首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Chun-Ming Wu  Guochun C. Zhao 《Lithos》2007,97(3-4):365-372
In this contribution we have empirically calibrated the garnet–biotite–muscovite–aluminosilicate–quartz (GBMAQ) barometer using low- to medium–high-pressure, mid-grade metapelites. Application of the barometer suggests that the GBMAQ and GASP barometers show quite similar pressure estimates. Furthermore, metapelites within thermal contact aureole or very limited geographic area show no meaningful pressure diversity determined by the GBMAQ and GASP barometers which is the geological reality. The random error of the GBMAQ barometer is expected to be around ± 0.8 kbar, and this barometer shows no systematic bias with respect to either pressure, or temperature, or AlVI in muscovite, or Fe in biotite, or Fe in garnet. The GBMAQ barometer is thermodynamically consistent with the garnet–biotite geothermometer because they share the same activity models of both garnet and biotite. This barometer is especially useful for assemblages with Ca-poor garnet or Ca-poor plagioclase or plagioclase-absent metapelites. Application of this barometer beyond the calibration ranges, i.e., PT range and chemical ranges of the minerals, is not encouraged.  相似文献   

2.
Abstract Partitioning of Fe and Mg between garnet and phengitic muscovite was calibrated as a geothermometer by Green & Hellman (1982) using experimental data at 25–30 kbar. When the thermometer is applied to pelites regionally metamorphosed at pressures of between 3 and 7 kbar it yields temperatures much higher than those from the garnet–biotite thermometer. A new empirical calibration is proposed for use with such rocks, with particular application where garnet occurs at lower grades than biotite. The new calibration is where K is given by: In K = In K d and X ii are mole fractions in the garnets.
The calibration was derived from comparison with the garnet–biotite thermometer of Ferry & Spear (1978), assuming no pressure-dependence for the partitioning between garnet and muscovite, no ferric iron partitioning, ideal mixing in muscovite, and the garnet mixing model of Ganguly & Saxena (1984) modified for a non-linear Ca effect. This latter garnet mixing model was selected because it gave the geologically most reasonable results. It has not proved possible to distinguish a pressure effect from a ferric-iron effect.
Despite the simplifying assumptions used to derive the calibration, it yields temperatures generally within 15°C of those given by the garnet–biotite thermometer, and has been used to supply thermometric data in a low-grade region of the Canadian Rockies.  相似文献   

3.
The garnet–biotite–muscovite–plagioclase (GBMP) barometer was empirically revised for P–T conditions of 1–14 kbar and 450–840 °C, using 263 metapelitic rock samples from all over the world. This barometer is based on activity models for garnet, biotite and plagioclase identical to those of the well‐calibrated garnet–biotite thermometer and the garnet–aluminosilicate–plagioclase–quartz (GASP) barometer. The GBMP barometer is less temperature dependent than the GASP barometer and can be applied to either Al2SiO5‐absent or Al2SiO5‐bearing metapelites. The total error of the GBMP barometer is estimated to be about ±1.2 kbar on considering input temperature error and analytical errors of chemical compositions of the phases involved. The random error of the GBMP barometer is evenly distributed with respect to pressure, temperature and mineral composition. Simultaneous application of the GBMP barometer and the garnet–biotite thermometer identifies the correct stability field for Al2SiO5‐bearing metapelites. Application of the GBMP barometer to metapelitic rocks within the same geological terranes or thermal contact aureoles yielded similar pressures within error. A spreadsheet for implementing the proposed GBMP geobarometer is supplied on the journal's website.  相似文献   

4.
A Report on a Biotite-Calcic Hornblende Geothermometer   总被引:1,自引:0,他引:1  
This paper presents a biotite-calcic hornblende geothermometer which was empirically calibrated based on the gamet-biotite geothermometer and the gamet-plagioclase-hornblende-quartz geobarometer, in the ranges of 560-800℃ (T) and 0.26-1.4 GPa (P) using the data of metadolerite, amphibolite, metagabbro, and metapelite collected from the literature. Biotite was treated as symmetric Fe-Mg-AlVI-Ti quaternary solid solution, and calcic hornblende was simplified as symmetric Fe-Mg binary solid solution. The resulting thermometer may rebuild the input garnet-biotite temperatures well within an uncertainty of ±50℃. Errors of ±0.2 GPa for input pressure, along with analytical errors of ?% for the relevant mineral compositions, may lead to a random error of ±16℃ for this thermometer, so that the thermometer is almost independent of pressure estimates. The thermometer may clearly discriminate different rocks of lower amphibolite, upper amphibolite and granulite facies on a high confidence level. It is assume  相似文献   

