首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The groundwater of the Korba plain represents major water resources in Tunisia. The Plio‐Quaternary unconfined aquifer of the Cap‐Bon (north‐east Tunisia) is subject to the intensive agricultural activities and high groundwater pumping rates due to the increasing of the groundwater extraction. The degradation of the groundwater quality is characterized by the salinization phenomena. Groundwater were sampled and analysed for physic‐chemical parameters: Ca2+, Mg2+, Na+, K+, Cl, SO42‐, HCO3, NO3, pH, electrical conductivity (EC), and the temperature (T°). The hydrochemical analysis is coupled with the calculation of the saturation indexes (SI gypsum, SI halite, SI calcite and SI dolomite), ionic derivation and with the ion correlations compared to chloride concentrations: Na+/ Cl, Ca2+/ Cl and Mg2+/ Cl ratios. Seawater fractions in the groundwater were calculated using the chloride concentration. Those processes can be used as indicators of seawater intrusion progression. EC methods were also conducted to obtain new informations on the spatial scales and dynamics of the fresh water–seawater interface of coastal groundwater exchange. The mixing zone between freshwater and saltwater was clearly observed from the EC profile in the investigated area where a strong increase in EC with depth was observed, corresponding to the freshwater and saltwater interface. Results of hydrochemical study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with cations exchange. These results, together with EC investigation, indicated that the groundwater is affected by seawater intrusion and is still major actor as a source of salinization of the groundwater in Korba coastal plain. Further isotopic and hydrological investigations will be necessary to identify and more understood the underlying mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper analyzes the results of a theoretical simulation of sea water intrusion and its dynamics. The assignment of hydrochemical facies identifies whether the aquifer is in the phase of sea water intrusion or freshening, indicating the status of the aquifer in terms of the advance or regression of the saline front. A new multi-rectangular diagram is proposed that aids interpretation of these important processes through the representation and evolution of hydrochemical facies (hydrochemical facies evolution diagram, HFE-D). As an example, the HEF-D is applied to an alluvial aquifer in the Vinaroz-Peñíscola Plain (Spain), where Ca-Cl facies characterize the sea water intrusion phase, while Na-MixHCO3/MixSO4 facies characterize a freshening stage.  相似文献   

3.
Xiaohu Wen  Meina Diao  De Wang  Meng Gao 《水文研究》2012,26(15):2322-2332
Groundwater salinization has become a crucial environmental problem worldwide and is considered the most widespread form of groundwater contamination in the coastal zone. In this study, a hydrochemical investigation was conducted in the eastern coastal shallow aquifer of Laizhou Bay to identify the hydrochemical characteristics and the salinity of groundwater using ionic ratios, deficit or excess of each ions, saturation indices and factor analysis. The results indicate that groundwater in the study area showed wide ranges and high standard deviations for most of hydrochemical parameters and can be classified into two hydrochemical facies, Ca2+‐Mg2+‐Cl facies and Na+‐Cl facies. The ionic ratio, deficit or excess of each ions and SI were applied to evaluate hydrochemical processes. The results obtained indicate that the salinization processes in the coastal zones were inverse cation exchange, dissolution of calcite and dolomite, and intensive agricultural practices. Factor analysis shows that three factors were determined (Factor 1: TDS, EC, Cl, Mg2+, Na+, K+, Ca2+ and SO42‐; Factor 2: HCO3 and pH; Factor 3: NO3 and pH), representing the signature of seawater intrusion in the coastal zone, weathering of water–soil/rock interaction, and nitrate contamination, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A variety of multivariate statistical procedures were applied to three separate sets of quantitative analytical data from a coastal aquifer located in Malia, Crete (Greece), in order to identify the major hydrochemical processes affecting the groundwater quality and to investigate the evolution of groundwater composition in three different sampling periods. Two of them were carried out on October 2001 and September 2002 at the end of the dry season and the third on April 2002 at the end of the wet period. Two factors were found that explained major hydrochemical processes in the aquifer. These factors reveal the existence of an intensive intrusion of seawater and mechanisms of nitrate contamination of groundwater. Bivariate plots of the scores of the two main factors showed that the seawater intrusion and nitrate pollution processes are maintained through three surveys and that the process of nitrate pollution increases from the first to the second dry survey. Q‐mode factor analysis and discriminant analysis of the three sampling periods clearly showed a seasonal variation of the whole chemistry of groundwater samples. This seasonal variation can be attributed to the freshwater recharge and seawater intrusion that affect the groundwater quality of the Malia aquifer. The results of trend surface analysis are in agreement with those of factor analysis. Moreover, the fourth‐order trend surfaces of EC, Cl? and NO3? showed that the salinization process is more intensive during the first dry period and the spatial variation of NO3? maxima plumes are strongly affected by the flow regime of the Malia aquifer. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The coastal aquifers and inland waters of the Long Xuyen Quadrangle and Ca Mau Peninsula of southern Vietnam have been significantly impacted by sea water intrusion (SI) as a result of recent anthropogenic activities. This study identified the evolution and spatial distribution of hydrochemical conditions in coastal aquifers at this region using Hydrochemical Facies Evolution Diagram (HFE-D) and Geographical Information System mapping. Hydraulic heads and water chemistry were measured at 31 observation wells in four layered aquifers during dry and rainy seasons in early (2005), and more recent (2016), stages of agricultural development. Hydrochemical facies associated with intrusion or freshening stages were mapped in each aquifer after assigning mixing index values to each facies. The position of groundwater freshening and SI phases differed in Holocene, Upper Pleistocene, Middle Pleistocene, and Lower Pleistocene aquifers. The geographic position of freshening and intrusion fronts differ in dry and rainy seasons, and shifted after 11 years of groundwater abstraction in all four aquifers. The spatial and temporal differences in hydrochemical facies distributions according to HFE-D reflect the relative impact of SI in the four aquifers. The study results provide a better understanding of the evolution of groundwater quality associated with SI in a peninsular coastal aquifer system, and highlight the need for improving groundwater quality and management in similar coastal regions.  相似文献   

