首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite more than 40 yr of research attributing temporal changes in streambank erosion rates to subaerial processes, little quantitative information is available on the relationships between streambank erodibility (kd) and critical shear stress (τc) and the environmental conditions and processes that enhance streambank erosion potential. The study goal was to evaluate temporal changes in kd and τc from soil desiccation and freeze–thaw cycling. Soil erodibility and τc were measured monthly in situ using a multiangle, submerged jet test device. Soil moisture, temperature, and bulk density as well as precipitation, air temperature, and stream stage were measured continuously to determine changes in soil moisture content and state. Pairwise Mann–Whitney tests indicted kd was 2.9 and 2.1 times higher (p < 0.0065) during the winter (December–March) than in the spring/fall (April–May, October–November) and the summer (June–September), respectively. Regression analysis showed 80% of the variability in kd was explained by freeze–thaw cycling alone. Study results also indicated soil bulk density was highly influenced by winter weather conditions (r2 = 0.86): bulk density was inversely related to both soil water content and freeze–thaw cycling. Results showed that significant changes in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes. Water resource professionals should consider the implications of increased soil erodibility during the winter in the development of channel erosion models and stream restoration designs.  相似文献   

2.
This paper presents an analysis of critical thresholds for bedload transport based on field measurements conducted in two small, high gradient streams: the Rio Cordon (Italian Alps) and the Tres Arroyos (Chilean Andes). The threshold of incipient motion was identified by using marked particles displacement and both flood and flow competence approaches. The findings are expressed in terms of Shields parameter, dimensionless discharge, and specific stream power, and are used to identify the effects of relative grain size, relative depth, and bedform resistance. Overall, particle entrainment tends to be size selective, rather than exhibiting equal mobility, and the high values of dimensionless critical shear stress observed at both study sites confirm the additional roughness effects of step–pool morphologies that are very effective in reducing the bed shear stress and causing an apparent increase in critical shear stress.  相似文献   

3.
The role, function, and importance of large woody debris (LWD) in rivers depend strongly on environmental context and land use history. The coastal watersheds of central and northern Maine, northeastern U.S., are characterized by low gradients, moderate topography, and minimal influence of mass wasting processes, along with a history of intensive commercial timber harvest. In spite of the ecological importance of these rivers, which contain the last wild populations of Atlantic salmon (Salmo salar) in the U.S., we know little about LWD distribution, dynamics, and function in these systems. We conducted a cross-basin analysis in seven coastal Maine watersheds, documenting the size, frequency, volume, position, and orientation of LWD, as well as the association between LWD, pool formation, and sediment storage. In conjunction with these LWD surveys, we conducted extensive riparian vegetation surveys. We observed very low LWD frequencies and volumes across the 60 km of rivers surveyed. Frequency of LWD ≥ 20 cm diameter ranged from 15–50 pieces km− 1 and wood volumes were commonly < 10–20 m3 km− 1. Moreover, most of this wood was located in the immediate low-flow channel zone, was oriented parallel to flow, and failed to span the stream channel. As a result, pool formation associated with LWD is generally lacking and < 20% of the wood was associated with sediment storage. Low LWD volumes are consistent with the relatively young riparian stands we observed, with the large majority of trees < 20 cm DBH. These results strongly reflect the legacy of intensive timber harvest and land clearing and suggest that the frequency and distribution of LWD may be considerably less than presettlement and/or future desired conditions.  相似文献   

4.
Timothy P. Hanrahan   《Geomorphology》2007,86(3-4):529-536
While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwest region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bedform types at the pool–riffle scale. A bedform differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool–riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool–riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (χ2 = 57.5, df = 3, p < 0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at elevations greater than 80% of the difference in elevation between the nearest riffle crest and pool bottom. The analyses of bedform morphology will assist regional fish managers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.  相似文献   