5.
Erling Krogh Ravna 《Lithos》2000,53(3-4):265-277
Multiple regression analysis of a compilation of the Fe2+–Mg distribution between garnet and hornblende from experimental runs on basaltic to intermediate compositions (n=22) and coexisting garnet–clinopyroxene–hornblende from natural (intermediate to basaltic) rocks (n=43) has been performed to define ln KD(Fe2+/Mg)Grt–Hbl as a function of temperature and garnet composition. The regression of data covering a large span in pressure (5–16 kbar), temperature (515–1025°C) and composition yields the ln KD(Fe2+/Mg)Grt–HblPT compositional relationship (r2=0.93):
where

Application of this expression to natural garnet–hornblende pairs in intermediate to basaltic and semipelitic rock types from various settings gives temperatures that are consistent with other methods.  相似文献   


6.
In equilibrated metamorphic rocks containing coexisting garnet, cordierite, quartz and sillimanite, the exchange of iron and magnesium between cordierite and garnet offers a highly favourable geological thermometer and barometer, because this exchange reaction is insensitive to pressure. Thermodynamic analysis shows that this thermometer may be calibrated from knowledge of the breakdown reactions for iron and magnesian cordierite end members to garnet. The thermometer was experimentally calibrated using cordierites of intermediate composition. When applied to rocks showing petrographic evidence of equilibrium, and chemical evidence of reaction between garnet and cordierite, the thermometer yielded temperatures of 600–750:C, and pressures of 5.7–6.7 kilobars. Similar conditions are indicated by other literature data on cordierite-garnet gneisses, and are believed to represent hornblende granulite grade of metamorphism.  相似文献   

7.
Mutual relationships among temperatures estimated with the most widely used geothermometers for garnet peridotites and pyroxenites demonstrate that the methods are not internally consistent and may diverge by over 200°C even in well-equilibrated mantle xenoliths. The Taylor (N Jb Min Abh 172:381–408, 1998) two-pyroxene (TA98) and the Nimis and Taylor (Contrib Mineral Petrol 139:541–554, 2000) single-clinopyroxene thermometers are shown to provide the most reliable estimates, as they reproduce the temperatures of experiments in a variety of simple and natural peridotitic systems. Discrepancies between these two thermometers are negligible in applications to a wide variety of natural samples (≤30°C). The Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer shows good agreement with TA98 in the range 1,000–1,400°C and a positive bias at lower T (up to +90°C, on average, at T TA98 = 700°C). The popular Brey and Köhler (J Petrol 31:1353–1378, 1990) two-pyroxene thermometer performs well on clinopyroxene with Na contents of ~0.05 atoms per 6-oxygen formula, but shows a systematic positive bias with increasing NaCpx (+150°C at NaCpx = 0.25). Among Fe–Mg exchange thermometers, the Harley (Contrib Mineral Petrol 86:359–373, 1984) orthopyroxene–garnet and the recent Wu and Zhao (J Metamorphic Geol 25:497–505, 2007) olivine–garnet formulations show the highest precision, but systematically diverge (up to ca. 150°C, on average) from TA98 estimates at T far from 1,100°C and at T < 1,200°C, respectively; these systematic errors are also evident by comparison with experimental data for natural peridotite systems. The older O’Neill and Wood (Contrib Mineral Petrol 70:59–70, 1979) version of the olivine–garnet Fe–Mg thermometer and all popular versions of the clinopyroxene–garnet Fe–Mg thermometer show unacceptably low precision, with discrepancies exceeding 200°C when compared to TA98 results for well-equilibrated xenoliths. Empirical correction to the Brey and Köhler (J Petrol 31:1353–1378, 1990) Ca-in-Opx thermometer and recalibration of the orthopyroxene–garnet thermometer, using well-equilibrated mantle xenoliths and TA98 temperatures as calibrants, are provided in this study to ensure consistency with TA98 estimates in the range 700–1,400°C. Observed discrepancies between the new orthopyroxene–garnet thermometer and TA98 for some localities can be interpreted in the light of orthopyroxene–garnet Fe3+ partitioning systematics and suggest localized and lateral variations in mantle redox conditions, in broad agreement with existing oxybarometric data. Kinetic decoupling of Ca–Mg and Fe–Mg exchange equilibria caused by transient heating appears to be common, but not ubiquitous, near the base of the lithosphere.  相似文献   

