首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Western Foothills of Taiwan was known to be composed of Late Oligocene to Pleistocene shallow marine strata continuously deposited on the stable passive Chinese continental margin without significant stratigraphic break. Here we present multiple micropaleontological evidences, including occurrence of larger foraminifera Discocyclina dispansa ex. interc. sella-dispansa and calcareous nannoplanktons, to show that there are Middle Eocene marine strata (first named as the Chungliao Formation) exposed in the Tsukeng anticline of the Western Foothills, central Taiwan. Occurrences of intact tests with thin delicate outer rims and well-preserved embryonic chambers suggest that the Discocyclina dispansa ex. interc. sella-dispansa (Lutetian to Bartonian in the Tethys region) are buried indigenously on shallow inner shelf during an episodic transgression in the Early Middle Eocene. The conclusion is consistent with a biostratigraphy study of calcareous nannoplanktons (Zones NP14–15) in the shale/sandstone alternations overlying the Discocyclina-bearing bed of the Chungliao Formation and calcareous nannofossils of Zone NP16 integrated with an age dating of 38.8 ± 1 Ma (Late Middle Eocene) on zircon grains of the overlying Pinglin Tuff. The Middle Eocene syn-rift sequences (Chungliao Formation and Pinglin Tuff) exposed along the Tsukeng anticline are unconformably covered by the latest Oligocene–Miocene post-rift sequence, a scenario similar to what have been drilled in the East China Sea-Taiwan Strait-South China Sea. This rift basin (named as the Nantou Basin) is sitting on the Peikang Basement High margin which further extends southwestward to the Central Uplift of the Pearl River Mouth Basin in the northern slope of the South China Sea. The present work documents a hitherto unknown occurrence of the exposed early Tertiary marine rift basin sequence in the Western Foothills of Taiwan. The study extends our knowledge of the Western Foothills geohistory from the Late Oligocene downward to the Early Middle Eocene. The occurrence of the Paleogene Nantou rift basin in the Western Foothills may also suggest that there could have similar Paleogene rift sequences exposed in other parts of the Taiwan mountain belt like the Hsüehshan Range and the Central Range east of the Western Foothills.  相似文献   

2.
The composite Meghri–Ordubad and Bargushat plutons of the Zangezur–Ordubad region in the southernmost Lesser Caucasus consist of successive Eocene to Pliocene magmatic pulses, and host two stages of porphyry Cu–Mo deposits. New high-precision TIMS U–Pb zircon ages confirm the magmatic sequence recognized by previous Rb–Sr isochron and whole-rock K–Ar dating. A 44.03 ± 0.02 Ma-old granite and a 48.99 ± 0.07 Ma-old granodiorite belong to an initial Eocene magmatic pulse, which is coeval with the first stage of porphyry Cu–Mo formation at Agarak, Hanqasar, Aygedzor and Dastakert. A subsequent Oligocene magmatic pulse was constrained by U–Pb zircon ages at 31.82 ± 0.02 Ma and 33.49 ± 0.02 Ma for a monzonite and a gabbro, and a late Miocene porphyritic granodioritic and granitic pulse yielded ages between 22.46 ± 0.02 Ma and 22.22 ± 0.01 Ma, respectively. The Oligo-Miocene magmatic evolution broadly coincides with the second porphyry-Cu–Mo ore deposit stage, including the major Kadjaran deposit at 26–27 Ma.Primitive mantle-normalized spider diagrams with negative Nb, Ta and Ti anomalies support a subduction-like nature for all Cenozoic magmatic rocks. Eocene magmatic rocks have a normal arc, calc-alkaline to high-K calc-alkaline composition, early Oligocene magmatic rocks a high-K calc-alkaline to shoshonitic composition, and late Oligocene to Mio-Pliocene rocks are adakitic and have a calc-alkaline to high-K calc-alkaline composition. Radiogenic isotopes reveal a mantle-dominated magmatic source, with the mantle component becoming more predominant during the Neogene. Trace element ratio and concentration patterns (Dy/Yb, Sr/Y, La/Yb, Eu/Eu*, Y contents) correlate with the age of the magmatic rocks. They reveal combined amphibole and plagioclase fractionation during the Eocene and the early Oligocene, and amphibole fractionation in the absence of plagioclase during the late Oligocene and the Mio-Pliocene, consistent with Eocene to Pliocene progressive thickening of the crust or increasing pressure of magma differentiation. Characteristic trace element and isotope systematics (Ba vs. Nb/Y, Th/Yb vs. Ba/La, 206Pb/204Pb vs. Th/Nb, Th/Nb vs. δ18O, REE) indicate that Eocene magmatism was dominated by fluid-mobile components, whereas Oligocene and Mio-Pliocene magmatism was dominated by a depleted mantle, compositionally modified by subducted sediments.A two-stage magmatic and metallogenic evolution is proposed for the Zangezur–Ordubad region. Eocene normal arc, calc-alkaline to high-K calc-alkaline magmatism was coeval with extensive Eocene magmatism in Iran attributed to Neotethys subduction. Eocene subduction resulted in the emplacement of small tonnage porphyry Cu–Mo deposits. Subsequent Oligocene and Miocene high-K calc-alkaline and shoshonitic to adakitic magmatism, and the second porphyry Cu–Mo deposit stage coincided with Arabia–Eurasia collision to post-collision tectonics. Magmatism and ore formation are linked to asthenospheric upwelling along translithospheric, transpressional regional faults between the Gondwana-derived South Armenian block and the Eurasian margin, resulting in decompression melting of lithospheric mantle, metasomatised by sediment components added to the mantle during the previous Eocene subduction event.  相似文献   

