首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This study projected the future rainfall (2046–2065 and 2081–2100) for the North China Plain (NCP) using two stochastic statistical downscaling models, the non-homogeneous hidden Markov model and the generalized linear model for daily climate time series, conditioned by the large-scale atmospheric predictors from six general circulation models for three emission scenarios (A1B, A2 and B1). The results indicated that the annual total rainfall, the extreme daily rainfall and the maximum length of consecutive wet/dry days would decline, while the number of annual rainfall days would slightly increase (correspondingly rainfall intensity would decrease) in the NCP, in comparison with the base period (1961–2010). Moreover, the summer monsoon rainfall, which accounted for 50–75 % of the total annual rainfalls in NCP, was projected to decrease in the latter half of twenty-first century. The spatial patterns of change showed generally north–south gradients with relatively larger magnitude decrease in the northern NCP and less decrease (or even slightly increase) in the southern NCP. This could result in decline of the annual runoff by ?5.5 % (A1B), ?3.3 % (A2) and ?4.1 % (B1) for 2046–2065 and ?5.3 % (A1B), ?4.6 % (A2) and ?1.9 % (B1) decrease for 2081–2100. These rainfall changes, combined with the warming temperature, could lead to drier catchment soil profiles and further reduce runoff potential, would hence provide valuable references for the water availability and related climate change adaption in the NCP.  相似文献   

2.
The frequency and magnitude of extreme meteorological or hydrological events such as floods and droughts in China have been influenced by global climate change. The water problem due to increasing frequency and magnitude of extreme events in the humid areas has gained great attention in recent years. However, the main challenge in the evaluation of climate change impact on extreme events is that large uncertainty could exist. Therefore, this paper first aims to model possible impacts of climate change on regional extreme precipitation (indicated by 24‐h design rainfall depth) at seven rainfall gauge stations in the Qiantang River Basin, East China. The Long Ashton Research Station‐Weather Generator is adopted to downscale the global projections obtained from general circulation models (GCMs) to regional climate data at site scale. The weather generator is also checked for its performance through three approaches, namely Kolmogorov–Smirnov test, comparison of L‐moment statistics and 24‐h design rainfall depths. Future 24‐h design rainfall depths at seven stations are estimated using Pearson Type III distribution and L‐moment approach. Second, uncertainty caused by three GCMs under various greenhouse gas emission scenarios for the future periods 2020s (2011–2030), 2055s (2046–2065) and 2090s (2080–2099) is investigated. The final results show that 24‐h design rainfall depth increases in most stations under the three GCMs and emission scenarios. However, there are large uncertainties involved in the estimations of 24‐h design rainfall depths at seven stations because of GCM, emission scenario and other uncertainty sources. At Hangzhou Station, a relative change of ?16% to 113% can be observed in 100y design rainfall depths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Communities are facing severe water stress due to the rapid development of agriculture and industry, climate change, as well as population growth. Climate variability has a big impact on runoff variation and it is important to understand these hydrological responses. Using a water balance model, monthly discharges of 21 climatically different catchments in China were simulated. Sensitivities of runoff to climate change were investigated by adopting hypothetical climate scenarios. Results indicate that the water balance model performs well for monthly discharge simulations of climatically different catchments with Nash–Sutcliffe coefficients >65 % and relative errors falling in the range of ±5 %. In general, runoff in arid north China are more sensitive to climate change than those in humid south China. A 1 °C rise in temperature would probably lead to 1.2–4.4 % decreases in runoff. A decrease in precipitation of 10 % would result in 9.4–17.4 % of decreases in runoff. It is essential to consider the implications of climate change in future water resources management.  相似文献   