8.
Metamorphic zones in the Chinese Altai orogen have previously been separated into the kyanite- and andalusite-types, the andalusite-type being spatially more extensive. The kyanite-type involves a zonal sequence of biotite, garnet, staurolite, kyanite, sillimanite and, locally, garnet–cordierite zones. The andalusite-type zonal sequence is similar: it includes biotite, garnet and staurolite zones at lower-T conditions and sillimanite and garnet–cordierite zones at higher-T conditions, but additionally contains staurolite–andalusite and andalusite–sillimanite zones at intermediate-T conditions. As relic kyanite-bearing assemblages commonly persist in the staurolite–andalusite, andalusite–sillimanite and sillimanite zones, it is not clear that the distinction is valid. On the basis of a reevaluation of phase relations modelled in KMnFMASH and KFMASH pseudosections, kyanite and andalusite-bearing rocks of the Chinese Altai orogen record, respectively, the typical burial and exhumation history of the terrane. Mineral assemblages distributed through the various zones reflect a mix of portions of the ambient PT array and the effects of evolving PT conditions. The comparatively low-T biotite, garnet and staurolite zones mostly preserve kyanite-type peak assemblages that only experienced minor changes during exhumation. Rocks in the comparatively high-T sillimanite and garnet–cordierite zones are dominated by mineral assemblages of a transitional sillimanite type, having formed by the extensive modification of earlier higher pressure assemblages during exhumation. Only rocks in the intermediate-T kyanite and probably some lower sillimanite zones were clearly recrystallized by late stage andalusite metamorphism, producing the staurolite–andalusite and andalusite–sillimanite zones. This andalusite metamorphism could not reach an equilibrium state because of limited fluid availability.  相似文献   

9.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade.  相似文献   

10.
Using relevant geothermobarometric methods, PT-data were collected for the reconstruction of the metamorphic evolution of 34 eclogite samples taken from small lenses and boudins within the ultrahigh-pressure (UHP) metamorphic coesite-bearing Brossasco-Isasca Unit (BIU) of the Dora-Maira Massif. The mineral phases used (clinopyroxene, garnet, phengite), or growth zones thereof, were identified as being coexistent for different stages of metamorphism on the basis of careful petrographic studies. Of several published geothermobarometers, the garnet–clinopyroxene thermometer of Powell [Powell, R., 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: the garnet–clinopyroxene geothermometer revisited. J. Metamorph. Geol., 3, pp. 231–243.] combined with the garnet–clinopyroxene–phengite barometer after Waters and Martin [Waters, D., Martin, H.N., 1993. The garnet–clinopyroxene–phengite barometer. Terra Abstr., 5, pp. 410–411.] was chosen here, because it provided the most reliable results. Nevertheless, the scatter of PT-data points for the prograde (stage I), peak metamorphic (stage II), and retrograde (stage III) development of the eclogites is still considerable. Among the many possible reasons for this inconsistency discussed, a partial lack of equilibration of some of the eclogites during their metamorphic history should be taken into account. Despite the data scatter, an average PT-path could be estimated, which includes the following coordinates: for stage I: 15 kbar/500°C; 25 kbar/570°C; 32 kbar/650°C; for stage II: 36 kbar/720°C; and for stage III: 24 kbar/680°C and 14 kbar/620°C. This is in fair agreement with PT-paths derived earlier for other rock types of the BIU on the basis of other geothermobarometers.  相似文献   