3.
Mineral exploration of prospective areas concealed by extensive post-mineralization cover is growing, being very complex and expensive. The projection of rich and giant Paleocene to early Oligocene porphyry-Cu-Mo belts in northernmost Chilean Andes (17.5–19.5°S) has major exploration potential, but only a few minor deposits have been reported to date, due to the fact that the area is largely covered by post-mineral strata. We integrate the Cenozoic stratigraphic, structural and metallogenic evolution of this sector, in order to identify the most promising regions related to lesser post-mineral cover and the projection of different metallogenic belts. The Paleocene to early Eocene metallogenic belt extends along the Precordillera, with ca. 30 km wide, and includes porphyry-Cu prospects and small Cu (±Mo-Au-Ag) vein and breccia-pipe deposits. Geochronological data indicate an age of 55.5 Ma for an intrusion related to one deposit and ages from 69.5 to 54.5 Ma for hydrothermal alteration in one porphyry-Cu prospect and largest known Cu deposits. The middle Eocene to early Oligocene porphyry belt, in the Western Cordillera farther east, is associated with 46–44 Ma intrusions. It is estimated to be 40-km wide, but is largely concealed by thick post-mineral cover. The youngest Miocene to early Pliocene metallogenic belt, also in the Western Cordillera, is well-exposed and includes Au-Ag epithermal and polymetallic veins and manto-type deposits.The Oligocene-Holocene cover consists of a succession of continental sedimentary and volcanic rocks that overall increase in thickness from 0 to 5000 m, from west to east. These strata are subhorizontal in the west and folded-faulted towards the east. Miocene gentle anticlines and monocline flexures extend along strike for 30–60 km in the Precordillera and were generated by propagation of high-angle east-dipping blind reverse faults with at least 300–900 m of Oligocene bedrock offset. The thickness of cover exceeds 2000 m in the eastern Central Depression, whereas it is generally less than 1000 m in the Precordillera along the Paleocene to early Eocene porphyry-Cu belt and it can reach locally up to 5000 m in the Western Cordillera, above the middle Eocene to early Oligocene belt.In the studied Andean segment, the Miocene to early Pliocene metallogenic belt is superimposed on the Paleocene to Oligocene belts in a 40–50 km wide zone. This overlap may be explained by an accentuated migration of the magmatic front, from east to west, since ca. 25 Ma, as a consequence of subduction slab steepening after a period of magmatic lull and flat subduction from ca. 30–35 to 25 Ma. The identified areas of lesser cover thickness are prone to exploration for concealed deposits, especially along the projection of major porphyry-Cu-Mo belts.  相似文献   

