震需要断层深部具备特殊的力学条件。发震断层地区地表出露若干韧性剪切带,其中不同类型石英变形具有不同的变形温度。细粒糜棱岩中的石英表现为高温位错蠕变,变形温度为500~700℃;含残斑初糜棱岩中的石英表现为中温位错蠕变,其变形温度为400~500℃;早期石英脉中的石英表现为低温位错蠕变,变形温度为280~400℃;晚期石英脉以碎裂变形为主,其变形温度为150~250℃。石英的这些变形特征显示出断层带经历了多期脆-塑性转化。根据糜棱岩中的重结晶石英的粒度估计的断层塑性流动应力为15~80MPa。石英和长石内的微量水以晶体缺陷水、颗粒边界水和流体包裹体水的形式存在,水含量随岩石的应变增加而升高,变化范围为0.01~0.15wt%。断层脆-塑性转化带内石英含有大量与裂隙愈合相关的次生流体包裹体,其捕获温度为330~350℃,流体压力为70~405MPa,估计的流体压力系数为0.16~0.9,代表强震发生后,断层带内产生的大量微裂隙逐渐愈合过程中的流体特征。在考虑断层带流体压力和应变速率变化条件下,利用石英流变参数建立了从间震期到地震成核阶段断层脆-塑性转化带流变结构和震后快速蠕滑阶段断层脆-塑性转化带流变结构。结果表明,在间震期、地震成核阶段、震后快速滑动阶段,断层强度和脆-塑性转化深度随应变速率和流体压力变化而变化,且脆-塑性转化特征与石英的变形机制、断层速度弱化和强化转化深度、汶川地震震源深度等吻合,显示映秀-北川断层具备摩擦滑动速度弱化和地震成核的基础,而断层带内存在高压流体可能是触发高角度逆断层滑动和汶川地震发生的主要机制。  相似文献   

2.
本文采集了龙门山逆冲推覆构造带内三种不同变形程度的长英质岩石,利用傅里叶红外吸收光谱仪(FITR),测试了包含次生流体包裹体石英和长石内的微量水,并与干净石英样品测试结果进行比较.研究表明,含次生流体包裹体的石英和长石的吸收峰基底宽缓,曲线平滑,主要吸收峰出现在3380~3450cm-1附近,造成次要吸收峰难以识别,吸收强度整体大幅提高,其中3200cm-1、3650cm-1和3730cm-1附近的微弱吸收峰更容易见到.三个样品中含次生流体包裹体的长石的水含量(0.022~0.103wt%H2O)高于石英(0.011~0.031wt%H2O)的水含量,水含量随变形程度的增加先升高后降低.含次生流体包裹体的石英和长石的水含量不能代表矿物内的结构水,但能够反映出微裂隙内流体的多少.因此,这间接指示了震后快速蠕变时期断层带边缘水含量高于中心的流体分布特征.  相似文献   

3.
地震精定位结果显示,大陆地震多数集中于大陆地壳的多震层内,该多震层向下收敛于中部地壳的脆塑性转化带。地壳脆塑性转化带的主要成分为花岗质岩石,前人通常用石英-斜长石的组合代替花岗岩进行变形研究,反演转化带的深度和变形特征,并且认为花岗岩的变形强度由弱项矿物——石英的塑性变形控制。近年来,实验和野外研究均表明钾长石的变形强度高于石英和斜长石。大应变量变形实验和野外韧性剪切带的研究结果显示,在中地壳脆塑性转化带内,钾长石变形以脆性破裂为主,斜长石和石英通常表现为动态重结晶。因此,用石英和斜长石的组合体代替花岗岩来反演断层的变形特征,无法全面、真实地解释断层深部脆塑性转化带的变形特征。文中总结了花岗岩在野外和实验变形条件下的研究结果,并分析了花岗岩的主要组成矿物——石英、斜长石和钾长石的变形特征以及其温压条件的不同步性,讨论了断层深部脆塑性转化带的失稳条件。  相似文献   