11.
A garnet–biotite–Al2SiO5–quartz (GBAQ) geobarometer was empirically calibrated using more than 700 natural metapelites with a broad compositional range of garnet and biotite under P–T conditions of 450–950°C and 1–17 kbar. In the calibration, activity models of garnet and biotite identical to those in the garnet–biotite (GB) geothermometer of Holdaway [American Mineralogist 2000, 85: 881–892] were used. Therefore, the GBAQ geobarometer and the GB geothermometer can be simultaneously applied to iteratively estimate metamorphic P–T conditions. Successful applications of the GBAQ geobarometer to natural metapelites certify its validity. Most importantly, when plagioclase is absent or CaO components in garnet and/or plagioclase are deficient, this geobarometer may prove useful for estimating metamorphic pressures. The random error of the present GBAQ geobarometer is inferred to be around ±1.8 kbar. An electronic spreadsheet is available as Table S4 to apply the GBAQ geobarometer in combination with the GB geothermometer.  相似文献   

12.
Jian-Jun Yang   《Lithos》2003,70(3-4):359-379
A garnet–pyroxene rock containing abundant Ti-clinohumite (ca. 40 vol.%) occurs along with eclogites as small blocks in quartzo-feldsparthic gneiss in the southern end of the Chinese Su-Lu ultrahigh-pressure (UHP) metamorphic terrane. It consists of three aggregates: (1) Ti-clinohumite-dominated aggregate with interstitial garnet and pyroxene, (2) garnet+pyroxene aggregate with Ti-clinohumite inclusions, and (3) Ti-clinohumite-free aggregate dominated by garnet. Apatite, phlogopite, zircon, hematite, pentlandite, and an unknown Ni-Fe-volatile-Si (NFVS) mineral, which is replaced by Ni-greenalite, occur as accessories. Serpentine is the major secondary mineral. Garnet (Prp63.9–64.6Alm25.8–26.9Grs1.4–7.9Uva0.5–7.6Sps1.0) in all three aggregates is pyrope-rich with very low grossular component, with that in the aggregate (2) most enriched in Cr (Cr2O3=2.55 wt.%). Orthopyroxene is depleted in Al (Al2O3=0.16 wt.% in the cores) and Ca (CaO=0.06–0.09 wt.% in the cores), with XMg (Mg/(Mg+Fe)) values at ca. 0.900. Clinopyroxene is chromian diopside with Fe3+≥Fe2+. Matrix clinopyroxene has a lower XMg (0.862) than that (0.887) included in Ti-clinohumite. The rock contains modest amount of heavy rare earth elements (HREE) (10 to 12×C1 chondrite), with significant enrichment in Cr, Co, Ni, V, Sr, and light rare earth elements (LREE) (22 to 33×C1 chondrite). The clinopyroxene is very enriched in Cr (Cr2O3 is up to 2.09 wt.% in the cores) and Sr (ca. 350 ppm) and LREE (CeN/YbN=157.7). Ti-clinohumite is enriched in Ni (1981 ppm), Co (123 ppm), and Nb (85 ppm).

While it is possible to enrich ultramafites in incompatible elements in a subducted slab, the high Al, Fe, Ti, and low Si, Ca, and Na contents in the Ti-clinohumite rock are difficult to account for by crustal metasomatism of an ultramafite. On the other hand, the similarity in major and trace element compositions and their systematic variations between the Ti-clinohumite-garnet-pyroxene rock of this study and those of Mg-metasomatised Fe–Ti gabbros reported in the literature suggest that crustal metasomatism occurred in a gabbroic protolith, which resulted in addition of Cr, Co, Ni, and Mg and removal of Si, Ca, Na, Al, and Fe. This implies that the rock was in contact with an ultramafite at low pressure. During subsequent subduction, the metagabbro was thrust into the country gneiss, where gneiss-derived hydrous fluids caused enrichment of Sr and LREE in recrystallised clinopyroxene. P–T estimates for the high-pressure assemblage are ca. 4.2 GPa and ca. 760 °C, compatible with those for the eclogites and gneisses in this terrane. It is possible that the Ti-clinohumite-garnet-pyroxene rock and associated eclogites represent remnants of former oceanic crust that was subducted to a great depth.  相似文献   