4.
Porphyry copper deposits (PCDs) in Iran are dominantly distributed in Arasbaran (NW Iran), the middle segment of the Urumieh–Dokhtar Magmatic Arc (UDMA), and Kerman (central SE Iran), with minor occurrences in eastern Iran and the Makran arc. This paper provides a temporal–spatial and geodynamic framework of the Iranian porphyry Cu (Mo–Au) systems, based on geochronologic data obtained from zircon U–Pb and molybdenite Re–Os dating of host porphyritic rocks and molybdenites in 15 major PCDs. The dating results define a long metallogenic duration (39–6 Ma), and suggest a long history of tectonic evolution from the accretionary orogeny related to early Cenozoic closure of the Neo-Tethys Ocean to subsequent collisional orogeny for the Iranian porphyry copper systems.The oldest porphyry mineralization occurred in the eastern part of Iran after the closure of a branch of the Neo-Tethyan (Sistan) Ocean between the Lut and Afghan blocks in the late Eocene (39–37 Ma). This was followed by mineralization in the Kerman porphyry copper belt over a time interval of about 20 m.y., where two metallogenic epochs have been recognized, including late Oligocene (29–27 Ma) and Miocene (18–6 Ma). The Bondar-e-Hanza deposit formed in the late Oligocene, while and the remaining dated deposits belong to Miocene epoch. According to the deposits' characteristics and their ages, the Miocene epoch can be divided into early, middle, and late stages. The Darreh Zar, Bakh Khoshk, Chah Firouzeh and Sar Kuh deposits formed during the early–middle Miocene. The largest porphyry deposits occur in the middle stage during the middle Miocene (14–11 Ma) and include the Sar Cheshmeh, Meiduk, Dar Alu and Now Chun deposits. These deposits were formed during crustal thickening, uplift, and rapid exhumation of the belt. The final stage of porphyry mineralization occurred during the late Miocene (9–6 Ma), and formed the Iju, Kerver, Kuh Panj and Abdar deposits.There were two porphyry mineralization stages in the Arasbaran porphyry copper belt in NW Iran, including an older late Oligocene (29–27 Ma) and a younger early Miocene (22–20 Ma) events. The Haft Cheshmeh deposit belongs to the older stage, and the world-class Sungun and Masjed Daghi deposits formed during the early Miocene.In the middle segment of the UDMA (Saveh–Yazd porphyry copper belt), PCDs formed during middle Miocene time (17–15 Ma). The geochronological results reveal that the porphyry mineralization moved from the northwest to southeast of UDMA over the time.Our dating results, combined with the possible late Eocene–Oligocene timing for collision between the Arabian and Iranian plates, support a model for Iranian PCD formation by partial melting of previously subduction-modified lithosphere in a post-subduction and post-collisional tectonic setting.  相似文献   

5.
The structural-stratigraphic history of the North Luconia Province, Sarawak deepwater area, is related to the tectonic history of the South China Sea. The Sarawak Basin initiated as a foreland basin as a result of the collision of the Luconia continental block with Sarawak (Sarawak Orogeny). The foreland basin was later overridden by and buried under the prograding Oligocene-Recent shelf-slope system. The basin had evolved through a deep foreland basin (‘flysch’) phase during late Eocene–Oligocene times, followed by post-Oligocene (‘molasse’) phase of shallow marine shelf progradation to present day.Seismic interpretation reveals a regional Early Miocene Unconformity (EMU) separating pre-Oligocene to Miocene rifted basement from overlying undeformed Upper Miocene–Pliocene bathyal sediments. Seismic, well data and subsidence analysis indicate that the EMU was caused by relative uplift and predominantly submarine erosion between ∼19 and 17 Ma ago. The subsidence history suggests a rift-like subsidence pattern, probably with a foreland basin overprint during the last 10 Ma. Modelling results indicate that the EMU represents a major hiatus in the sedimentation history, with an estimated 500–2600 m of missing section, equivalent to a time gap of 8–10 Ma. The EMU is known to extend over the entire NW Borneo margin and is probably related to the Sabah Orogeny which marks the cessation of sea-floor spreading in the South China Sea and collision of Dangerous Grounds block with Sabah.Gravity modelling indicates a thinned continental crust underneath the Sarawak shelf and slope and supports the seismic and well data interpretation. There is a probable presence of an overthrust wedge beneath the Sarawak shelf, which could be interpreted as a sliver of the Rajang Group accretionary prism. Alternatively, magmatic underplating beneath the Sarawak shelf could equally explain the free-air gravity anomaly. The Sarawak basin was part of a remnant ocean basin that was closed by oblique collision along the NW Borneo margin. The closure started in the Late Eocene in Sarawak and moved progressively northeastwards into Sabah until the Middle Miocene. The present-day NW Sabah margin may be a useful analogue for the Oligocene–Miocene Sarawak foreland basin.  相似文献   