4.
Hydrologic modelling has been applied to assess the impacts of projected climate change within three study areas in the Peace, Campbell and Columbia River watersheds of British Columbia, Canada. These study areas include interior nival (two sites) and coastal hybrid nival–pluvial (one site) hydro‐climatic regimes. Projections were based on a suite of eight global climate models driven by three emission scenarios to project potential climate responses for the 2050s period (2041–2070). Climate projections were statistically downscaled and used to drive a macro‐scale hydrology model at high spatial resolution. This methodology covers a large range of potential future climates for British Columbia and explicitly addresses both emissions and global climate model uncertainty in the final hydrologic projections. Snow water equivalent is projected to decline throughout the Peace and Campbell and at low elevations within the Columbia. At high elevations within the Columbia, snow water equivalent is projected to increase with increased winter precipitation. Streamflow projections indicate timing shifts in all three watersheds, predominantly because of changes in the dynamics of snow accumulation and melt. The coastal hybrid site shows the largest sensitivity, shifting to more rainfall‐dominated system by mid‐century. The two interior sites are projected to retain the characteristics of a nival regime by mid‐century, although streamflow‐timing shifts result from increased mid‐winter rainfall and snowmelt, and earlier freshet onset. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
S. Rehana  P. P. Mujumdar 《水文研究》2013,27(20):2918-2933
This paper presents an approach to model the expected impacts of climate change on irrigation water demand in a reservoir command area. A statistical downscaling model and an evapotranspiration model are used with a general circulation model (GCM) output to predict the anticipated change in the monthly irrigation water requirement of a crop. Specifically, we quantify the likely changes in irrigation water demands at a location in the command area, as a response to the projected changes in precipitation and evapotranspiration at that location. Statistical downscaling with a canonical correlation analysis is carried out to develop the future scenarios of meteorological variables (rainfall, relative humidity (RH), wind speed (U2), radiation, maximum (Tmax) and minimum (Tmin) temperatures) starting with simulations provided by a GCM for a specified emission scenario. The medium resolution Model for Interdisciplinary Research on Climate GCM is used with the A1B scenario, to assess the likely changes in irrigation demands for paddy, sugarcane, permanent garden and semidry crops over the command area of Bhadra reservoir, India. Results from the downscaling model suggest that the monthly rainfall is likely to increase in the reservoir command area. RH, Tmax and Tmin are also projected to increase with small changes in U2. Consequently, the reference evapotranspiration, modeled by the Penman–Monteith equation, is predicted to increase. The irrigation requirements are assessed on monthly scale at nine selected locations encompassing the Bhadra reservoir command area. The irrigation requirements are projected to increase, in most cases, suggesting that the effect of projected increase in rainfall on the irrigation demands is offset by the effect due to projected increase/change in other meteorological variables (viz., Tmax and Tmin, solar radiation, RH and U2). The irrigation demand assessment study carried out at a river basin will be useful for future irrigation management systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

7.
The hydrological response of catchments with different rainfall patterns was assessed to understand the availability of blue and green water and the impacts of changing precipitation and temperature in the Ethiopian Highlands. Monthly discharge of three small-scale catchments was simulated, calibrated, and validated with a dataset of more than 30 years. Different temperature and precipitation scenarios were used to compare the hydrological responses in all three catchments. Results indicate that runoff reacts disproportionately strongly to precipitation and temperature changes: a 24% increase in precipitation led to a 50% increase in average annual runoff, and an average annual rainfall–runoff ratio that was 20% higher. An increase in temperature led to an increase of evapotranspiration and resulted in a decrease in the rainfall–runoff ratio. But a comparison of combined results with different climate change scenarios shows that downstream stakeholders can expect a higher share of available blue water in the future.  相似文献   

8.
This study aims at developing a generalized understanding of the sensitivity of soil moisture patterns in reconstructed watersheds, in northern Alberta, to changes in the projected precipitation in the twenty‐first century. The GSDW model is applied to three watersheds using climate scenarios generated using daily precipitation and air temperature output from a global climate model (CGCM3), under A2 and B1 emission scenarios, to simulate the corresponding soil moisture. CGCM3 results indicate an increase in the mean annual temperature for Fort McMurray, Alberta of 3·3 (A2) and 2·4 °C (B1), and an increase in the predicted annual precipitation of 34% (A2) and 8·6% with A2 and B1 emission scenarios, respectively. The GSDW model is used, along with onsite historical data, to downscale A2 and B1 emission scenarios and to evaluate the future hydrological performance of the designated watersheds with respect to soil moisture deficit and actual evapotranspiration using a probabilistic framework. The forecasted maximum soil moisture deficit values based on A2 and B1 emission scenarios are expected to decrease compared to those based on the current, largely because of the expected increase in precipitation rates, associated with an expected increase in evapotranspiration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