5.
Predicting channel patterns   总被引:1,自引:0,他引:1  
The proposed distinction between meandering and braided river channel patterns, on the basis of bankfull specific stream power and bed material size, is analysed and rejected. Only by using regime-based estimates of channel widths (rather than actual widths) has discrimination been achieved, and it is argued that this procedure is unacceptable.An alternative is to explore the patterning processes underlying the marked pattern scatter on bankfull stream power/bed material size plots. Of the five sets of patterning processes, large-scale bedform development and stability is seen as especially important for meandering and braiding. For gravel-bed rivers, bedforms developed at around or above bankfull stage appear important for pattern generation, with braiding relating to higher excess shear stress and Froude number. There seems to be an upper threshold to both meandering and braiding which is achieved at extreme discharges and steep gradients, as on steep alluvial fans, rather than for the rivers with available flow data here considered. For sand-bed rivers with greater excess shear stress, the equivalent upper plane bed threshold may occur below bankfull, with bed material mobility and bedform modification occurring over a wider range of sub-bankfull discharges. Sand-bed channel margin outlines appear to be less perturbed by bedform effects than gravel bed planforms, and they may have naturally straight or sinuous planforms. Bedform relief may nevertheless lead to some being designated as braided when viewed at low flows.It is concluded that the use of a single-stage stream power measure and bed material size alone is unlikely to achieve meandering/braiding discrimination.  相似文献   

6.
Reach-scale channel geometry of mountain streams   总被引:3,自引:0,他引:3  
Ellen Wohl  David M. Merritt   《Geomorphology》2008,93(3-4):168-185
The basic patterns and processes of steep channels remain poorly known relative to lower-gradient channels. In this analysis, characteristics of step-pool, plane-bed, and pool-riffle channels are examined using a data set of 335 channel reaches from the western United States, Nepal, New Zealand, and Panama. We analyzed differences among the three channel types with respect to hydraulics, channel geometry, boundary roughness, and bedforms. Step-pool channels have significantly steeper gradients, coarser substrate, higher values of shear stress and stream power for a given discharge, and larger ratios of bedform amplitude/wavelength (H/L). Pool-riffle channels have greater width/depth ratios and relative grain submergence (R/D84) than the other channel types. Plane-bed channels tend to have intermediate values for most variables examined. Relative form submergence (R/H) is statistically similar for step-pool and pool-riffle channels. Despite the lesser relative grain submergence and greater bedform amplitude of step-pool channels, mean values of Darcy–Weisbach friction factor do not change in response to changes in relative grain submergence. These patterns suggest that adjustments along mountain streams effectively maximize resistance to flow and minimize downstream variability in resistance among the different channel types.  相似文献   

7.
Vishwas S. Kale   《Geomorphology》2007,85(3-4):306
The efficacy of extreme events is directly linked to the flood power and the total energy expended. The geomorphic effectiveness of floods is evaluated in terms of the distribution of stream power per unit boundary area (ω) over time, for three very large floods of the 20th Century in the Indian Peninsula. These floods stand out as outliers when compared with the peak floods per unit drainage area recorded elsewhere in the world. We used flood hydrographs and at-a-station hydraulic geometry equations, computed for the same gauging site or a nearby site, to construct approximately stream-power curves and to estimate the total energy expended by each flood. Critical unit stream power values necessary to entrain cobbles and boulders were estimated on the basis of empirical relationships for coarse sediment transport developed by Williams [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] in order to determine the geomorphological effectiveness of the floods. The estimates indicate that the minimum power per unit area values for all three floods were sufficiently high, and stream energy was above the threshold of boulder movement (90 W m− 2) for several tens of hours. The peak unit stream power values and the total energy expended during each flood were in the range of 290–325 W m− 2 and 65–160 × 106 J respectively. The average and peak flood powers were found to be higher or comparable to those estimated for extreme palaeo or modern floods on low-gradient, alluvial rivers.  相似文献   