6.
Suture zones often archive complex geologic histories underscored by episodes of varying style of deformation associated with intercontinental collision. In the Lopukangri area of south-central Tibet (29°54′N, 84°24′E) field relationships between tectonic units juxtaposed by the India–Asia suture are well exposed, including Indian passive margin rocks (Tethyan Sedimentary Sequence), forearc deposits (Xigaze Group), magmatic arc rocks (Gangdese batholith and Linzizong Formation) and syncollision deposits (Eocene–Miocene conglomerates). To better understand the structural history of this area, we integrated geologic mapping with biotite 40Ar/39Ar thermochronology and zircon U–Pb geochronology. The first-order structure is a system of north-directed thrusts which are part of the Great Counter thrust (GCT) that places Indian passive margin rocks and forearc deposits on top of magmatic arc rocks and syn-tectonic conglomerates. We infer the south-directed Late Oligocene Gangdese Thrust (GT) exists at unexposed structural levels based on field mapping, cross sections, and regional correlations as it has been documented immediately to the east. A granite in the footwall has a U–Pb zircon age of 38.4 ± 0.4 Ma, interpreted to be the age of emplacement of the granite, and a younger 40Ar/39Ar biotite age of 19.7 ± 0.1 Ma. As the granite sample is situated immediately below a nonconformity with low grade greenschist facies rocks, we interpret the younger age to reflect Miocene resetting of the biotite Ar system. Syn-tectonic deposits in the Lopukangri area consist of three conglomerate units with a total thickness of ∼1.5 km. The lower two units consist of cobble gravel pebble conglomerates rich in volcanic and plutonic clasts, transitioning to conglomerates with only sedimentary clasts in the upper unit. We correlate the syncollision deposits to the Eocene–Oligocene Qiuwu Formation based on field relationships, stratigraphy and petrology. Petrology and clast composition suggest the lower two units of the Qiuwu Formation had a northern provenance (Lhasa block and magmatic arc) and the upper unit had a southern provenance (Tethyan Sedimentary Sequence). Our observations are consistent with paleocurrent data from other studies which suggest a predominant south-directed paleoflow for this formation. We propose a model in which: (1) granites intrude at 38.4 ± 0.4 Ma; (2) are exhumed by erosion; (3) and buried due to regional subsidence and initial deposition of a conglomerate unit; (4) exposed by the GT at ∼27–24 Ma to provide detritus; (5) buried a second time by hanging wall-derived sedimentary deposits and the GCT, then (6) exposed from a depth of ∼12–10 km by a blind thrust at ∼19 Ma. An alternate model describes: (1) intrusion of the granites at 38.4 ± 0.4 Ma, followed by (2) exhumation of the granites via normal faulting to provide detritus; (3) then burial by the GCT at ∼24 Ma, followed by (4) exhumation via regional erosional denudation at ∼19 Ma. Exposure of the GT west of Xigaze has not been confirmed. We suggest that shallower structural levels of the India-Asia suture zone are exposed to the west of the study area, compared to the east, where the GT has been previously documented. The GCT in the area is short-lived, as it is cut and offset by a Middle Miocene ∼N-striking W-dipping oblique normal fault system.  相似文献   

7.
The Bone Mountains, located in Southwest Sulawesi along the SE margin of Sundaland, are composed of Oligocene to possibly lower Miocene marginal basin successions (Bone Group) that are juxtaposed against continental margin assemblages of Eocene–Miocene age (Salokalupang Group). Three distinct units make up the latter: (i) Middle–Upper Eocene volcaniclastic sediments with volcanic and limestone intercalations in the upper part (Matajang Formation), reflecting a period of arc volcanism and carbonate development along the Sundaland margin; (ii) a well-bedded series of Oligocene calc-arenites (Karopa Formation), deposited in a passive margin environment following cessation of volcanic activity, and (iii) a series of Lower–Middle Miocene sedimentary rocks, in part turbiditic, which interfinger in the upper part with volcaniclastic and volcanic rocks of potassic affinity (Baco Formation), formed in an extensional regime without subduction.The Bone Group consists of MORB-like volcanics, showing weak to moderate subduction signatures (Kalamiseng Formation), and a series of interbedded hemipelagic mudstones and volcanics (Deko Formation). The Deko volcanics are in part subduction-related and in part formed from melting of a basaltic precursor in the overriding crust. We postulate that the Bone Group rocks formed in a transtensional marginal basin bordered by a transform passive margin to the west (Sundaland) and by a newly initiated westerly-dipping subduction zone on its eastern side.Around 14–13 Ma an extensional tectonic event began in SW Sulawesi, characterized by widespread block-faulting and the onset of potassic volcanism. It reached its peak about 1 Ma year later with the juxtaposition of the Bone Group against the Salokalupang Group along a major strike-slip fault (Walanae Fault Zone). The latter group was sliced up in variously-sized fragments, tilted and locally folded. Potassic volcanism continued up to the end of the Pliocene, and locally into the Quaternary.  相似文献   