4.
水对下地壳基性岩脆塑性转化影响的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
周永胜  何昌荣  杨恒 《地震地质》2004,26(3):472-483
研究表明 ,干的基性下地壳处于半脆性摩擦与半脆性流变的过渡状态 ,因此 ,文中采用多种基性岩样品进行了干的和含水基性岩的脆塑性转化实验 ,以深入理解大陆下地壳的力学性质。实验围压 4 5 0~ 5 0 0MPa ,应变速率 1× 1 0 - 4s- 1。实验结果表明 ,济南辉长岩 (样品C)、延庆辉绿岩 (样品D)和含水辉绿岩从 30 0℃到 90 0℃经历了脆性破裂、碎裂流动、半脆性流动和塑性流动几个变形域 ,而细粒攀枝花辉长岩 (样品A)和中细粒攀枝花辉长岩 (样品B)从 70 0℃到 90 0℃经历了半脆性流动和塑性流动 2个变形域。干的辉长岩样品比干的辉绿岩样品发生脆延性转化的温度高 1 0 0℃ ;所有干的基性岩样品的脆塑性转化都发生在 70 0℃ ,但半脆性流动域变形微观结构有差别 ,辉绿岩中斜长石和辉石发生了细粒化 ,并存在强烈的定向 ,形成初糜棱岩结构 ,辉长岩样品的细粒化和定向特征不明显。干的基性岩在以位错滑移为主的高温塑性流变域的强度和微观结构基本相同。水对基性岩脆塑性转化的影响体现在岩石的强度和脆延性与脆塑性的转化温度两方面。在实验温度范围内 ,含水辉绿岩样品的强度远小于干的辉绿岩和辉长  相似文献   

5.
中地壳韧性剪切带中的水与变形机制   总被引:3,自引:0,他引:3  
利用傅里叶变换红外吸收光谱仪(FFIR),对红河断裂带早期左行走滑期间形成的中地壳韧性剪切带中的细粒长英质糜棱岩和条带状花岗片麻岩中的主要矿物石英、长石进行了水含量分析.红外吸收谱特征表明,石英和长石中的水以晶体缺陷水为主,并且含有颗粒边界水和包裹体水.其中,条带状花岗片麻岩中长石水含量为0.05—0.15wt%,石英水含量为0.03~0.09wt%,细粒长英质糜棱岩中剪切残斑长石和石英的水含量分布在0.095~0.32wt%范围;细粒长石和石英含水含量范围为0.004~0.052wt%.这些数据表明,弱变形的粗粒长石、石英的水含量高于强烈变形的细粒长石、石英的含水量.因此,在剪切带中,强烈剪切变形导致长石、石英中赋存的水被破坏,而糜棱岩中长石和石英的水基本被脱出.  相似文献   

6.
组构对花岗片麻岩高温流变影响的实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
深部岩石先存的变形组构对流变特性影响的实验研究是新的研究热点之一,然而目前相关的实验研究非常有限.本文利用3 GPa固体介质熔融盐三轴高温高压容器,选择华北克拉通北部辽东拆离断层带中具有变形组构的花岗片麻岩样品,在温度600~840℃、围压800~1200 MPa、应变速率1×10-4~2.5×10-6/S条件下,对不同组构方向的样品(实验压缩方向分别垂直和平行花岗片麻岩的面理)开展高温高压流变实验.实验结果表明,在相同的应变速率和温度条件下,垂直面理的岩石强度比平行面理的岩石强度要高.两组实验样品在600~700℃时,应力指数平均值为6.5,为半脆性流变;在800~840℃时,应力指数平均值为2,垂直面理样品的激活能为Q=380 kJ/mol,平行面理样品的激活能为Q=246.4 kJ/mol,以塑性变形为主,局部存在黑云母和角闪石的脱水熔融.微观结构研究表明,垂直面理的样品,在变形过程中形成了新的变形条带,把原有的面理破坏改造;而平行面理的样品,在实验变形过程中新的变形带主体继承了原有组构.EBSD分析显示花岗片麻岩原岩中石英轴极密区位于Z轴附近,为底面滑移;压缩方向垂直面理的样品,石英组构轴极密区位于X轴附近,为柱面滑移;压缩方向平行面理的样品,石英组构轴极密区位于Z轴附近,伴有少量的Y轴极密,底面滑移和柱面滑移.这表明垂直面理的样品中石英变形改造比平行面理的样品更彻底,这与微观结构分析结果一致.显然实验样品的非均匀组构对样品强度和石英轴定向等具有显著影响,但对样品的脆塑性转化和塑性变形机制没有实质影响,这对理解地壳深部普遍存在的形态各向异性岩石流变具有重要参考价值.  相似文献   