8.
In this study, an attempt has been made to evaluate the temporal variations in specific stream power and the total energy available for geomorphic work during the monsoon season for the Tapi River, in central India. Continuous daily discharge data (1978–1990), hydraulic geometry equations and the relationship between discharge and water surface slope were used to compute the daily specific stream power (ω) for the Savkheda gauging site in the lower Tapi Basin. The total amount of energy generated by all the monsoon flows was estimated by integrating the area under the ω-graph derived for the monsoon season.The analyses of the 13-year daily discharge data reveal that the average and maximum ω values range from 4–20 W m− 2, and 22–964 W m− 2 respectively. Specific stream power duration curve derived for the site shows that for 25% of the time the power per unit area is > 10 W m− 2. Furthermore, unit stream power was found to be above the Williams' [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] threshold of pebble-movement (1.5 W m− 2), cobble-movement (16 W m− 2) and boulder-movement (90 W m− 2) for 71%, 15% and 2% of the time, respectively. Computations further indicate that the total amount of energy generated by the flows during the monsoon season is in the range of 37 MJ (deficit monsoon years) to 256 MJ (excess monsoon and/or flood years). Large floods have one-third share in the total monsoon energy expenditure. In the absence of appropriate data on the yearwise geomorphic effects, the geomorphic work was evaluated in terms of the total suspended sediment load transported. The total monsoon sediment load is strongly related to the total monsoon energy. The results of the study indicate that the average flow competence and capacity are remarkably higher during wetter monsoon seasons and flood years than during the shorter and drier monsoon seasons.The present analyses demonstrate that the flows are geomorphically effective for a greater part of the monsoon season, except during the deficient monsoon years, and there is little doubt that large-magnitude floods are effective agents of geomorphic change in monsoonal rivers.  相似文献   

9.
Quantitative regional assessments of streambed sedimentation and its likely causes are hampered because field investigations typically lack the requisite sample size, measurements, or precision for sound geomorphic and statistical interpretation. We adapted an index of relative bed stability (RBS) for data calculated from a national stream survey field protocol to enable general evaluation of bed stability and anthropogenic sedimentation in synoptic ecological surveys. RBS is the ratio of bed surface geometric mean particle diameter (Dgm) divided by estimated critical diameter (Dcbf) at bankfull flow, based on a modified Shield's criterion for incipient motion. Application of RBS to adequately depict bed stability in complex natural streams, however, has been limited because typical calculations of RBS do not explicitly account for reductions in bed shear stress that result from channel form roughness. We modified the index (RBS) to incorporate the reduction in bed shear stress available for sediment transport that results from the hydraulic resistance of large wood and longitudinal irregularities in channel dimensions (“form roughness”). Based on dimensional analysis, we derived an adjustment to bankfull shear stress by multiplying the bankfull hydraulic radius (Rbf) by the one-third power of the ratio of particle-derived resistance to total hydraulic resistance (Cp/Ct)1/3, where both resistances are empirically based calculations. We computed Cp using a Keulegan equation relating resistance to relative submergence of bed particles. We then derived an empirical equation to predict reach-scale hydraulic resistance Ct from thalweg mean depth, thalweg mean residual depth, and large wood volume based on field dye transit studies, in which total hydraulic resistance Ct was measured over a wide range of natural stream channel complexity, including manipulation of large wood volumes. We tested our estimates of Ct and RBS by applying them to data from a summer low flow probability sample of 104 wadeable stream reaches in the Coastal Ecoregion of Oregon and Washington, USA. Stream discharges calculated using these Ct estimates compared favorably with velocity–area measurements of discharge during summer low flow, and with the range of 1 to 2-year recurrence floods (scaled by drainage area) at U.S.Geological Survey gauged sites in the same region. Log [RBS] ranged from − 4.2 to + 0.98 in the survey region. Dgm ranged from silt to boulders, while estimated bankfull critical diameter, Dcbf, ranged from very fine gravel to large boulders. The median value of Dcbf (adjusted for form roughness influences) averaged 40% (inter quartile range 28 to 59%) of the unadjusted estimate Dcbf. Log[RBS] was consistently negatively related to human disturbances likely to produce excess sediment inputs or hydrologic alteration. Log [RBS] ranged from − 1.9 to + 0.5 in the streams within the lower quartile of human disturbance in their basin and riparian areas and was substantially lower (− 4.2 to − 1.1) in streams within the upper quartile of human disturbance. The synoptic survey methods and designs we used appear adequate to evaluate regional patterns in bed stability and sedimentation and their general relationship to human disturbances. Although the RBS concept also shows promise for evaluating sediment and bed stability in individual streams, our approach is relatively coarse, so site-specific assessments using these rapid field methods might prudently be confined to identifying severe cases of sedimentation or channel alteration. Greater confidence to discern subtle differences in site-specific assessments could be gained by calculating RBS using more precise field measurements of channel slope, bed particle size and bankfull dimensions, and by refining our adjustments for energy loss from channel form roughness.  相似文献   