A semi-distributed hydrological model of the Niger River above and including the Inner Delta is developed. GCM-related uncertainty in climate change impacts are investigated using seven GCMs for a 2°C increase in global mean temperature, the hypothesised threshold of “dangerous” climate change. Declines in precipitation predominate, although some GCMs project increases for some sub-catchments, whilst PET increases for all scenarios. Inter-GCM uncertainty in projected precipitation is three to five times that of PET. With the exception of one GCM (HadGEM1), which projects a very small increase (3.9%), river inflows to the Delta decline. There is considerable uncertainty in the magnitude of these reductions, ranging from 0.8% (HadCM3) to 52.7% (IPSL). Whilst flood extent for HadGEM1 increases (mean annual peak +1405 km2/+10.2%), for other GCMs it declines. These declines range from almost negligible changes to a 7903 km2 (57.3%) reduction in the mean annual peak.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   

10.
The impact and uncertainty of climate change on the hydrology of the Mara River basin (MRB) was assessed. Sixteen global circulation models (GCMs) were evaluated, and five were selected for the assessment of future climate scenarios in the basin. Observed rainfall and temperature data for the control period (1961–1990) were combined with expected GCMs output using the delta and direct statistical downscaling methods and three greenhouse gas emission scenarios (A1B, A2 and B1). Uncertainties of climate change were addressed through compare and contrast of results across diverse GCMs, future climate scenarios and the two downscaling methods. Both methods produced a relatively similar annual rainfall amount, but their monthly and daily pattern showed considerable differences. The relative advantages and disadvantages of implementing one method over the other were also explored. The hydrologic impact of climate change in the basin was assessed using Soil and Water Assessment Tool. The model was calibrated and validated with observed data in the control period with (Nash–Sutcliff efficiency, coefficient of determination) results of (calibration: 0.68, 0.69) and (validation: 0.43, 0.44) at Mara Mines. Results have shown a statistically significant increase in flow volume of the Mara River flow at Mara Mines for the year 2046–2065 and 2081–2100. With due attention to the limitations, findings of this study have a wider application for water resources sustainability analysis in the MRB in the face of uncertainties due to climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrological models are recognized as valid scientific tools to study water quantity and quality and provide support for the integrated management and planning of water resources at different scales. In common with many catchments in the Mediterranean, the study catchment has many problems such as the increasing gap between water demand and supply, water quality deterioration, scarcity of available data, lack of measurements and specific information. The application of hydrological models to investigate hydrological processes in this type of catchments is of particular relevance for water planning strategies to address the possible impact of climate and land use changes on water resources. The distributed catchment scale model (DiCaSM) was selected to study the impact of climate and land use changes on the hydrological cycle and the water balance components in the Apulia region, southern Italy, specifically in the Candelaro catchment (1780 km2). The results obtained from this investigation proved the ability of DiCaSM to quantify the different components of the catchment water balance and to successfully simulate the stream flows. In addition, the model was run with the climate change scenarios for southern Italy, i.e. reduced winter rainfall by 5–10%, reduced summer rainfall by 15–20%, winter temperature rise by 1·25–1·5 °C and summer temperature rise by 1·5–1·75 °C. The results indicated that by 2050, groundwater recharge in the Candelaro catchment would decrease by 21–31% and stream flows by 16–23%. The model results also showed that the projected durum wheat yield up to 2050 is likely to decrease between 2·2% and 10·4% due to the future reduction in rainfall and increase in temperature. In the current study, the reliability of the DiCaSM was assessed when applied to the Candelaro catchment; those parameters that may cause uncertainty in model output were investigated using a generalized likelihood uncertainty estimation (GLUE) methodology. The results showed that DiCaSM provided a small level of uncertainty and subsequently, a higher confidence level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Space–time variability of precipitation plays a key role as driver of many environmental processes. The objective of this study is to evaluate a spatiotemporal (STG) Neyman–Scott Rectangular Pulses (NSRP) generator over orographically complex terrain for statistical downscaling of climate models. Data from 145 rain gauges over a 5760-km2 area of Cyprus for 1980–2010 were used for this study. The STG was evaluated for its capacity to reproduce basic rainfall statistical properties, spatial intermittency, and extremes. The results were compared with a multi-single site NRSP generator (MSG). The STG performed well in terms of average annual rainfall (+1.5 % in comparison with the 1980–2010 observations), but does not capture spatial intermittency over the study area and extremes well. Daily events above 50 mm were underestimated by 61 %. The MSG produced a similar error (+1.1 %) in terms of average annual rainfall, while the daily extremes (>50-mm) were underestimated by 11 %. A gridding scheme based on scaling coefficients was used to interpolate the MSG data. Projections of three Regional Climate Models, downscaled by MSG, indicate a 1.5–12 % decrease in the mean annual rainfall over Cyprus for 2020–2050. Furthermore, the number of extremes (>50-mm) for the 145 stations is projected to change between ?24 and +2 % for the three models. The MSG modelling approach maintained the daily rainfall statistics at all grid cells, but cannot create spatially consistent daily precipitation maps, limiting its application to spatially disconnected applications. Further research is needed for the development of spatial non-stationary NRSP models.  相似文献   