7.
张媛媛  周永胜 《地震地质》2012,34(1):172-194
野外、实验和地震数据表明:浅部地壳的变形以脆性破裂为主,深部地壳的变形以晶体塑性流动为主.在这种认识的基础上,提出了地壳变形的2种机制模型,即发生脆性变形的上部地壳强度基于Byerlee摩擦定律以及发生塑性变形的下部地壳强度基于幂次蠕变定律.而位于其间的脆塑性转化带的深度与浅源地震深度的下限具有很好的一致性.然而,二元结构的流变模型局限性在于其力学模型过于简单,往往过高估计了脆塑性转化带的强度.问题的根源在于对脆塑性转化带的变形机制的研究已有很多,但没有定量的力学方程来描述脆塑性转化带强度;而且以往对断层脆塑性转化带的研究主要集中在温度引起的脆塑性转化方面,对因应变速率和流体对脆塑性转化的影响方面的研究也比较薄弱.对断层带内矿物变形机制研究表明,某些断层带脆塑性转化发生在相同深度(温度和压力)内,发生脆塑性转化的原因是应变速率的变化,而这种变化被认为与地震周期的同震、震后-间震期蠕变有关,这种变化得到了主震-余震深度分布变化的证实.对断层流体特征分析表明,断层带内可能存在高压流体,这种高压流体会随断裂带的破裂及愈合而周期性变化,在地震孕育及循环中起着关键性作用.高压流体的形成(裂隙愈合)有多种机理,其中,压溶是断层带裂隙愈合的主导机制之一.研究在水作用下的压溶,可以对传统的摩擦-流变二元地壳强度结构及其断层强度进行补充与修正.通过以上分析,认为有必要通过野外变形样品和高温高压实验,深入研究应变速率及流体压力对断层脆塑性转化的影响,同时,通过实验建立压溶蠕变的方程,近似地估计脆塑性转化带的强度.  相似文献   

8.
脆塑性转化带对于研究岩石圈变形、断层强度和变形机制以及强震的孕育和发生具有重要意义。文中采用汶川地震震源区彭灌杂岩中具有代表性的细粒花岗岩样品,在固体压力介质三轴实验系统上开展了高温高压非稳态流变实验研究。实验设计模拟了汶川地震区地壳10~30km深度的实际温度和压力,温度为190~490℃,压力为250~750MPa,应变速率为5×10-4s-1,利用扫描电镜对实验样品进行微观结构观察。实验力学数据、微观结构及变形机制分析表明,在相当于地壳浅部10~15km深处的低温低压条件下,表现为应变强化,样品具有脆性破裂-半脆性流动的变形特征;在相当于地壳15~20km的深度条件下,随着应变量增加,应力趋于稳态,样品具有脆塑性转化特征;在相当于地壳20~30km的深度条件下,样品具有塑性流动特征。当样品处于半脆性域时发生非稳态流变,主要变形机制为碎裂作用,同时激活了动态重结晶作用、位错蠕变等塑性变形机制。样品强度随着深度不断增大,在深度为15~20km时达到极大值,深度为20~30km时强度逐渐减小。因此,花岗岩的强度随深度的变化规律与微观结构及变形机制均表明,在实验温度和压力条件下,花岗岩具有非稳态流变特征,在15~20km深处,龙门山断裂带处于脆塑性转化带,花岗岩强度达到最大值,该深度与汶川地震的成核深度一致,显示出彭灌杂岩的强度和变形对汶川地震的孕育和发生具有控制作用。  相似文献   