10.
The relationship between geomorphological features and water geochemistry was studied for a group of mountainous rivers (from ~ 900 to ~ 2200 m a.s.l.) with similar geology and climate, in the Sierras Pampeanas of Córdoba (Argentina, 31° 30′, 32° 00′S, and 64° 30′, 65° 10′W). A multivariate approach was used to identify three morphological domains that describe the set of sampled rivers, namely “size” dominance, slope dominance, and drainage density dominance. The links between physicochemical and geomorphological variables show that “size” dominance is mostly related to major ions, conductivity, and pH, which tend to increase downstream. Slope dominance is associated with the total concentration of heavy metal (i.e., high heavy metal concentrations are associated with relatively flat areas with slightly acid to circumneutral pH, which promotes desorption). The drainage density dominance results in an association between well-drained catchments and low Cl concentration (i.e., preserving the chemical signature of atmospheric precipitation).  相似文献   

11.
Theoretical regime equations for mobile gravel-bed rivers with stable banks   总被引:2,自引:1,他引:2  
Robert G. Millar   《Geomorphology》2005,64(3-4):207-220
A system of rational regime equations is developed for gravel-bed rivers with stable banks using the optimality theory (OT). The optimality theory is based on the premise that equilibrium river geometry is characterised by an optimum configuration, defined here as maximum sediment-transport efficiency. Theoretical dimensionless equations are derived for width, depth, slope, width/depth ratio, and meandering–braiding transition. Independent dimensionless variables comprise discharge, sediment concentration, and relative bank strength, μ′, which is defined as the ratio of the critical shear stresses for the bank and bed sediments. Discharge exponents and general form of the equations agree well with previously developed empirical relations. Relative bank strength, μ′, is used to parameterise the influence of riparian vegetation on bank strength and is evaluated by calibrating against observed width/depth ratio. Once calibrated, the hydraulic geometry of natural gravel rivers is well described by the theoretical equations, including discrimination between meandering and braiding channels. The results provide strong support for the assumption that equilibrium or regime river behavior is equivalent to an optimal state and underline the importance of bank strength and sediment load as controls on hydraulic geometry.  相似文献   

12.
Sediment rating parameters and their implications: Yangtze River, China   总被引:4,自引:0,他引:4  
This study examines the characteristics of sediment rating parameters recorded at various gauging stations in the Yangtze Basin in relation to their controls. Our findings indicate that the parameters are associated with river channel morphology of the selected reaches. High b-values (> 1.600) and low log(a) values (< − 4.000) occur in the upper course of the steep rock-confined river, characterizing high unit stream power flows. Low b-values (< 0.900) and high log(a) values (> − 1.000) occur in the middle and lower Yangtze River associated with meandering reaches over low gradients, and can be taken to imply aggradation in these reaches with low stream power. Higher b-values (0.900–1.600) and lower log(a)-values (− 4.000 to − 1.000) characterize the reaches between Yichang and Xinchang, immediately below the Three Gorges. These values indicate channel erosion and bed instability that result from changes in channel gradient from the upstream steep valley to downstream low slope flood plain settings. Differences in channel morphology accompany these changes. Confined, V-shaped valleys occur upstream and are replaced downstream by broad U-shaped channels. The middle and lower Yangtze shows an apparent increase in channel instability over the past 40 years. This inference is based on sediment rating parameters from various gauging stations that record increasing b-values against decreasing log(a)-values over that time. Analysis of the sediment load data also reveals a strong correlation between changes in sediment rating curve parameters and reduction of annual sediment budget (4.70 × 108 t to 3.50 × 108 t/year, from the 1950s to 1990s), largely due to the damming of the Yangtze and sediment load depletion through siltation in the Dongting Lake. Short-term deviations from the general trends in the sediment rating parameters are related to hydroclimatic events. Extreme low b-values and high log(a)-values signify the major flood years, while the reverse indicates drought events. When compared with rivers from other climate settings, it is evident that the wide range of values of the Yangtze rating parameters reflects the huge discharge driven by the monsoon precipitation regime of eastern China.  相似文献   