6.
Groundwater is often a critical source of water for municipal, industrial and agricultural uses, especially in arid and semi‐arid environments. Songnen Plain, located in the central part of northeast China, is such a region, it being an important productive base of commodity grain in this country. In the past two decades, groundwater quality in the region, especially salinization, has deteriorated under natural changes and human activities, and has become a crucial factor restricting sustainable eco‐environmental and socio‐economic development. In this paper, The Taoer River catchment, situated in the middle of the region, was selected as the study area for the groundwater quality evolution study using hydrochemistry and stable isotopes to obtain a better understanding of the system. Fifty‐two groundwater samples were collected with systematic design during the low‐water and high‐water periods in 2003. A series of comprehensive quality data interpretations, e.g. statistics, ratios of ions and Piper diagrams, together with stable isotope data, have been used to gain an insight into the spatial and temporal variations and evolution laws of groundwater hydrochemistry. The following main hydrochemical processes were identified as controlling the water quality of the groundwater system: weathering–dissolution, evaporation–condensation, ion‐exchange reactions and groundwater salinization. This latter process, salinization, is the most important process and is caused by the leaching of superficial or near‐surface salts from the saline–alkaline soil into shallow groundwater. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
G. Stamatis  K. Voudouris 《水文研究》2003,17(12):2327-2345
In this paper the groundwater quality of the southern part of Korinthos region (north‐east Peloponnese) is discussed. The geology is characterized by a thick sequence of Neogene marls alternating with sandstones, overlain by superficial Quaternary deposits. The latter consist of a mixture of loose materials such as conglomerates, marly sandstones, sands and clay to silty sands. The area is crossed by a fault system parallel to the coastline, and the Quaternary sediments have formed extended Tyrrhenian marine terraces. Two aquifers have been identified in the area. The first is unconfined and occurs within the Quaternary sediments whereas the other is a deep confined aquifer occurring within the underlying Neogene marl series. Analysis of hydrochemical evolution over the past 30 years has indicated significant deterioration of quality owing to seawater intrusion and nitrate pollution. The various sources of pollution have rendered, to a large extent, shallow groundwater unsuitable not only for potable water supply but also for irrigation purposes. However, this is not the case for the deeper confined aquifer. Statistical analysis was used to explore the evolution of salinization during the years 1968 and 1998. In view of the alarming conditions caused by the documented groundwater quality deterioration, the need for integrated water resources management is stressed to maintain the socio‐economic growth of the region studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The study focuses on the characterization of the groundwater salinity on the Nador coastal aquifer (Algeria). The groundwater quality has undergone serious deterioration due to overexploitation. Groundwater samplings were carried out in high and low waters in 2013, in order to study the evolution of groundwater hydrochemistry from the recharge to the coastal area. Different kinds of statistical analysis were made in order to identify the main hydrogeochemical processes occurring in the aquifer and to discriminate between different groups of groundwater. These statistical methods provide a better understanding of the aquifer hydrochem-istry, and put in evidence a hydrochemical classification of wells, showing that the area with higher salinity is located close to the coast, in the first two kilometers, where the salinity gradually increases as one approaches the seaside and suggests the groundwater salinization by sea-water intrusion.  相似文献   