13.
The Central Zone of the Limpopo Belt (South Africa) underwent high-grade metamorphism at 2.7–2.5 and 2.03 Ga. Quartz-rich, garnet-, cordierite-, biotite- and orthoamphibole-bearing, feldspar-free gneisses from the western Central Zone reached granulite-facies conditions (800 °C at 8–10 kbar) followed by decompression. Garnet from one such sample shows significant zonation in trace elements but little zonation in major elements. Zoning patterns suggest that the early prograde breakdown of REE-rich accessory phases contributed to the garnet trace element budget. Monazite from the sample yields a SHRIMP weighted mean 207Pb–206Pb age of 2028 ± 3 Ma, indistinguishable from a SHRIMP zircon age of 2022 ± 11 Ma previously measured on metamorphic overgrowths on 2.69 Ga igneous zircon cores. New zircon and monazite formed before, or at, the metamorphic peak, and occur as inclusions in garnet. Monazite appears to have formed through the breakdown of early allanite ± xenotime ± apatite. Trace element zoning patterns in garnet and the age of accessory phases are most consistent with a single tectonometamorphic event at 2.03 Ga.

The plagioclase and K-feldspar-free composition of the garnet–cordierite–orthoamphibole gneisses requires open system processes such as intense hydrothermal alteration of protoliths or advanced chemical weathering. In the studied sample, the 2.69 Ga igneous zircons show a prominent negative Eu anomaly, suggesting equilibrium with plagioclase, or plagioclase fractionation in the precursor magma. In contrast, the other minerals either show small negative (2.03 Ga monazite), no (2.02 Ga zircon and garnet) or positive Eu anomalies (orthoamphibole). This suggests that the unusual bulk compositions of these rocks were set in after 2.69 Ga but before the peak of the 2.03 Ga event, most probably while the protoliths resided at shallow or surficial crustal levels.  相似文献   


14.
Abstract A garnet–hornblende Fe–Mg exchange geothermometer has been calibrated against the garnet–clinopyroxene geothermometer of Ellis & Green (1979) using data on coexisting garnet + hornblende + clinopyroxene in amphibolite and granulite facies metamorphic assemblages. Data for the Fe–Mg exchange reaction between garnet and hornblende have been fitted to the equation. In KD=Δ (XCa,g) where KD is the Fe–Mg distribution coefficient, using a robust regression approach, giving a thermometer of the form: with very satisfactory agreement between garnet–hornblende and garnet–clinopyroxene temperatures. The thermometer is applicable below about 850°C to rocks with Mn-poor garnet and common hornblende of widely varying chemistry metamorphosed at low aO2. Application of the garnet–hornblende geothermometer to Dalradian garnet amphibolites gives temperatures in good agreement with those predicted by pelite petrogenetic grids, ranging from 520°C for the lower garnet zone to 565–610°C for the staurolite to kyanite zones. These results suggest that systematic errors introduced by closure temperature problems in the application of the garnet–clinopyroxene geothermometer to the ‘calibration’data set are not serious. Application to ‘eclogitic’garnet amphibolites suggests that garnet and hornblende seldom attain Fe–Mg exchange equilibrium in these rocks. Quartzo-feldspathic and mafic schists of the Pelona Schist on Sierra Pelona, Southern California, were metamorphosed under high pressure greenschist, epidote–amphibolite and (oligoclase) amphibolite facies beneath the Vincent Thrust at pressures deduced to be 10±1 kbar using the phengite geobarometer, and 8–9kbar using the jadeite content of clinopyroxene in equilibrium with oligoclase and quartz. Application of the garnet–hornblende thermometer gives temperatures ranging from about 480°C at the garnet isograd through 570°C at the oligoclase isograd to a maximum of 620–650°C near the thrust. Inverted thermal gradients beneath the Vincent Thrust were in the range 170 to 250°C per km close to the thrust.  相似文献   

15.
An assemblage consisting of corundum, sapphirine, spinel, cordierite, garnet, biotite and bronzite is described from the Messina area of the Limpopo Mobile Belt, and consideration given to its petrogenesis. Various geothermometers and geobarometers have been applied in an attempt to determine the temperatures and pressures of metamorphism.
A former coexistence of garnet and corundum is suggested to have developed during the earliest high pressure phase of the metamorphism, where temperatures exceeded 800°C and pressures as high as 10kbar may have been experienced. Subsequently, continuous retrograding reactions from medium pressure granulite facies at about 800°C and 8kbar towards amphibolite facies generated spinel, cordierite, sapphirine and possibly also bronzite. The most notable reaction was probably of the form: garnet + corundum = cordierite + sapphirine + spinel.  相似文献   