8.
We provide a synopsis of ~ 60 million years of life history in Neotropical lowlands, based on a comprehensive survey of the Cenozoic deposits along the Quebrada Cachiyacu near Contamana in Peruvian Amazonia. The 34 fossil-bearing localities identified have yielded a diversity of fossil remains, including vertebrates, mollusks, arthropods, plant fossils, and microorganisms, ranging from the early Paleocene to the late Miocene–?Pliocene (> 20 successive levels). This Cenozoic series includes the base of the Huchpayacu Formation (Fm.; early Paleocene; lacustrine/fluvial environments; charophyte-dominated assemblage), the Pozo Fm. (middle + ?late Eocene; marine then freshwater environments; most diversified biomes), and complete sections for the Chambira Fm. (late Oligocene–late early Miocene; freshwater environments; vertebrate-dominated faunas), the Pebas Fm. (late early to early late Miocene; freshwater environments with an increasing marine influence; excellent fossil record), and Ipururo Fm. (late Miocene–?Pliocene; fully fluvial environments; virtually no fossils preserved). At least 485 fossil species are recognized in the Contamana area (~ 250 ‘plants’, ~ 212 animals, and 23 foraminifera). Based on taxonomic lists from each stratigraphic interval, high-level taxonomic diversity remained fairly constant throughout the middle Eocene–Miocene interval (8-12 classes), ordinal diversity fluctuated to a greater degree, and family/species diversity generally declined, with a drastic drop in the early Miocene. The Paleocene–?Pliocene fossil assemblages from Contamana attest at least to four biogeographic histories inherited from (i) Mesozoic Gondwanan times, (ii) the Panamerican realm prior to (iii) the time of South America’s Cenozoic “splendid isolation”, and (iv) Neotropical ecosystems in the Americas. No direct evidence of any North American terrestrial immigrant has yet been recognized in the Miocene record at Contamana.  相似文献   

9.
The Eocene and Miocene volcanic rocks between the cities of Trabzon and Giresun in the Eastern Pontides (NE Turkey) erupted as mildly and moderately alkaline magmas ranging from silica-saturated to silica-undersaturated types. 40Ar-39Ar dating and petrochemical data reveal that the studied volcanic rocks are discriminated in two: Lutetian (Middle Eocene) mildly alkaline, (basaltic rocks: 45.31 ± 0.18 to 43.86 ± 0.19 Ma; trachytic rocks: 44.87 ± 0.22 to 41.32 ± 0.12 Ma), and Messinian (Late Miocene) moderately alkaline volcanic rocks (tephrytic rocks: 6.05 ± 0.06 and 5.65 ± 0.06 Ma). The trace and the rare earth element systematic, characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios in the Eocene basaltic and trachytic rocks, high LREE/HREE ratios in the Miocene tephrytic rocks, and different degrees of depletion in Nb, Ta, Ti coupled with high Th/Yb ratios, show that the parental magmas of the volcanic rocks were derived from mantle sources previously enriched by slab-derived fluids and subducted sediments. The Sr, Nd and Pb isotopic composition of the Eocene and Miocene volcanic rocks support the presence of subduction-modified subcontinental lithospheric mantle. During the magma ascent in the crust, parental magmas of both the Eocene and Miocene volcanic rocks were mostly affected by fractional crystallisation rather than assimilation coupled with fractional crystallisation and mixing. The silica-undersaturated character of the Miocene tephrytic rocks could be attributed to assimilation of carbonate rocks within shallow-level magma chambers. The parental magmas of the Eocene volcanic rocks resulted from a relatively high melting degree of a net veined mantle and surrounding peridotites in the spinel stability field due to an increase in temperature, resulting from asthenospheric upwelling related to the extension of lithosphere subsequent to delamination. The parental magmas for the Miocene volcanic rocks resulted from a relatively low melting degree of a net veined mantle domain previously modified by metasomatic melts derived from a garnet peridotite source after decompression due to extensional tectonics, combined with strike-slip movement at a regional scale related to ongoing delamination.  相似文献   