9.
秦岭商丹糜棱岩带构造变形环境的显微构造标志   总被引:2,自引:0,他引:2       下载免费PDF全文
周建勋 《地震地质》1999,21(4):334-340
商丹糜棱岩带不同区段石英和长石的显微构造及石英组构特征表明,商丹糜棱岩带自西向东构造变形环境显示从低绿片岩相至中- 高绿片岩相至高绿片岩相—低角闪岩相的变化规律。低绿片岩相变形环境下,石英多为Ⅰ型条带,长石主要显示脆性破裂特征,石英c 轴组构呈单一环带型式。中- 高绿片岩相变形环境下,石英主要为Ⅱ型石英多晶条带,斜长石主要处于脆性碎裂流动状态,钾长石开始向韧性转化,石英c 轴组构呈绕y 轴分布的点极密型式。高绿片岩相—低角闪岩相变形环境下,石英普遍呈现光性均匀并有120°三连点的动态重结晶和Ⅳ型条带,斜长石开始显示脆- 韧性过渡状态的变形特点,钾长石显示明显的韧性变形特点,石英c 轴组构呈Ⅰ型交叉环带型式  相似文献   

10.
地壳深部岩石普遍存在变形组构,花岗质岩石中的变形组构不仅影响岩石强度,而且对后期变形具有显著控制作用。近年来,先存组构对各向异性岩石的流变强度影响成为高温高压实验研究的热点之一。文中对前人给出的各向异性岩石(包括云母片岩-片麻岩、石英-钙长石均匀混合体与层状组构样品)半脆性-塑性流变实验数据进行了重新整理与分析,结合作者开展的不同组构条件下花岗片麻岩与糜棱岩流变实验结果,讨论了先存组构对各向异性岩石流变强度的影响。实验数据表明:1)各向异性岩石的面理与最大主应力方向的角度是影响强度的主要因素。在半脆性破裂域,样品压缩方向垂直于面理(PER)和平行于面理(PAR)的强度基本相同,在压缩方向与面理呈30°夹角时,岩石破裂强度最小;在塑性流变域,垂直于面理方向的强度显著高于平行于面理方向的强度,当面理与最大主应力方向的角度为45°时,岩石强度最小。2)后期变形对原有组构的继承与改造程度,决定了各向异性岩石强度高低。3)样品中矿物的含量、分布与粒度对各向异性岩石强度有显著影响。理论模型预测结果与云母片岩实验结果比较吻合,但其他类型各向异性岩石的流变比理论模型结果要复杂得多。因此,进一步开展具有先存组构的各向异性岩石的流变实验,并将实验变形与实际地质条件下更为复杂的岩石变形进行对比分析,是认识各向异性岩石流变和变形机制最有效的方法。  相似文献   

11.
以高黎贡剪切带中发育的变形花岗质岩石为研究对象,主要通过光学显微镜(OM)、扫描电镜(SEM)、阴极发光仪(CL)和电子背散射衍射(EBSD)对其显微构造、组构以及矿物成分进行了精细的测试分析,重点针对岩石中的长石细粒化和流体制约因素进行了深入讨论.研究结果表明:(1)高黎贡剪切带中的变形花岗质岩石随糜棱岩化程度的增强,呈现出两个明显的端元变形岩石类型,即Ⅰ型-条带状花岗质糜棱岩和Ⅱ型-条带状超糜棱岩.(2)在Ⅰ型和Ⅱ型岩石中,主要矿物组合均为钾长石、斜长石、石英、黑云母和(或)白云母.然而其中Ⅰ型岩中矿物的成分含量为:钾长石(残斑为主)斜长石石英±黑云母;Ⅱ型岩中矿物的成分含量为:细粒化的斜长石钾长石石英±黑云母.(3) EBSD组构结果显示无论是Ⅰ型-条带状花岗质糜棱岩,还是Ⅱ型-条带状超糜棱岩,条带状石英在Y轴方向形成最大c轴0001主极密的结晶学优选定向,表示以柱面a滑移系发育为主;而Ⅱ型-条带状超糜棱岩基质中的石英单颗粒在X轴方向形成最大c轴0001主极密的结晶学优选定向,指示了柱面c滑移系.(4)Ⅱ型-条带状超糜棱岩基质中分布的钾长石矿物变形是以(100)[010]滑移系的发育占主导地位的位错蠕变动态重结晶,斜长石矿物呈现较弱的EBSD组构,表现出颗粒边界为主的滑移超塑性流动特征.值得注意的是从Ⅰ型-条带状花岗质糜棱岩到Ⅱ型-条带状超糜棱岩中,变形长石残斑主要为钾长石.在角闪岩相剪切变形过程中钾长石呈现出明显细粒化以及矿物相、矿物成分和结构的转变,表现为钾长石矿物残斑被细粒化斜长石和石英颗粒取代并伴随着流体作用.钾长石残斑的强烈细粒化进一步形成高应变局部化的超糜棱岩和整个岩石的超塑性流动.  相似文献   