9.
Abstract

The Wadi Al Ayn plain is a coastal system on the eastern coast of Cap Bon in northeastern Tunisia. The area is known for its intensive agriculture, which is based mainly on groundwater exploitation. The aim of this study is to identify the sources of groundwater salinization in the Wadi Al Ayn aquifer system and deduce the processes that drive the mineralization. Surface water and groundwater samples were taken and analysed for major ions and stable isotopes. The geochemical data were used to characterize and classify the water samples based on a variety of ion plots and diagrams. Stable isotopes are useful tools to help us understand recharge processes and to differentiate between salinity origins. The oilfield brines infiltrated from the sandy bed of Wadi Al Ayn comprise the main source of groundwater salinization in the central part of the plain, while seawater intrusion is mainly responsible for the increased salinity in the groundwater of the coastal part of the plain (at Daroufa).

Citation Chekirbane, A., Tsujimura, M., Kawachi, A., Isoda, H., Tarhouni, J., and Benalaya, A., 2013. Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon, Tunisia. Hydrological Sciences Journal, 58 (5), 1097–1110.  相似文献   

10.
This study explores linkages between the microbial composition and hydrochemical variables of pristine groundwater to identify active redox conditions and processes. Two confined aquifers underlying the city of Qianjiang in the Jianghan Plain in China were selected for this study, having different recharge sources and strong hydrochemical gradients. Typical methods for establishing redox processes according to threshold concentration criteria for geochemical parameters suggest iron or sulphate reduction processes. High‐throughput 16S rRNA sequencing was used to obtain diversity and taxonomic information on microbial communities. Instead of revealing iron‐ and sulphate‐reducing bacteria, salt‐ and alkali‐tolerant bacteria, such as the phylum Firmicutes and the class Gammaproteobacteria, and in particular, the family Bacillaceae, were dominant in the downstream groundwater of the first aquifer that had high ion concentrations caused by the dissolution of calcite and dolomite; meanwhile, the heterotrophic microaerophilic families Comamonadaceae and Rhodocyclaceae prevailed in the upstream groundwater of the first aquifer. Sulphate‐reducing bacteria were extremely abundant in the upstream groundwater of the second aquifer, as the SO42? concentration was especially high. Methanogens and methanotrophs were predominant in the downstream groundwater of the second aquifer even though the concentration of SO42? was much higher than 0.5 mg L?1. The microbial communities, together with the geochemical parameters, indicated that the upstream region of the first aquifer was suboxic, that Fe(III) and Mn(IV) reductions were not the main redox processes in the downstream groundwater of the first aquifer with high Fe and Mn concentrations, and that the redox processes in the upstream and downstream regions of the second confined aquifer were SO42? reduction and methanogenesis, respectively. This study expands understanding of the linkages between microbial communities and hydrogeochemistry in pristine groundwaters and provides more evidence for identifying active redox conditions and processes.  相似文献   