10.
《Gondwana Research》2013,24(4):1599-1606
Direct radiometric dating of the Lower/Middle Permian epochs has not been well accomplished. Shales and bedded cherts of the geologically well-documented Middle Permian Gufeng Formation are exposed in the Chaohu area, Anhui province, South China. Through detailed field examination and mapping of the Gufeng stratigraphic section, we found at least four volcanic ash beds within the basal shale strata. This new discovery indicates the existence of prominent volcanic activity during Gufeng sedimentation and provides the opportunity to precisely date the age of the Middle Permian. Zircon grains separated from two near-basal horizon yield LA‐ICP‐MS U–Pb ages of 272.0 ± 5.5 Ma (MSWD = 2.6) and 271.5 ± 3.3 Ma (MSWD = 1.7). As the first precise isotopic age (272 Ma) of the Middle Permian Gufeng Formation in South China, our data offer precise geochronological constraints for the division and correlation of Middle Permian not only in South China but also worldwide.  相似文献   

11.
The newly discovered Chaqupacha Mississippi Valley-type (MVT) Pb–Zn deposit in central Tibet has been found to be helpful for understanding MVT ore formation relative to tectonic evolution of a foreland fold and thrust belt. The deposit lies in the Tuotuohe area of the western Fenghuo Shan-Nangqian fold and thrust belt of the India–Asia continental collision zone. It contains NNW-striking and folded Late Permian strata including an upper clastic unit and an underlying limestone unit. The strata overlie late Oligocene clastic rocks through a south-dipping reverse fault that is associated with regional northward thrusting during the Paleogene. The Late Permian and late Oligocene strata are unconformably overlain by flat-lying early Miocene marl and mudstone of the Wudaoliang Formation. Lead and zinc ores are mainly hosted by pre-ore dissolution and collapse breccias in the Late Permian limestone. The style of mineralization is epigenetic, as shown by replacement of the pre-ore dissolution breccia matrix and open-space-fill by galena, sphalerite, calcite, and minor barite and pyrite. δ34S values of the main sulfide galena range from − 27.5‰ to + 12.6‰. These features, together with the lack of magmatic activity during the mineralization, suggest that Chaqupacha is an MVT deposit. Subordinate mineralization is also present in the early Miocene Wudaoliang Formation marl and the paleokarst breccia which contains matrix compositionally equivalent to strata of the Wudaoliang Formation. The mineralization shares similar mineral associations and textures with the pre-ore dissolution breccia-hosted mineralization. Thus, the Pb and Zn mineralization in the entire deposit probably resulted from the same mineralizing event, which is younger than the youngest ore-hosting rocks (i.e., the early Miocene Wudaoliang Formation). Considering that thrusting in the Tuotuohe area had ceased prior to deposition of the Wudaoliang Formation host rocks, the mineralization at Chaqupacha post-dated the regional deformation. The Chaqupacha deposit thus provides a good example of MVT mineralization in a foreland fold and thrust belt that post-dates regional thrusting.  相似文献   

12.
The present study deals with the lithostratigraphy and planktonic foraminiferal biostratigraphy of the Late Eocene-Middle Miocene sequence in the Al Bardia area, northeast Libya. The lithostratigraphical studies carried out on three stratigraphical surface sections, namely Wade Al Rahib, Wadi Al Hash and Wadi Al Zeitun, led to the recognition of three rock units from base to top: (1) the Al Khowaymat Formation (Late Eocene-Early Oligocene); (2) the Al Faidiyah Formation (Late Oligocene-Early Miocene); and (3) the Al Jaghboub Formation (Early-Middle Miocene). The planktonic foraminiferal biostratigraphical analysis led also to the recognition of nine planktonic foraminiferal zones ranged in age from Late Eocene to Early Miocene with one larger foraminiferal zone of Middle Miocene age. These are, from base to top, as follows: Truncorotaloides rohri Zone (Late-Middle Eocene, Lutetian), Globigerinatheka semiinvoluta and Turborotalia cerroazulensis s.l. Zones (Late Eocene, Priaborian), Cassigerinella chipolensis/Pseudohasitgerina micra Zone (Early Oligocene, Rupelian), Globigerina ciperoensis ciperoensis, Globorotalia kugleri Zones (Late Oligocene, Chattian), Globigerinoides primordius Zone (Early Miocene, Aquitanian), Globigerinoides altiaperturus/Catapsydrax dissimilis and Globigerinoides trilobus Zones (Early Miocene, Burdigalian), and the larger benthonic foraminiferal zone, Borelis melo melo Zone (Middle Miocene, Langhian to Serravallian). The study of planktonic foraminifera proved the existence of a regional unconformity between the Early and Late Oligocene, with the Middle Oligocene deposits being absent (absence of Globigerina ampliapertura and Globorotalia opima opima Zones), and another, smaller unconformity located between the Late Eocene and Early Oligocene, in which the uppermost part of the Late Eocene is missing.  相似文献   

