首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
We calculate the fields surrounding and the power radiated by a slowly rotating neutron star with a frozen-in magnetic dipole field, tilted with respect to the rotation axis, including the effects of spacetime curvature. The general relativistic effects suppress the radiated power relative to flat space by factors up to 1/7 for magnetic dipole radiation and 1/50 for the associated electric quadrupole radiation. This suppression exceeds that which might be expected from a surface red shift alone.Numerical results are found using power series which describe the behavior of electromagnetic fields exterior to a black hole or slowly rotating neutron star. These new solutions, appropriate near the stellar surface, converge for all radii exterior to the neutron star (or black hole) making analytic continuation of the power series unnecessary as well as allowing matching to a linear combination of asymptotic expansions, appropriate for large radius. Typical numerical values for these functions are presented as well as techniques for accelerating the convergence of their respective power series which make them attractive alternatives to numerical integration.Supported in part by NSF Grant PHY 77 28356.  相似文献   

2.
Just as a rotating magnetized neutron star has material pulled away from its surface to populate a magnetosphere, a similar process can occur as a result of neutron-star pulsations rather than rotation. This is of interest in connection with the overall study of neutron star oscillation modes but with a particular focus on the situation for magnetars. Following a previous Newtonian analysis of the production of a force-free magnetosphere in this way Timokhin et al., we present here a corresponding general-relativistic analysis. We give a derivation of the general relativistic Maxwell equations for small-amplitude arbitrary oscillations of a non-rotating neutron star with a generic magnetic field and show that these can be solved analytically under the assumption of low current density in the magnetosphere. We apply our formalism to toroidal oscillations of a neutron star with a dipole magnetic field and find that the low current density approximation is valid for at least half of the oscillation modes, similarly to the Newtonian case. Using an improved formula for the determination of the last closed field line, we calculate the energy losses resulting from toroidal stellar oscillations for all of the modes for which the size of the polar cap is small. We find that general relativistic effects lead to shrinking of the size of the polar cap and an increase in the energy density of the outflowing plasma. These effects act in opposite directions but the net result is that the energy loss from the neutron star is significantly smaller than suggested by the Newtonian treatment.  相似文献   

3.
Equilibrium models of differentially rotating nascent neutron stars are constructed, which represent the result of the accretion-induced collapse of rapidly rotating white dwarfs. The models are built in a two-step procedure: (1) a rapidly rotating pre-collapse white dwarf model is constructed; (2) a stationary axisymmetric neutron star having the same total mass and angular momentum distribution as the white dwarf is constructed. The resulting collapsed objects consist of a high-density central core of size roughly 20 km, surrounded by a massive accretion torus extending over 1000 km from the rotation axis. The ratio of the rotational kinetic energy to the gravitational potential energy of these neutron stars ranges from 0.13 to 0.26, suggesting that some of these objects may have a non-axisymmetric dynamical instability that could emit a significant amount of gravitational radiation.  相似文献   

4.
We consider in this paper the evolution of a collapsing (or exploding), uniformly rotating, uniformly magnetized spheroidal star with non-aligned rotational and magnetic axes. Analytical expressions were obtained for the change in angle (obliquity) between the two axes (based on the frozen field condition), and the energy loss via magnetic, dipole radiation. Numerical estimates with typical data show that the obliquity increases (asymptotically to /2) with the collapse from white dwarf to neutron star, and the energy loss could be as much as 4×1039 ergs, about twice the amount emitted when the two axes are aligned.  相似文献   

5.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

6.
The spectra of disc accreting neutron stars generally show complex curvature, and individual components from the disc, boundary layer and neutron star surface cannot be uniquely identified. Here we show that much of the confusion over the spectral form derives from inadequate approximations for Comptonization and for the iron line. There is an intrinsic low-energy cut-off in Comptonized spectra at the seed photon energy. It is very important to model this correctly in neutron star systems as these have expected seed photon temperatures (from either the neutron star surface, inner disc or self-absorbed cyclotron) of ≈1 keV, clearly within the observed X-ray energy band. There is also reflected continuum emission which must accompany the observed iron line, which distorts the higher energy spectrum. We illustrate these points by a reanalysis of the Ginga spectra of Cyg X-2 at all points along its Z track, and show that the spectrum can be well fitted by models in which the low-energy spectrum is dominated by the disc, while the higher energy spectrum is dominated by Comptonized emission from the boundary layer, together with its reflected spectrum from a relativistically smeared, ionized disc.  相似文献   

