首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctive-use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water-delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.  相似文献   

2.
This paper deals with water pumping cost minimization, in a confined infinite aquifer, proposing an alternate pulsed pumping schedule. The transient flow analysis is conducted for two wells with equal pumping rates. Specifically, two pumping schedules are analytically compared. In the first case, well users pump simultaneously, and in the second one they cooperate so that they pump alternately. This paper proves that the proposed alternate pumping schedule works as a stabilizer, reducing the high hydraulic drawdowns values, regardless of the aquifer characteristics. Moreover, pumping alternately is better in terms of pumping cost, compared to simultaneous pumping, though benefit become negligible as distance between wells becomes large. Two simplified equations are proposed, one to find the difference of the hydraulic drawdowns between the two pumping schedules and the other one to find the economic benefit of each well from cooperation. The equations are finally applied to a number of cases and their results are compared to the results obtained from an algorithm created to calculate the hydraulic drawdowns and the pumping cost, using the Theis equation. The results can be very useful in irrigation scheduling, as they can be applied to systems of well users/farmers, to reduce pumping cost.  相似文献   

3.
The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW.  相似文献   

4.
A suction side sample collector (SSSC) is a contrivance installed hydraulically ahead of the intake port of a pumping device. This paper describes construction and operational details of SSSCs fitted to a submersible pump with packer for use in a 6-inch cased borehole, an air lift pump with packer for use in a 1-inch or 2.5-inch cased borehole, a bladder pump for use in a casing of 2-inch or greater diameter, and a jet pump with packer for use in a 2-inch cased borehole.
Each form of SSSC has been thoroughly tested in ground water quality sampling for volatile organic chemicals. Comparative data for samples collected with the SSSCs and conventional sample collecting gear are presented. The SSSC is demonstrated to be superior to other methods of collecting volatile organic chemical samples owing to its freedom from contamination by the pump delivery line and to its mode of collecting the sample from a position in the well remote from disturbance by the pumping technique.
SSSCs are conveniently decontaminated, easily transported, and can be used to deliver samples to the laboratory while still at formation pressure. The air-lift pumps, described in this paper for use with SSSCs in 1- and 2.5-inch casings, have pumping capacities greater than obtained by other methods that can operate in these small casings. Discharge rates of up to 2 gpm are routinely achieved with the 1-inch model and higher rates are common With the 2.5-inch model. The use of packers with these pumps reduces the time needed to replace the water in the casing with fresh water from the formation.  相似文献   

5.
In this article, alternate pumping is studied as a means used to reduce the salinity concentration in coastal aquifers, pumped using a system of wells. This approach has been applied to a hypothetical confined coastal aquifer. Flow has been modeled, using SEAWAT. Two strategies are proposed based on cooperative game theory, to promote alternate pumping. In both strategies an external player will compensate the users that will pump during an unpopular pumping period. In the first strategy it is supposed that this external player aims at protecting a critical well, e.g. a municipal well, reducing its maximum salinity concentration by pumping alternately. In the second strategy proposed, the target is to reduce the overall salinity of the water pumped by the wells. In applying the cooperative game theory, the Shapley value is used to distribute the benefits of cooperation between the players (well users), according to their marginal contribution. Overall, well users can reduce sea water intrusion by cooperatively changing their pumping time schedules. The game theoretical model developed is a useful tool to promote cooperation toward this direction. The methods applied in the hypothetical aquifer, can be tested in actual aquifers to reduce sea water intrusion.  相似文献   

6.
《水文科学杂志》2013,58(2):352-361
Abstract

A real-life problem involving pumping of groundwater from a series of existing wells along a river flood plain underlain with geologically saline water is examined within a conceptual framework. Unplanned pumping results in upconing of saline water. Therefore, it is necessary to determine optimal locations of fixed capacity pumping wells in space and time from a set of pre-selected candidate wells that minimize total salinity concentration in space and time. The nonlinear, non-convex, combinatorial problem involving zero—one decision variables is solved in a simulation—optimization (S/O) framework. Optimization is accomplished by using simulated annealing (SA)—a search algorithm. The computational burden is primarily managed by replacing the numerical model with a surrogate simulator—artificial neural network (ANN). The computational burden is further reduced through intuitive algorithmic guidance. The model results suggest that the skimming wells must be operated from optimal locations such that they are staggered in space and time to obtain least saline water.  相似文献   