13.
《Earth》2006,77(3-4):191-233
A Cenozoic tectonic reconstruction is presented for the Southwest Pacific region located east of Australia. The reconstruction is constrained by large geological and geophysical datasets and recalculated rotation parameters for Pacific–Australia and Lord Howe Rise–Pacific relative plate motion. The reconstruction is based on a conceptual tectonic model in which the large-scale structures of the region are manifestations of slab rollback and backarc extension processes. The current paradigm proclaims that the southwestern Pacific plate boundary was a west-dipping subduction boundary only since the Middle Eocene. The new reconstruction provides kinematic evidence that this configuration was already established in the Late Cretaceous and Early Paleogene. From ∼ 82 to ∼ 52 Ma, subduction was primarily accomplished by east and northeast-directed rollback of the Pacific slab, accommodating opening of the New Caledonia, South Loyalty, Coral Sea and Pocklington backarc basins and partly accommodating spreading in the Tasman Sea. The total amount of east-directed rollback of the Pacific slab that took place from ∼ 82 Ma to ∼ 52 Ma is estimated to be at least 1200 km. A large percentage of this rollback accommodated opening of the South Loyalty Basin, a north–south trending backarc basin. It is estimated from kinematic and geological constraints that the east–west width of the basin was at least ∼ 750 km. The South Loyalty and Pocklington backarc basins were subducted in the Eocene to earliest Miocene along the newly formed New Caledonia and Pocklington subduction zones. This culminated in southwestward and southward obduction of ophiolites in New Caledonia, Northland and New Guinea in the latest Eocene to earliest Miocene. It is suggested that the formation of these new subduction zones was triggered by a change in Pacific–Australia relative motion at ∼ 50 Ma. Two additional phases of eastward rollback of the Pacific slab followed, one during opening of the South Fiji Basin and Norfolk Basin in the Oligocene to Early Miocene (up to ∼ 650 km of rollback), and one during opening of the Lau Basin in the latest Miocene to Present (up to ∼ 400 km of rollback). Two new subduction zones formed in the Miocene, the south-dipping Trobriand subduction zone along which the Solomon Sea backarc Basin subducted and the north-dipping New Britain–San Cristobal–New Hebrides subduction zone, along which the Solomon Sea backarc Basin subducted in the west and the North Loyalty–South Fiji backarc Basin and remnants of the South Loyalty–Santa Cruz backarc Basin subducted in the east. Clockwise rollback of the New Hebrides section resulted in formation of the North Fiji Basin. The reconstruction provides explanations for the formation of new subduction zones and for the initiation and termination of opening of the marginal basins by either initiation of subduction of buoyant lithosphere, a change in plate kinematics or slab–mantle interaction.  相似文献   

14.
The Eucla Basin including the vast Nullarbor Plain lies on the margins of the Yilgarn, Musgrave and Gawler cratons in southern Australia and owes its distinctive landscape to a unique set of interactions between eustatic, climatic and tectonic processes over the last ~ 50 Ma. Understanding of the history of the basin and the palaeovalleys that drained from the surrounding cratons are important because they contain major mineral deposits, and the sediments derived from them contain remobilised gold, uranium, and heavy minerals. In particular, a remarkably preserved palaeoshoreline sequence along the north-eastern margin of the Eucla Basin is highly prospective for heavy mineral placer deposits. The record of marine, marginal marine, estuarine, fluvial and lacustrine environments, as constrained mainly by an extensive borehole dataset, reflects major depositional events during the Palaeocene–Early Eocene, Middle–Late Eocene, Oligocene–Early Miocene, Middle Miocene–Early Pliocene and Pliocene–Quaternary. These events reflect the key role of eustatic sea-level variation which, during highstands, inundated the craton margins, flooding palaeovalleys to up to 400 km inboard of the present coastline. However, a systematic eastward migration of the depocentre across the Eucla Basin during the Neogene, together with apparent flow reversals in a number of palaeovalley systems draining the Gawler Craton, suggest that the Eucla Basin has also been subject to differential vertical movements, expressed as a west-side up, east-side down tilting of ~ 100–200 m. This differential movement forms part of a broader north-down–southwest-up dynamic topographic tilting of the Australian continent associated with relatively fast (6–7 cm/yr) northward plate motion since fast spreading commenced in the Southern Ocean at ~ 43 Ma. We suggest that the evolving dynamic topography field has played a key role in facilitating development of placer deposits, largely through multistage, eastward reworking of near-shore sequences during highstand transgressive cycles on a progressively tilting platform under the influence of persistent westerly weather systems.  相似文献   