13.
The aim of this study was to quantify climate change impact on future blue water (BW) and green water (GW) resources as well as the associated uncertainties for 4 subbasins of the Beninese part of the Niger River Basin. The outputs of 3 regional climate models (HIRHAM5, RCSM, and RCA4) under 2 emission scenarios (RCP4.5 and RCP8.5) were downscaled for the historical period (1976–2005) and for the future (2021–2050) using the Statistical DownScaling Model (SDSM). Comparison of climate variables between these 2 periods suggests that rainfall will increase (1.7% to 23.4%) for HIRHAM5 and RCSM under both RCPs but shows mixed trends (?8.5% to 17.3%) for RCA4. Mean temperature will also increase up to 0.48 °C for HIRHAM5 and RCSM but decrease for RCA4 up to ?0.37 °C. Driven by the downscaled climate data, future BW and GW were evaluated with hydrological models validated with streamflow and soil moisture, respectively. The results indicate that GW will increase in all the 4 investigated subbasins, whereas BW will only increase in one subbasin. The overall uncertainty associated with the evaluation of the future BW and GW was quantified through the computation of the interquartile range of the total number of model realizations (combinations of regional climate models and selected hydrological models) for each subbasin. The results show larger uncertainty for the quantification of BW than GW. To cope with the projected decrease in BW that could adversely impact the livelihoods and food security of the local population, recommendations for the development of adequate adaptation strategies are briefly discussed.  相似文献   

14.
Five downscaling techniques, namely the statistical downscaling model, the automated statistical downscaling method, the change factor (CF) method, the advanced CF method, the Weather generator (LarsWG5) method, are applied to the upstream basin of the Huaihe River. Changes in regional climate scenarios and hydrology variables are compared in future periods to investigate the uncertainty associated with the downscaling techniques. Paired-sample T test is applied to evaluation the significant of the difference of the means between the observed data and the downscaled data in the future. The Xinanjiang rainfall–runoff model is employed to simulate the rainfall–runoff relation. The results demonstrate that the downscaling techniques utilized herein predict an increased tendency in the future. The increases range of maximum temperature (Tmax) is between 3.7 and 4.7 °C until the time period of 2070–2099 (2080s). While, the increases range of minimum temperature (Tmin) is between 2.8 and 4.9 °C until 2080s. The research presented herein determined that there is an increase predicted for the peaks over threshold (discussed in the paper) and a decrease predicted for the peaks below the threshold (discussed in the paper) in the future, which illustrates that the temperature would rise gradually in the future. Precipitation changes are not as obvious as temperatures changes and tend to be influence by the season. Most downscaling techniques predict increases, and others indict decreases. The annual mean precipitation range changes between 3.2 and 53.3 %, and moreover, these changes vary from season to season.  相似文献   