11.
The groundwater hydrochemical behaviour of the Langueyú creek basin (Argentina) has been evaluated through a systematic survey, followed by application of hydrological and chemometric multivariate techniques. Ten physicochemical parameters were determined in groundwater samples collected from 26 wells during four sampling campaigns (June 2010; October 2010; February 2011 and June 2011), originating a tridimensional experimental dataset X . Univariate statistical and graphical hydrochemical tools (contour maps and Piper diagrams) applied to individual campaigns, allowed to reach some preliminary conclusions. However, a best visualization of the aquifer behaviour was achieved by applying Principal Component Analysis (MA‐PCA) and N‐way PCA procedures, Parallel Factor Analysis and Tucker3. Results were consistent with two‐term models, being Tucker3 [2 2 1] the most adequate, explaining a large amount of the dataset variance (50.7%) with a low complexity. The first Tucker3 [1 1 1] interaction (38.2% of variance) is related with (i) calcium/magnesium versus sodium/potassium ion exchange processes; (ii) an increase of ionic concentration and (iii) a decrease of nitrate pollution, all processes along the direction of the groundwater flow. The second [2 2 1] interaction (12.5% of variance), accounts for the predominant role played by conductivity, bicarbonate and magnesium in the dataset. The seasonal variations are closely related to concentration/dilution phenomena originated by the variations of the phreatic levels, although this point will require additional sampling to establish a definitive hydrochemical model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The aquifer of Nador has suffered significant salinization due to seawater intrusion. It was strongly exploited during the 1980s and 1990s. A piezometric analysis in April 2012 showed the piezometric level to lie at 0 m a.s.l. over the plain; as a result, this aquifer is highly sensitive to the marine intrusion with an electrical conductivity of the groundwater in of exceeds 2500 μS/cm and so there are no abstractions for irrigation or drinking purpose from these sectors. The geoelectric study also showed the lateral variation in the electrical resistivity for two moments separated in time by more than 45 years. The fall in resistivity may be due to the encroachment of seawater into previously freshwater zones and/or infiltration during the era of pumped abstractions downstream. The resistivity surveys reveal two distinct sectors: the saturated aquifer in brackish and saltwater having resistivity values to 36-10 Ωm, which extends nearly 1600 m inland.  相似文献   

13.
We examined the fire‐induced changes in groundwater recharge rate. This aspect is particularly important in the case of large forested areas growing over a coastal aquifer affected by saltwater intrusion. In the Ravenna coastal area (Italy), pine forests grow on coastal dune belts, overlying a sandy unconfined aquifer, which is strongly affected by marine ingression. Three groundwater profiles across the forest and perpendicular to the coastline were monitored for groundwater level, physical, and chemical parameters. The aims were to define groundwater quality, recharge rate, freshwater volume, and highlight change, which occurred after a forest fire with reference to pre‐fire conditions. Analytical solutions based on Darcy Law and the Dupuit Equation were applied to calculate unconfined flow and compare recharge rates among the profiles. The estimated recharge rates increased in the partially and completely burnt areas (219 and 511 mm year?1, respectively) compared with the pristine pine forest area (73 mm year?1). Although pre‐fire conditions were similar in all monitored profiles, a post‐fire decrease in salinity was observed across the burnt forest, along with an increase in infiltration and freshwater lens thickness. This was attributed to decrease canopy interception and evapotranspiration caused by vegetation absence after the fire. This research provided an example of positive forest fire feedback on the quantity and quality of fresh groundwater resources in a lowland coastal aquifer affected by saltwater intrusion, with limited availability of freshwater resources. The fire provided an opportunity to evaluate a new forest management approach and consider the restoration and promotion of native dune herbaceous vegetation.  相似文献   