13.
Piñon (Pinus edulis)-juniper (Juniperus monosperma)-ecosystems increased substantially in the western USA during the 20th century. Sustainability of these ecosystems primarily depends on soil quality and water availability. This study was undertaken with the objective of assessing the effect of tree species on soil physical quality in a semi-arid region in the western part of Sugarite Canyon, northeast of Raton, Colfax County, NM (37°56′32″N and 104°23′00″W) USA. Three cores and three bulk soil samples were obtained from the site under the canopy of three juniper, Gambel oak (Quercus gambelii) and piñon trees for 0–10 and 10–20 cm depths. These samples were analyzed for particle size distribution, soil bulk density (ρb), water stable aggregation (WSA), mean weight diameter (MWD) of aggregates, pH, electrical conductivity (EC) and soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks. Sand content was greater under juniper (48%) than oak (32%), whereas clay content followed the opposite trend. The ρb, WSA, MWD, pH and EC were similar under juniper, piñon, oak canopies for both depths. Estimated (from Philip and Green and Ampt infiltration models) and measured water infiltration parameters did not vary among these sites and were in accord with the values for ρb, WSA and MWD. The SOC concentrations and stocks were greater under oak (43.1 Mg ha−1 for 0–10 and 37.5 Mg ha−1 for 10–20 cm depths) than piñon (23.3 Mg ha−1 for 0–10 and 18.5 Mg ha−1 for 10–20 cm depths). The TN concentrations were greater under oak (3.4 g kg−1) than piñon (1.7 g kg−1) for the 0–10 cm depth only. Accumulation of detritus material under tree canopies reduced soil compaction and crusting caused by raindrop impact and increased SOC, and TN concentrations, and water infiltration. Coefficients of variation ranged from low to moderate for most soil properties except infiltration rate at 2.5 h, which was highly variable. Overall, soil quality for each site was good and soil aggregation, water infiltration and SOC concentrations were high, and soil ρb was low.  相似文献   

14.
Sedimentary impacts from landslides in the Tachia River Basin, Taiwan   总被引:1,自引:0,他引:1  
Chien-Yuan Chen   《Geomorphology》2009,105(3-4):355-365
A case study of coseismic landslides and post-seismic sedimentary impacts of landslides due to rainfall events was conducted in the Tachia River basin, Taichung County, central Taiwan. About 3000 coseismic landslides occurred in the basin during the ML 7.3 Chi-Chi earthquake in 1999. The deposits from these landslides provided material for numerous debris flows induced by subsequent rainfall events. The estimated 4.1 × 107 m3 of landslide debris produced in the upland area caused sediment deposition in riverbeds, and flash floods inundated downstream areas with sediment during torrential rains. The landslide frequency-size distributions for the coseismic landslides and the subsequent rainfall-induced landslides were analyzed to determine the sediment budgets of the post-seismic geomorphic response in the landslide-dominated basin. Both the coseismic and the rainfall-induced landslides show a power–law frequency-size distribution with a rollover. It was found that the rainfall-induced landslide magnitude was smaller than the coseismic one, and that both have comparable negative scaling exponents in cumulative form, of about − 2.0 for larger landslides (> 10− 2 km2). This may be attributed to ongoing movement or reactivation of old landslides, and a natural stabilisation of small landslides between 10− 4 and 10− 2 km2. It is proposed that the characteristics of geological formations and rainfall as well as changes in landslide area are reflected in the power–law distribution.  相似文献   