15.
The continuous increase in the emission of greenhouse gases has resulted in global warming, and substantial changes in the global climate are expected by the end of the current century. The reductions in mass, volume, area and length of glaciers on the global scale are considered as clear signals of a warmer climate. The increased rate of melting under a warmer climate has resulted in the retreating of glaciers. On the long‐term scale, greater melting of glaciers during the coming years could lead to the depletion of available water resources and influence water flows in rivers. It is also very likely that such changes have occurred in Himalayan glaciers, but might have gone unnoticed or not studied in detail. The water resources of the Himalayan region may also be highly vulnerable to such climate changes, because more than 50% of the water resources of India are located in the various tributaries of the Ganges, Indus and the Brahmaputra river system, which are highly dependent on snow and glacier runoff. In the present study, the snowmelt model SNOWMOD has been used to simulate the melt runoff from a highly glacierized small basin for the summer season. The model simulated the distribution and volume of runoff with reasonably good accuracy. Based on a 2‐year simulation, it is found that, on average, the contributions of glacier melt and rainfall in the total runoff are 87% and 13% respectively. The impact of climate change on the monthly distribution of runoff and total summer runoff has been studied with respect to plausible scenarios of temperature and rainfall, both individually and in combined scenarios. The analysis included six temperature scenarios ranging between 0·5 and 3 °C, and four rainfall scenarios (?10%, ?5%, 5%, 10%). The combined scenarios were generated using temperature and rainfall scenarios. The combined scenarios represented a combination of warmer and drier and a combination of warmer and wetter conditions in the study area. The results indicate that, for the study basin, runoff increased linearly with increase in temperature and rainfall. For a temperature rise of 2 °C, the increase in summer streamflow is computed to be about 28%. Changes in rainfall by ±10% resulted in corresponding changes in streamflow by ±3·5%. For the range of climatic scenarios considered, the changes in runoff are more sensitive to changes in temperature, compared with rainfall, which is likely due to the major contribution of melt water in runoff. Such studies are needed for proper assessment of available water resources under a changing climate in the Himalayan region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Heavy rainfall events often occur in southern French Mediterranean regions during the autumn, leading to catastrophic flood events. A non-stationary peaks-over-threshold (POT) model with climatic covariates for these heavy rainfall events is developed herein. A regional sample of events exceeding the threshold of 100 mm/d is built using daily precipitation data recorded at 44 stations over the period 1958–2008. The POT model combines a Poisson distribution for the occurrence and a generalized Pareto distribution for the magnitude of the heavy rainfall events. The selected covariates are the seasonal occurrence of southern circulation patterns for the Poisson distribution parameter, and monthly air temperature for the generalized Pareto distribution scale parameter. According to the deviance test, the non-stationary model provides a better fit to the data than a classical stationary model. Such a model incorporating climatic covariates instead of time allows one to re-evaluate the risk of extreme precipitation on a monthly and seasonal basis, and can also be used with climate model outputs to produce future scenarios. Existing scenarios of the future changes projected for the covariates included in the model are tested to evaluate the possible future changes on extreme precipitation quantiles in the study area.

Editor Z.W. Kundzewicz; Associate editor K. Hamed

Citation Tramblay, Y., Neppel, L., Carreau, J., and Najib, K., 2013. Non-stationary frequency analysis of heavy rainfall events in southern France. Hydrological Sciences Journal, 58 (2), 280–294.  相似文献   

17.
ABSTRACT

The impact of climate change on hydrology and water salinity of a valuable coastal wetland (Anzali) in northern Iran is assessed using daily precipitation and temperature data from 19 models of Coupled Model Inter-comparison Project Phase 5. The daily data are transiently downscaled using the Long Ashton Research Station Weather Generator to three climatic stations. The temperature is projected to increase by +1.6, +1.9 and +2.7°C and precipitation to decrease by 10.4%, 12.8% and 12.2% under representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, respectively. The wetland hydrology and water salinity are assessed using the water balance approach and mixing equation, respectively. The upstream river flow modelled by the Soil and Water Assessment Tool is projected to reduce by up to 18%, leading to reductions in wetland volume (154 × 106 m3), area (57.47 km2) and depth (2.77 m) by 34%, 21.1% and 20.2%, respectively, under climate change, while the mean annual total dissolved solids (1675 mg/L) would increase by 49%. The reduced volume and raised salinity may affect the wetland ecology.  相似文献   