7.
 A vast array of techniques have been developed and applied to optimal operation of large-scale multireservoir systems. Researchers continue to be challenged by the highly complex, stochastic, nonlinear, and high dimensional nature of this dynamic optimization problem. An optimal control model is presented which incorporates chance-constraints on system state variables that assure satisfaction of operational restrictions under specified levels of reliability. The chance-constrained optimal control (CCOC) model is tested on a four-reservoir case study, and its performance assessed based on various quantitative and qualitative criteria, including maintenance of acceptable levels of risk and provision of risk-benefit trade-off information. The concepts of reliability, resiliency and vulnerability are utilized to characterize operating policies generated by the algorithm. CCOC is recommended for operational guidance of large-scale multireservoir systems due to its robustness, flexibility, modest computational requirements, and ability to include risk considerations directly impacting the choice of operational schemes.  相似文献   

8.
Researchers have found that obtaining optimal solutions for groundwater resource‐planning problems, while simultaneously considering time‐varying pumping rates, is a challenging task. This study integrates an artificial neural network (ANN) and constrained differential dynamic programming (CDDP) as simulation‐optimization model, called ANN‐CDDP. Optimal solutions for a groundwater resource‐planning problem are determined while simultaneously considering time‐varying pumping rates. A trained ANN is used as the transition function to predict ground water table under variable pumping conditions. The results show that the ANN‐CDDP reduces computational time by as much as 94·5% when compared to the time required by the conventional model. The proposed optimization model saves a considerable amount of computational time for solving large‐scale problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Classical optimization methodologies based on mathematical theories have been developed for the solution of various constrained environmental design problems. Numerical models have been widely used to represent an environmental system accurately. The use of methodologies such as artificial neural networks (ANNs), which approximate the complicated behaviour and response of physical systems, allows the optimization of a large number of case scenarios with different set of constraints within a short period of time, whereas the corresponding simulation time using a numerical model would be prohibitive. In this paper, a combination of an ANN with a differential evolution algorithm is proposed to replace the classical finite‐element numerical model in water resources management problems. The objective of the optimization problem is to determine the optimal operational strategy for the productive pumping wells located in the northern part of Rhodes Island in Greece, to cover the water demand and maintain the water table at certain levels. The conclusions of this study show that the use of ANN as an approximation model could (a) significantly reduce the computational burden associated with the accurate simulation of complex physical systems and (b) provide solutions very close to the optimal ones for various constrained environmental design problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Aquifers show troubling signs of irreversible depletion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. One strategy to sustain the groundwater supply is to recharge aquifers artificially with reclaimed water or stormwater via managed aquifer recharge and recovery (MAR) systems. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data‐driven, real‐time control. This paper presents a laboratory scale proof‐of‐concept study that demonstrates the capability of a real‐time, simulation‐based control optimization algorithm to ease the operational challenges of MAR systems. Central to the algorithm is a model that simulates water flow and transport of dissolved chemical constituents in the aquifer. The algorithm compensates for model parameter uncertainty by continually collecting data from a network of sensors embedded within the aquifer. At regular intervals the sensor data is fed into an inversion algorithm, which calibrates the uncertain parameters and generates the initial conditions required to model the system behavior. The calibrated model is then incorporated into a genetic algorithm that executes simulations and determines the best management action, for example, the optimal pumping policy for current aquifer management goals. Experiments to calibrate and validate the simulation‐optimization algorithm were conducted in a small two‐dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. Results from initial experiments validated the feasibility of the approach and suggested that our system could improve the operation of full‐scale MAR facilities.  相似文献   

11.
Three cases of widespread sea fog in Lunenburg Bay, Nova Scotia were used to evaluate the suitability of operational regional GEM forecast fields for inferring advection fog occurrences. Verification scores suggest that the objective analyses contain significant departures from observations that will affect model accuracy, given the sensitivity of fog condensation microphysics. Dew point depression (ES) scores show larger differences compared to temperature, with both influenced by surface characteristics. For objective analyses and GEM forecasts ES < 2 C seems to match fog satellite images better than the physical threshold ES ≤ 0 C. In addition the GEM forecasts show a general tendency towards drier conditions near the surface, therefore reconfiguring GEM to better represent condensation in the boundary layer is proposed.  相似文献   

12.
A novel hybrid methodology is introduced in this paper for the optimal solution of the groundwater management problem. The problem to be addressed is the optimal determination and operation of a predefined number of wells out of a priori known set of potential wells with fixed locations to minimize the pumping cost of utilizing a two‐dimensional (2D) confined aquifer under steady‐state flow condition. The solution to this problem should satisfy a downstream demand, a lower/upper bound on the pumping rates, and a lower/upper bound on the water level drawdown in the wells. The problem is solved by hybridizing a genetic algorithm (GA) which suggests the candidate configurations for the operational wells and a hybrid linear programming (LP‐LP) approach with the duty of finding the optimal operation policy of the candidate wells defined by their pumping rates. Two different codings, namely binary and integer codings, are used for the GA and their performances are compared. The ability of the proposed hybrid method is tested against two benchmark problems: (1) finding the optimal configuration and pumping rates of a predefined number of wells out of potential wells and (2) finding the optimal number, configuration and pumping rates of the operating wells out of potential wells and the results are presented and compared with the available ones showing superior efficiency and effectiveness of the proposed method.  相似文献   