14.
15.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

16.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

17.
Marine intrusion is the most serious problem facing the coastal Jorf shallow aquifer, located in south‐eastern Tunisia on the Mediterranean Sea. Jorf Aquifer is intensively exploited to supply the growing needs of agriculture and domestic sectors. This work proposes a multidisciplinary investigation, involving hydro‐geochemical, geoelectrical survey and geostatistical techniques for modelling the saltwater intrusion. For this purpose, 36 water samples were conducted and analysed. Electric conductivity, pH, total dissolved solids and major ions were measured and analysed. Pie and Durov Diagrams, Q‐mode hierarchical cluster and geostatistical analysis were considered to identify the main groundwater mineralization processes. Results revealed that the Na‐Cl‐Ca‐SO4 is the dominant water type suggesting that dissolution of halite and gypsum was the main mineralization source of groundwater in the central and southern part of study area. However, saltwater intrusion was shown to control groundwater quality essentially in coastal areas. Variographic analyses were used to select the variographic model that best fits the spatial development of apparent resistivity. Kriged apparent resistivity profiles showed an abnormal decrease of resistivity values in the coastal zone, implying highly saline water because of seawater intrusion. Apparent resistivity values also decrease considerably in the faulted areas, suggesting a contribution of faults to seawater intrusion. Finally, saltwater mixing ratio was computed for each sample, and a refined seawater intrusion map was developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Lahcen Zouhri 《水文研究》2010,24(10):1308-1317
An electrical prospecting survey is conducted in the Rharb basin, a semi‐arid region in the southern part of the Rifean Cordillera (Morocco) to delineate characteristics of the aquifer and the groundwater affected by the marine intrusion related to Atlantic Ocean. Analysis and interpretations of electrical soundings, bi‐logarithmic diagrams and the geoelectrical sections highlight a monolayer aquifer in the southern part, a multilayer system in the northern part of the Rharb basin and lenticular semi‐permeable formations. Several electrical layers have been deduced from the analysis of bi‐logarithmic diagrams: resistant superficial level (R0), conducting superficial level (C0), resistant level (R), intermediary resistant level (R′), conducting level (Cp) and intermediary layer of resistivity (AT). Spatial distribution of the resistivity deduced from the interpretation of apparent resistivity maps (AB = 400 and 1000 m) and the decreasing of resistivity values (35–10 Ωm), in particular in the coastal zone show that this heterogeneity is related to several anomalies identified in the coastal area, which result from hydraulic and geological processes: (i) heterogeneous hydraulic conductivity in particular in the southern part of the Rharb; (ii) lateral facies and synsedimentary faulting and (iii) the relationship between the electrical conductivity and chloride concentration of groundwater shows that salinity is the most important factor controlling resistivity. The distribution of fresh/salt‐water zones and their variations in space along geoelectrical sections are established through converting subsurface depth‐resistivity models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

Integrated two-dimensional electrical resistivity imaging (ERI) and hydrochemical surveys were used to investigate the groundwater alluvial aquifer in Kuala Langat, Malaysia. The study in the Langat basin considered the thickness of the aquifer, the depth of the bedrock, the regions influenced by seawater intrusion, and the monitoring of water levels. The resistivity imaging results show that the upper layer consists of clay, while the second layer is an aquifer whose thickness varies mostly in the range of 10–30 m, and in some cases extends to 40 m. The bedrock depth varies from 30 to 65 m. The chemical analyses were carried out on groundwater samples from nine boreholes collected between 2008 and 2012. The analyses indicate that the total dissolved solids (TDS) exceed 1000 mg L-1 near the coastal area and are often less than 500 mg L-1 further inland. The ERI and hydrochemical analyses reveal that groundwater in the study area, especially towards the coast, is a mixture of brackish and fresh waters.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

20.
Physical barriers are widely used to control seawater intrusion (SWI). Amongst different kinds of physical barriers, mixed physical barriers (MPBs) are shown to be an effective approach to prevent SWI. However, the system may hinder the discharge of fresh groundwater and the removal of residual saltwater trapped in the inland aquifers of MPBs. Herein, using the validated numerical model, for the first time, we investigated the dynamics of residual saltwater and groundwater discharge after the installation of MPBs. For examining the applicability of MPB and its response to structural variations and hydraulic gradient, the comparison with traditional physical barriers and sensitivity analysis was also carried out. The MPB increased the mixing area of freshwater and saltwater at the beginning of the removal process, resulting in the reduction of the saltwater wedge length (RL) by 74.6% and the removal of total salt mass (RM) by 62.6% within the 4% of the total removal time. Meanwhile, the groundwater discharge (Q') rose rapidly after a sharp decline from 100% to 40% in the first stage. As the residual saltwater wedge was retreated, the mixing intensity and removal efficiency decreased substantially in the second stage. Similarly, Q' raised with a declining rate at this stage. The removal efficiency was positively correlated with wall depth and hydraulic gradient and there were optimal distance of the middle spacing and height of lower dam to reach the highest efficiency. The groundwater discharge reduced monotonously with the increase of dam height and wall depth as well as the decrease of barrier spacing and hydraulic gradient. Under certain conditions, the efficiency of MPB in removing residual saltwater could be 40%–100% and 0%–56% higher than that of traditional subsurface dam and cutoff wall, respectively. The laboratory scale conclusions provide valuable physical insight for the real field applications regarding dynamic mechanism and regularity. These findings will always help decision makers choose proper engineering measures and protect groundwater resources in coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号