18.
Potential changes in glacier area, mass balance and runoff in the Yarkant River Basin (YRB) and Beida River Basin (BRB) are projected for the period from 2011 to 2050 employing the modified monthly degree‐day model forced by climate change projection. Future monthly air temperature and precipitation were derived from the simple average of 17, 16 and 17 General Circulation Model (GCM) projections following the A1B, A2 and B1 scenarios, respectively. These data were downscaled to each station employing the Delta method, which computes differences between current and future GCM simulations and adds these changes to observed time series. Model parameters calibrated with observations or results published in the literature between 1961 and 2006 were kept unchanged. Annual glacier runoff in YRB is projected to increase until 2050, and the total runoff over glacier area in 1970 is projected to increase by about 13%–35% during 2011–2050 relative to the average during 1961–2006. Annual glacier runoff and the total runoff over glacier area in 1970 in BRB is projected to increase initially and then to reach a tipping point during 2011–2030. There are prominent increases in summer, but only small increase in May and October of glacier runoff in YRB, and significant increases during late spring and early summer and significant decreases in July and late summer of glacier runoff in BRB. This study highlights the great differences among basins in their response to future climate warming. The specific runoff from areas exposed after glacier retreat relative to 1970 is projected to general increasing, which must be considered when evaluating the potential change of glacier runoff. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

A modelling study was undertaken to quantify effects that the climate likely to prevail in the 2050s might have on water quality in two contrasting UK rivers. In so doing, it pinpointed the extent to which time series of climate model output, for some variables derived following bias correction, are fit for purpose when used as a basis for projecting future water quality. Working at daily time step, the method involved linking regional climate model (HadRM3-PPE) projections, Future Flows Hydrology (rainfall–runoff modelling) and the QUESTOR river network water quality model. In the River Thames, the number of days when temperature, dissolved oxygen, biochemical oxygen demand and phytoplankton exceeded undesirable values (>25°C, <6 mg L?1, >4 mg L?1 and >0.03 mg L?1, respectively) was estimated to increase by 4.1–26.7 days per year. The changes do not reflect impacts of any possible change in land use or land management. In the River Ure, smaller increases in occurrence of undesirable water quality are likely to occur in the future (by 1.0–11.5 days per year) and some scenarios suggested no change. Results from 11 scenarios of the hydroclimatic inputs revealed considerable uncertainty around the levels of change, which prompted analysis of the sensitivity of the QUESTOR model to simulations of current climate and hydrology. Hydrological model errors were deemed of less significance than those associated with the derivation and downscaling of driving climatic variables (rainfall, air temperature and solar radiation). Errors associated with incomplete understanding of river water quality interactions with the aquatic ecosystem were found likely to be more substantial than those associated with hydrology, but less than those related to climate model inputs. These errors are largely a manifestation of uncertainty concerning the extent to which phytoplankton biomass is controlled by invertebrate grazers, particularly in mid-summer; and the degree to which this varies from year to year. The quality of data from climate models for generating flows and defining driving variables at the extremes of their distributions has been highlighted as the major source of uncertainty in water quality model outputs.
EDITOR A. Castellarin; ASSOCIATE EDITOR X. Fang  相似文献   

20.
Water resources are influenced by various factors such as weather, topography, geology, and environment. Therefore, there are many difficulties in evaluating and analyzing water resources for the future under climate change. In this paper, we consider climate, land cover and water demand as the most critical factors affecting change in future water resources. We subsequently introduce the procedures and methods employed to quantitatively evaluate the influence of each factor on the change in future water resources. In order to consider the change in land cover, we apply the Multi-Regression approach from the cellular automata-Markov Chain technique using two independent variables, temperature and rainfall. In order to estimate the variation of the future runoff due to climate change, the data of the SRES A2 climate change scenario were entered in the SLURP model to simulate a total of 70 years, 2021–2090, of future runoff in the Han River basin in Korea. However, since a significant amount of uncertainties are involved in predicting the future runoff due to climate change, 50 sets of daily precipitation data from the climate change scenario were generated and used for the SLURP model to forecast 50 sets of future daily runoff. This process was used to minimize the uncertainty that may occur when the prediction process is performed. For future water balance analysis, the future water demand was divided into low demand, medium demand and high demand categories. The three water demand scenarios and the 50 daily runoff scenarios were combined to form 150 sets of input data. The monthly water balance within the Han River basin was then calculated using this data and the Korean version of Water Evaluation and Planning System model. As a result, the future volume of water scarcity of the Han River basin was predicted to increase in the long term. It is mostly due to the monthly shift in the runoff characteristic, rather than the change in runoff volume resulting from climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号