15.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

16.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

17.
The sediments deposited on the northern margin of Greater India during the Paleocene allow the timing of collision with the Spontang Ophiolite, the oceanic Kohistan–Dras Arc and Eurasia to be constrained. U–Pb dating of detrital zircon grains from the Danian (61–65 Ma) Stumpata Formation shows a provenance that is typical of the Tethyan Himalaya, but with a significant population of grains from 129 ± 7 Ma also accounting for ∼15% of the total, similar to the synchronous Jidula Formation of south central Tibet. Derivation of these grains from north of the Indus Suture can be ruled out, precluding India’s collision with either Eurasia or the Kohistan–Dras before 61 Ma. Despite the immediate superposition of the Spontang Ophiolite, there are no grains in the Stumpata Formation consistent with erosion from this unit. Either Spontang obduction is younger than previously proposed, or the ophiolite remained submerged and/or uneroded until into the Eocene. The Mesozoic grains correlate well with the timing of ∼130 Ma volcanism in central Tibet, suggesting that this phase of activity is linked to extension across the whole margin of northern India linked to the separation of India from Australia and Antarctica at that time. Mesozoic zircons in younger sedimentary rocks in Tibet suggest a rapid change in provenance, with strong erosion from within or north of the suture zone starting in the Early Eocene following collision. We find no evidence for strongly diachronous collision from central Tibet to the western Himalaya.  相似文献   

18.
Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, right-laterally displaced tectonic piercing point along the southern Caribbean plate margin. U–Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000–1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma–1200 Ma, 750–950 Ma, and 200–300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene–middle Eocene ages (65–50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin.  相似文献   

19.
台湾始新统—中新统沉积物源与沉积环境   总被引:1,自引:1,他引:0  
台湾地区出露的始新统-中新统地层属南海北侧的范畴,其物质组成及沉积环境为揭示南海新生代早期构造沉积演化提供了关键性依据。对台湾西部麓山带中部南投粗坑地区、国姓地区以及东北海岸新港-基隆地区的始新统-中新统地层进行了岩石学、矿物学、稀土元素地球化学特征以及碎屑锆石U-Pb定年分析等研究。结果显示:台湾中部和北部从始新世到中新世经历了从陆相河流-湖泊相沉积环境到滨浅海相的环境转变,其砂岩成分成熟度随时间由老变新呈现规律性变化;沉积物源分析表明研究区沉积物在始新世-早渐新世,物源以近源中生代源区为主,碎屑锆石年龄谱系出现120 Ma和230 Ma两个主要峰值,与周边及华南沿海地区中生代火山岩时代一致;进入晚渐新世以后,锆石年龄谱系出现900 Ma及1 800 Ma等古老峰值,说明古老地块物质明显增加,这可能反映了昆莺琼古河流由南海西部到东部的物质输送对台湾地区的影响作用。  相似文献   

20.
The NE–SW Tertiary magmatic belt of central Kalimantan is related to two separate periods of subduction; during the Eocene–Oligocene and Late Oligocene–Miocene. The younger magmatic belt is superimposed upon the earlier belt. This magmatic belt is characterized chiefly by Late Oligocene–Miocene volcanic products, among which limited exposures of the Eocene volcanics have also been mapped by previous investigators. This calc-alkaline magmatic belt has become known as the ‘gold belt’ of Central West Kalimantan on account of a number of discoveries of Neogene epithermal gold mineralization. This mineralization is found in central to proximal volcanic settings and occurred at relatively shallow depths. The earliest known subduction-related magmatism took place in the Eocene–Early Oligocene with the emplacement of calc-alkaline silicic pyroclastics, followed by a period of continental collision. Subsequent subduction-related magmatism continued from Late Oligocene–Pleistocene, during which time the magma evolved from calc-alkaline to potassic calc-alkaline. Plio-Pleistocene magmatism resulted in the formation of basalt flows. The present available K–Ar ages of the Cenozoic volcanics range from 51 to 1 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号