15.
In this paper we explore the development and assimilation of a high resolution topographic surface with a one-dimensional hydraulic model for investigation of avulsion hazard potential on a gravel-bed river. A detailed channel and floodplain digital terrain model (DTM) is created to define the geometry parameter required by the 1D hydraulic model HEC-RAS. The ability to extract dense and optimally located cross-sections is presented as a means to optimize HEC-RAS performance. A number of flood scenarios are then run in HEC-RAS to determine the inundation potential of modeled events, the post-processed output of which facilitates calculation of spatially explicit shear stress (τ) and level of geomorphic work (specific stream power per unit bed area, ω) for each of these. Further enhancing this scenario-based approach, the DTM is modified to simulate a large woody debris (LWD) jam and active-channel sediment aggradation to assess impact on innundation, τ, and ω, under previously modeled flow conditions. The high resolution DTM facilitates overlay and evaluation of modeled scenario results in a spatially explicit context containing considerable detail of hydrogeomorphic and other features influencing hydraulics (bars, secondary and scour channels, levees). This offers advantages for: (i) assessing the avulsion hazard potential and spatial distribution of other hydrologic and fluvial geomorphic processes; and (ii) exploration of the potential impacts of specific management strategies on the channel, including river restoration activities.  相似文献   

16.
Bankfull channel width is a fundamental measure of stream size and a key parameter of interest for many applications in hydrology, fluvial geomorphology, and stream ecology. We developed downstream hydraulic geometry relationships for bankfull channel width w as a function of drainage area A, w = α Aβ, (DHGwA) for nine aggregate ecoregions comprising the conterminous United States using 1588 sites from the U.S. Environmental Protection Agency's National Wadeable Streams Assessment (WSA), including 1152 sites from a randomized probability survey sample. Sampled stream reaches ranged from 1 to 75 m in bankfull width and 1 to 10,000 km2 in drainage area. The DHGwA exponent β, which expresses the rate at which bankfull stream width scales with drainage area, fell into three distinct clusters ranging from 0.22 to 0.38. Width increases more rapidly with basin area in the humid Eastern Highlands (encompassing the Northern and Southern Appalachians and the Ozark Mountains) and the Upper Midwest (Great Lakes region) than for the West (both mountainous and xeric areas), the southeastern Coastal Plain, and the Northern Plains (the Dakotas and Montana). Stream width increases least rapidly with basin area in the Temperate Plains (cornbelt) and Southern Plains (Great Prairies) in the heartland. The coefficient of determination (r2) was least in the noncoastal plains (0.36–0.41) and greatest in the Appalachians and Upper Midwest (0.68–0.77). DHGwA equations differed between streams with dominantly fine bed material (silt/sand) and those with dominantly coarse bed material (gravel/cobble/boulder) in six of the nine analysis regions. Where DHGwA equations varied by sediment size, fine-bedded streams were consistently narrower than coarse-bedded streams. Within the Western Mountains ecoregion, where there were sufficient sites to develop DHGwA relationships at a finer spatial scale, α and β ranged from 1.23 to 3.79 and 0.23 to 0.40, respectively, with r2 > 0.50 for 10 of 13 subregions (range: 0.36 to 0.92). Enhanced DHG equations incorporating additional data for three landscape variables that can be derived from GIS—mean annual precipitation, elevation, and mean reach slope—significantly improved equation fit and predictive value in several regions, most notably the Western Mountains and the Temperate Plains. Channel width was also related to human disturbance. We examined the influence of human disturbance on channel width using several indices of local and basinwide disturbance. Contrary to our expectations, the data suggest that the dominant response of channel width to human disturbance in the United States is a reduction in bankfull width in streams with greater disturbance, particularly in the Western Mountains (where population density, road density, agricultural land use, and local riparian disturbance were all negatively related to channel width) and in the Appalachians and New England (where urban and agricultural land cover and riparian disturbance were all negatively associated with channel width).  相似文献   