12.
地壳岩石变形行为的转变及其温压条件   总被引:10,自引:4,他引:6       下载免费PDF全文
周永胜  何昌荣 《地震地质》2000,22(2):167-178
岩石脆延性转化 (brittle ductiletransition)和脆塑性转化 (brittle plastictransition)是不同的概念。脆延性转化指从岩石的局部变形破坏到宏观均匀流动变形的转化 ,它与宏观结构和力学行为的变化相关。脆塑性转化指脆性向晶体塑性变形的转化 ,它与力学行为和微观机制的变化相关。通过地壳中最主要的石英、长石的实验室和野外变形温压条件对比发现 ,达到相同的变形特征 ,在实验室和野外所需温压条件不同。建立变形机制图使解决这一矛盾成为可能。但受实验资料的限制 ,目前几种主要岩石的变形机制图还无法建立。因此 ,通过对实验与自然环境下变形特征及微观机制对比 ,找出两者温压条件的差别 ,就成为将实验研究结果外推解决实际地质问题的有效途径  相似文献   

13.
宋娟  周永胜  杨伟红 《地震地质》2014,36(1):186-195
1996年丽江MS7.0地震的余震深度分布明显具有时间依赖性,主震发生后短时间内余震震源深度较深,随着时间的延续,余震震源深度变得越来越浅。余震的这种深度分布受地壳脆塑性转化带深度控制,而脆塑性转化带的深度变化与地震前后断层的应变速率有关。由震后GPS地表变形数据得到的地表变形模型表明,震后地表变形主要来自地壳深部,震后滑动与地壳深部弹性松弛有关。根据鲜水河断层地表的滑动数据和按Marone's(1991)给出的方程确定的震后滑动模型,估计的应变速率显示,主震发生后应变速率较高,随时间延续,应变速率逐渐下降。基于地壳P波速度结构和利用热流数据估计的丽江地区地壳温度,采用含水石英的塑性流变参数,估计了中地壳脆塑性转化带深度随震后应变速率的变化。结果表明,主震震源深度与余震深度分布下限与中地壳脆塑性转化带的深度随时间变化趋势一致。由于断层的震后快速滑动致使断层带深部具有很高的应变速率,高应变速率引起断层脆塑性转化带深度下移,主震之后短时间内发生了较深的余震;随着震后时间的延续,断层逐渐进入蠕变阶段,断层滑动速率逐渐减小,地壳应变速率逐渐降低,断层脆塑性转化带也逐渐恢复到间震期的深度,相应余震深度随之变化。因此,余震分布的深度变化是中地壳流变结构和脆塑性转化带深度变化的直接反映。  相似文献   

14.
本文通过总结天然变形钾长石和斜长石的变形机制研究成果,斜长石和花岗岩的脆塑性转化、钙长石集合体高温流变以及钠长石的实验变形研究成果.综合分析发现钾长石和斜长石变形机制具有温压条件的不同步性:在低于绿片岩相条件下两种长石均表现为脆性碎裂,相应的实验室变形条件为850℃;在绿片岩相条件下,钾长石以碎裂变形为主,斜长石以晶内塑性变形为主,对应实验室变形温度约为900~950℃;在角闪岩相温压条件下,斜长石以动态重结晶为主,而钾长石表现为塑性变形为主,同时发生出溶,该变形特征在实验室条件下的变形温度需要1000℃.影响斜长石流变性质的主要因素为粒度和结构水含量,粒度的减小将引起变形机制从位错蠕变向扩散蠕变转化,结构水含量增加导致激活能减小.结构水(羟基)和动态重结晶的细粒化均对长石的流变起到明显的弱化作用.  相似文献   