16.
T. H. Green  P. L. Hellman 《Lithos》1982,15(4):253-266
The Fe---Mg exchange reaction between coexisting garnet and phengite has been studied by reacting a natural phengite (mg = 67) in the presence of quartz and water at pressures of 20–35 kb and temperatures of 800–1000°C. Compositions of coexisting garnet and mica indicate a linear relation between both the InKD((Fe/Mg) garnet/(Fe/Mg) phengite) and temperature, and InKD and pressure in the above P.T range. This Fe---Mg exchange reaction between garnet and phengite is shown to be dependent on the Ca-content of the garnet, and on the mg number of the bulk composition. These two composition effects have been studied by usin phengitic mica mixes with mg numbers of 23 and 46, and by using a synthetic basaltic composition. The overall results allow broad empirical calibration of separate geothermometers for pelitic and basaltic systems, respectively. However, because of non-ideality in the exchange reaction, this geothermometer should not be used in any practical application outside the composition ranges studied. Also, careful consideration of the presence of Fe3+ in phengite must be made. If the Fe3+ content of the natural phengite is unknown, then the temperatures obtained will be maximum temperatures only.  相似文献   

17.
The garnet-cordierite zone, the highest-grade zone of the Ryoke metamorphic rocks in the Yanai district, SW Japan, is defined by the coexistence of garnet and cordierite in pelitic rocks. Three assemblages in this zone are studied in detail, i.e. spinel + cordierite + biotite, garnet + cordierite + biotite and garnet + biotite, all of which contain quartz, K-feldspar and plagioclase. The Mg/(Fe + Mg) in the coexisting minerals decreases in the following order: cordierite, biotite, garnet and spinel. Two facts described below are inconsistent with the paragenetic relation in the K2OFeOMgOAl2O3SiO2H2O (KFMASH) system in terms of an isophysical variation. First, garnet and biotite in the last assemblage have Mg/(Fe + Mg) higher than those in the second. Second, the first two assemblages are described by the reaction,
while they occur in a single outcrop. The addition of MnO, ZnO and TiO2 to the system can resolve the inconsistencies as follows. The assemblage garnet + biotite can consist of garnet and biotite higher in Mg/(Fe + Mg) than those in garnet + cordierite + biotite as long as they are enriched in spessartine and depleted in Al, respectively. The assemblage garnet + cordierite + biotite becomes stable relative to spinel + cordierite + biotite with increasing spessartine content or decreasing gahnite content and the Ti content of biotite. The constituent minerals of the assemblages, spinel + cordierite + biotite and garnet + cordierite + biotite, preserve several reaction microstructures indicative of prograde reactions,
and
together with retrograde reactions,
and
This suggests that the pressure-temperature path of the rocks includes an isobaric heating and an isobaric or decompressional cooling. The high-grade areas consisting of the K-feldspar-cordierite zone, sillimanite-K-feldspar zone and garnet-cordierite zone have prograde paths involving isobaric heating and show a southwards increase in pressure with a thermal maximum in the middle. These high-grade zones are closely associated with the gneissose granitic rocks, suggesting that the Ryoke metamorphism, one of the typical low-pressure type, is caused by the heat supply from the syn-tectonic granitic rocks that emplaced at the middle level of the crust. Received: 22 August 1997 / Accepted: 11 May 1998  相似文献   

18.
Using the experimental data on Fe–Mg exchange between orthopyroxene and biotite of Fonarev & Konilov (1986), an orthopyroxene–biotite geothermometer is developed. The thermometer is corrected for mixing of Ti and Al in octahedral sites in biotite and also for non-ideal mixing of Fe and Mg in orthopyroxene. The thermometer is applied to several amphibolite–granulite transition facies and granulite facies rocks and also to mantle xenoliths. It yields consistent results in rocks of widely varying bulk composition, and highly magnesian mantle xenoliths. This thermometer removes the difficulty of estimating temperature in garnet-free rocks in high-grade terrains and also provides independent estimates of temperature in garnet-bearing assemblages.  相似文献   