17.
Wind erosion has major impacts on dune growth, desertification, and architecture on sea coasts. The deflation threshold shear velocity is a crucial parameter in predicting erosion, and surface moisture greatly affects this threshold and thus sand stability. Wind tunnel studies have shown that reduced moisture contents decrease entrainment thresholds and increase wind erosion, but field and wind tunnel test data is lacking for tropical humid coastal areas. In this study, we investigated the influence of surface moisture contents (at 1 mm depth) on sand entrainment and erosion using tropical humid coastal sands from southern China. Shear velocities were deduced from velocity profiles above the sand. The threshold shear velocity increased linearly with increasing ln100M (M, gravimetric moisture content). The increase was steepest below a moisture content of 0.0124 (i.e., at M1.5, the moisture content in the sand at a matric potential of − 1.5 MPa). We compared several popular models that predict threshold shear velocity of moisture sediment, and found substantial differences between their predicted results. At a surface moisture content of 0.0124, the predicted increase in the wet threshold shear velocity compared with the dry threshold shear velocity ranged from 34% to 195%. The empirical model of Chepil and Selah simulated the data well for M < 0.0062 (i.e., 0.5M1.5), whereas Belly's empirical model simulated the data best for > 0.0062. Wind erosion modulus increased with increasing effective wind velocity following a power function with a positive exponent at all moisture contents, but decreased with increasing surface moisture content following a power function with a negative exponent. When wind speed and moisture content varied simultaneously, wind erosion modulus was proportional to the 0.73 power of effective wind velocity, but inversely proportional to the 1.48 power of M. The increase in resistance to erosion at low moisture contents probably results from cohesive forces in the water films surrounding the sand particles. At a moisture content near M1.5, wind erosion ceases nearly for all wind velocities that we tested.  相似文献   

18.
Giant landslides, which usually have volumes up to several tens of km3, tend to be related to mountainous reliefs such as fault scarps or thrust fronts. The western flank of the Precordillera in southern Peru and northern Chile is characterized by the presence of such mega-landslides. A good example is the Latagualla Landslide (19°15′S), composed of ~ 5.4 km3 of Miocene ignimbritic rock blocks located next to the Moquella Flexure, a structure resulting from the propagation of a west-vergent thrust blind fault that borders the Precordillera of the Central Depression. The landslide mass is very well preserved, allowing reconstitution of its movement and evolution in three main stages. The geomorphology of the landslide indicates that it preceded the incision of the present-day valleys during the late Miocene. Given the local geomorphological conditions 8–9 Ma ago (morphology, slopes and probably a high water table), large-magnitude earthquakes could have provided destabilization forces enough to cause the landslide. On the other hand, present seismic forces would not be sufficient to trigger such landslides; therefore the hazard related to them in the region is low.  相似文献   

19.
We set up an automatic weather station over a playa (the flat floor of an undrained desert basin that becomes at times a shallow lake), approximately 65 km east–west by 130 km north–south, located at the U.S. Army Dugway Proving Ground (40°08′N, 113°27′W, 1124 m above mean sea level) in north-western Utah, U.S.A., in 1999. This station measured the incoming (Rsi) and outgoing (Rso) solar or shortwave radiation using two CM21 Kipp & Zonen pyranometers (one inverted), the incoming (Rli or atmospheric) and outgoing (Rlo or terrestrial) longwave radiation, using two CG1 KippZonen pyrgeometers (one inverted), and the net (Rn) radiation using a Q*7 net radiometer (Radiation Energy Balance System, REBS). We also measured the 10-m wind speed (U10) and direction (R.M. Young wind monitor) and precipitation (Campbell Sci., Inc.). The measurements were taken every 2 s, averaged into 20-min, continuously, throughout the year. The annual (August 1999 – August 2000) comparisons of global or solar radiation and windiness with two other stations in central (Hunter) and northern (Logan) Utah, indicate higher solar radiation (Rsi,Dugway=7797 MJ m−2 period−1vs. Rsi, Hunter=7021 MJ m−2 period−1 and Rsi, Logan=6865 MJ m−2 period−1) and much higher annual mean windiness (UDugway=387 km day−1vs. UHunter=275 km day−1 and ULogan=174 km day−1) throughout the period over the playa. These data reveal the possibility of simultaneously harvesting these two sources of clean energies at this vast and uniform playa.  相似文献   

20.
The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000–10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104<Qp<106 m3 s−1 for plausible breach erosion rates of 10–100 m h−1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103<Qp<104 m3 s−1 for plausible breach erosion rates.Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号