15.
大量研究表明,流体在断层弱化中起着非常重要的作用.在地壳浅部脆性域,自由水通过流体孔隙压力减小断层有效正压力,从而降低断层摩擦强度;在地壳深部,矿物中的微量结构水弱化岩石流变强度.另外,流体-岩石相互作用等化学过程,如长石水解反应,对断层强度的影响也非常显著.断层深部流体通过物理作用与化学作用影响着岩石的变形机制,从而影响断层力学性质与地震孕育和发生.断层内部流体孔隙压力周期性变化是断层带脆-塑性转化、裂缝张开与愈合等的直接体现,这种变化控制着断层强度与强震周期性发生现象.  相似文献   

16.
从脆性破裂到塑性流动的破坏模式转换,对了解震源机制、地壳强度及野外尺度上的变形方式具有重要的意义.最近在高质量力学数据采集、微观变形结构的系统观察和压缩条件下岩石破坏的理论模拟研究方面的进展,使我们能进一步认识脆-延转换的物理和力学机制.通过测量强度的温压敏感性和对破坏模式的观察,可识别一些岩石脆-延转换的力学特性.然而,在高温高压下,对硅质岩石的半脆性流动或不同的孔隙流体、应变率及颗粒粒径对强度和流变的影响等方面比较全面的研究,还几乎没有.从脆性破裂到半脆性流动、从半脆性流动到全塑性流动,它们的转换强度和压力呈明显的线性关系.但这种关系的物理基础还没有很好地建立起来.微观结构的定性观察结果提供了有关各种变形机制的运行条件、应变分区的估计和裂纹成核机制的确定等方面的信息.最近对微观结构的定量研究,对半脆性域变形的微观机制起到了重要的约束作用.但在认识上仍存在很大的差距.  相似文献   

17.
一、概况大同机车工厂地处口泉断裂东,采凉山—怀仁断裂西,十里河及御河之间的一大冲击扇上(见图1).周围地势平坦,总的来看,西北较高,东南较低,厂区附近几乎全部为第四纪覆盖物.岩性为淡黄色砂质粘土夹碎石砾石.成份为花岗片麻岩、角闪片麻岩、石灰岩及石英等.  相似文献   

18.
王宝生  史兰斌 《地震》1989,(5):50-58
在温度为200°—700℃,围压为200—700MPa,恒定应变速率(1×10~(-4)/s)条件下,笔者对长石砂岩和石英砂岩完整的和带预切口的试样进行了变形实验。应力-应变曲线表明,完整砂岩发生了脆性的、脆延性过渡状态的和延性的变形;而带预切口的砂岩在整个实验条件下都发生了稳定摩擦滑动。显微观测表明,岩石变形的主要机制是晶内和穿晶微裂隙的产生和发展。根据实验结果笔者推测,砂岩组成的地壳在地下10km左右的深度有最大破坏强度和摩擦强度;而发育在岩石中的断层的活动一般以稳定摩擦滑动为主。  相似文献   

19.
地表破裂带调查和地震学反演结果表明,汶川地震发震断层具有高角度逆断层特征.逆断层滑动需要的力学条件为:存在很大的差应力;比较低的摩擦系数;较大的流体压力. 通过对映秀-北川断裂南段出露的糜棱岩研究,得出断层脆塑性转化带变形温度约400~500℃,流动应力约15~80 MPa.  相似文献   

20.
采用干燥和含水Carrara大理岩样品,在温度400~700℃、围压300MPa、应变速率10~(-4)/s和10~(-5)/s条件下开展了轴向压缩实验。利用傅里叶变换红外光谱仪,测试了实验样品中的水含量,通过偏光显微镜、扫描电镜与能谱分析了实验变形样品的微观结构。实验力学数据表明,在400℃时,样品表现为应变强化特征;在500~700℃条件下,样品转变为稳态流变。样品强度随温度增加而降低,随应变速率降低而降低;而水对大理岩强度的影响不显著。微观结构分析表明,在400℃时,大理岩以脆性破裂为主,含水样品局部出现压溶。在500℃时干样品和含水大理岩处于脆塑性转化变形域。干样品在600℃时变形以位错滑移为主,而干样品在700℃时和含水样品在600~700℃时,以位错攀移和动态重结晶为主要变形机制。较低的应变速率和较高的水含量促进了压溶作用和动态重结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号