13.
Abstract

This paper presents a methodology for the design and optimization of artificial recharge-pumping systems (ARPS). The objective of ARPS is to provide a maximum abstraction rate through artificial recharge, while meeting two operational constraints: (a) the influences of the system operation on groundwater levels should be no more than 25 mm in the vicinity of the system; and (b) the travel time of the infiltrated water from the recharge pond to the pumping wells should be more than 60 days. The combined use of a 3-dimensional generic groundwater simulation model with particle tracking analyses has identified the two best ARPS systems: the circular pond system and the island system. By coupling the simulation model with linear and mixed integer programming optimization, the optimal pumping scheme (number, locations and rates of the pumping wells) has been determined. An unsteady state model has been used to simulate the response of the operation of the two systems under natural seasonal variations. The implementation aspects of the two systems are compared.  相似文献   

14.
张康  施袁锋 《地震工程学报》2018,40(6):1378-1383,1400
结合随机状态空间方程和极大似然法的期望最大EM算法进行了结构运行模态分析。EM算法以迭代的方式更新模型参数,进而得到状态空间方程的极大似然估计。模态参数通过状态空间模型参数求得。应用了平方根卡尔曼滤波方程提高EM迭代过程的计算稳健性。考虑到状态空间方程中激励噪声和测量噪声的相关性,建立了更完善的参数化状态空间方程。通过数值模拟对比分析,结果表明:考虑噪声相关性的EM算法比假设噪声不相关的EM算法具有更高的识别精度,EM算法在采样数据较少的情况下比随机子空间方法更有优势。  相似文献   

15.
Optimized system to improve pumping rate stability during aquifer tests   总被引:1,自引:0,他引:1  
Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Substantial uncertainties in the flow rate across the borehole-formation interface can be induced by dynamic head losses, caused by rapid changes in borehole water levels early in an aquifer test. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system which employs commonly available components (including a datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flowmeters), is inexpensive, highly mobile, and easily set up. It optimizes the flow rate at the borehole-formation interface, making it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. No modifications to the control system were required, although a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically significant, constant flow rate with time. The range in pumping variability (95% confidence interval) was from +/- 2.58 x 10(-4) L/sec to +/- 9.07 x 10(-4) L/sec, across a wide range in field and aquifer conditions.  相似文献   

16.
A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist?The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model.Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.  相似文献   

17.
This study proposes a groundwater resources management model in which the solution is performed through a combined simulation-optimization model. A modular three-dimensional finite difference groundwater flow model, MODFLOW is used as the simulation model. This model is then combined with a Harmony Search (HS) optimization algorithm which is based on the musical process of searching for a perfect state of harmony. The performance of the proposed HS based management model is tested on three separate groundwater management problems: (i) maximization of total pumping from an aquifer (steady-state); (ii) minimization of the total pumping cost to satisfy the given demand (steady-state); and (iii) minimization of the pumping cost to satisfy the given demand for multiple management periods (transient). The sensitivity of HS algorithm is evaluated by performing a sensitivity analysis which aims to determine the impact of related solution parameters on convergence behavior. The results show that HS yields nearly same or better solutions than the previous solution methods and may be used to solve management problems in groundwater modeling.  相似文献   

18.
M W Kawecki 《Ground water》2001,39(4):631-633
Two practically applicable pumping patterns for wells are: (1) continuous pumping at a sustainable constant rate; and (2) pumping at a sustainable constant rate for a fixed period every day (cyclic pumping). Theoretical analysis shows that with the cyclic pumping pattern the pump can be run at a higher rate than with continuous pumping. However continuous pumping at the maximum continuously sustainable constant rate produces considerably more water. If the objective is to produce as much water as possible, it is important to use a pump designed for running at the maximum continuously sustainable rate.  相似文献   

19.
ABSTRACT

A Mixed-Integer Nonlinear Programming (MINLP) model is formulated and solved in this study to optimize environmental sustainability of flood control, drainage, and irrigation (FCDI) projects in the deltaic regions of Bangladesh. The model optimizes the value of integrated resource benefit, a dimensionless variable defined to measure the environmental sustainability based on the water, agricultural and ecological resources, with a set of project interventions being the major drivers. The resource benefits were evaluated with the help of several indicators, such as flood, navigability, salinity, waterlogging, cropping intensity, land loss and vegetation. The solution of MINLP model provided optimal values of the decision variables, which are the quantities of project interventions (e.g. length and height of dike, number of sluices and drainage inlets, lengths of drainage canals, erosion protection and afforestation works). The approach and the MINLP formulation presented in this study can be used for any real-life FCDI project improvements.  相似文献   

20.
Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM–LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号