19.
Garnet–melt trace element partitioning experiments were performed in the system FeO–CaO–MgO–Al2O3–SiO2 (FCMAS) at 3 GPa and 1540°C, aimed specifically at studying the effect of garnet Fe2+ content on partition coefficients (DGrt/Melt). DGrt/Melt, measured by SIMS, for trivalent elements entering the garnet X-site show a small but significant dependence on garnet almandine content. This dependence is rationalised using the lattice strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454], which describes partitioning of an element i with radius ri and valency Z in terms of three parameters: the effective radius of the site r0(Z), the strain-free partition coefficient D0(Z) for a cation with radius r0(Z), and the apparent compressibility of the garnet X-site given by its Young's modulus EX(Z). Combination of these results with data in Fe-free systems [Van Westrenen, W., Blundy, J.D., Wood, B.J., 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 84, 838–847] and crystal structure data for spessartine, andradite, and uvarovite, leads to the following equations for r0(3+) and EX(3+) as a function of garnet composition (X) and pressure (P):
r0(3+) [Å]=0.930XPy+0.993XGr+0.916XAlm+0.946XSpes+1.05(XAnd+XUv)−0.005(P [GPa]−3.0)(±0.005 Å)
EX(3+) [GPa]=3.5×1012(1.38+r0(3+) [Å])−26.7(±30 GPa)
Accuracy of these equations is shown by application to the existing garnet–melt partitioning database, covering a wide range of P and T conditions (1.8 GPa<P<5.0 GPa; 975°C<T<1640°C). DGrt/Melt for all 3+ elements entering the X-site (REE, Sc and Y) are predicted to within 10–40% at given P, T, and X, when DGrt/Melt for just one of these elements is known. In the absence of such knowledge, relative element fractionation (e.g. DSmGrt/Melt/DNdGrt/Melt) can be predicted. As an example, we predict that during partial melting of garnet peridotite, group A eclogite, and garnet pyroxenite, r0(3+) for garnets ranges from 0.939±0.005 to 0.953±0.009 Å. These values are consistently smaller than the ionic radius of the heaviest REE, Lu. The above equations quantify the crystal-chemical controls on garnet–melt partitioning for the REE, Y and Sc. As such, they represent a major advance en route to predicting DGrt/Melt for these elements as a function of P, T and X.  相似文献   

20.
V. Mathavan  G. W. A. R. Fernando   《Lithos》2001,59(4):217-232
Grossular–wollastonite–scapolite calc–silicate granulites from Maligawila in the Buttala klippe, which form part of the overthrusted rocks of the Highland Complex of Sri Lanka, preserve a number of spectacular coronas and replacement textures that could be effectively used to infer their P–T–fluid history. These textures include coronas of garnet, garnet–quartz, and garnet–quartz–calcite at the grain boundaries of wollastonite, scapolite, and calcite as well as calcite–plagioclase and calcite–quartz symplectites or finer grains after scapolite and wollastonite respectively. Other textures include a double rind of coronal scapolite and coronal garnet between matrix garnet and calcite. The reactions that produced these coronas and replacement textures, except those involving clinopyroxene, are modelled in the CaO–Al2O3–SiO2–CO2 system using the reduced activities. Calculated examples of TXCO2 and PXCO2 projections indicate that the peak metamorphic temperature of about 900–875 °C at a pressure of 9 kbar and the peak metamorphic fluid composition is constrained to be low in XCO2 (0.1<XCO2<0.30). Interpretation of the textural features on the basis of the partial grids revealed that the calc–silicate granulites underwent high-temperature isobaric cooling, from about 900–875 °C to a temperature below 675 °C, following the peak metamorphism. The late-stage cooling was accompanied by an influx of hydrous fluids. The calc–silicate granulites provide evidence for high-temperature isobaric cooling in the meta-sediments of the Highland Complex, earlier considered by some workers to be confined exclusively to the meta-igneous rocks. The coronal scapolite may have formed under open-system metasomatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号