7.
8.
We present the results of three-dimensional hydrodynamical simulations of the final stages of in-spiral in a black hole–neutron star binary, when the separation is comparable to the stellar radius. We use a Newtonian smooth particle hydrodynamics (SPH) code to model the evolution of the system, and take the neutron star to be a polytrope with a soft (adiabatic indices     and     equation of state and the black hole to be a Newtonian point mass. The only non-Newtonian effect we include is a gravitational radiation back reaction force, computed in the quadrupole approximation for point masses. We use irrotational binaries as initial conditions for our dynamical simulations, which are begun when the system is on the verge of initiating mass transfer and followed for approximately 23 ms. For all the cases studied we find that the star is disrupted on a dynamical time-scale, and forms a massive     accretion torus around the spinning (Kerr) black hole. The rotation axis is clear of baryons (less than 10−5 M within 10°) to an extent that would not preclude the formation of a relativistic fireball capable of powering a cosmological gamma-ray burst. Some mass (the specific amount is sensitive to the stiffness of the equation of state) may be dynamically ejected from the system during the coalescence and could undergo r-process nucleosynthesis. We calculate the waveforms, luminosities and energy spectra of the gravitational radiation signal, and show how they reflect the global outcome of the coalescence process.  相似文献   

9.
It is shown that an outgoing null radiation field in the outer space of a Kerr-Newman black hole is darkened by the rotation of the black hole. This rotational darkening is calculated for a spheroid emitting null radiation normally to its surface, yielding the von Zeipel-like effectthat the equatorial region is darkened more strongly than the polar regions.This effect is not confined to the case of black holes but is also observable for relativistically rotating fluid spheroids such as atmospheres of pulsars or neutron stars. Moreover, application to Hawking radiation suggests that the black hole cannot be viewed as a classical black body but that the Hawking radiationis a global geometric effect. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
We find that in general relativity slow down of the pulsar rotation due to the magnetodipolar radiation is more faster for the strange star with comparison to that for the ordinary neutron star of the same mass. Comparison with astrophysical observations on pulsars spindown data may provide an evidence for the strange star existence and, thus, serve as a test for distinguishing it from the neutron star.  相似文献   

11.
The analysis of observations of pulsar B1931+24 shows that the mechanism of the spin-down of a rotating magnetized neutron star is due to the plasma generation in its magnetosphere and, consequently, the radio emission generation. The unique observation of the switch on and switch off of this pulsar allows us to distinguish between the energy loss in the absence of radio emission (the magnetodipole radiation) and the current loss due to the rotation energy expenditure to the relativistic plasma generation and acceleration in the pulsar magnetosphere. The inclination angle χ, the angle between the rotation axis and the magnetic dipole axis, can be stationary for this pulsar,  χ=χst  . From observations and theory it follows that  χst= 59°  .  相似文献   

12.
Intermediate-range gravitational forces have been predicted by certain grand unified theories. If such forces exist, they would naturally affect the structure of neutron stars. Here, a simple rotating neutron star model is constructed which, under fairly mild assumptions, can be integrated exactly for the pressure. According to this model, the effect on neutron star masses by intermediate range forces is negligible, except when the range approaches the radius of the star and the coupling constant is close to the usual gravitation constant. In addition, extremely short range forces can be shown to have negligible effect, even when the coupling constant is many orders of magnitude greater thanG. Thus, there appears to be little hope of using neutron star mass measurements to test such grand unified theories.  相似文献   

13.
We consider the evolution of a neutron star binary system under the effect of two factors: gravitational radiation and mass transfer between the components. Gravitational radiation is specified under the justified assumption of a circular orbit and point masses and in the approximation of a weak gravitational field at nonrelativistic velocities of the binary components. During the first evolutionary phase determined only by gravitational radiation, the neutron stars approach each other according to a simple analytical solution. The second evolutionary phase begins at the time of Roche-lobe filling by the low-mass component, when the second factor, mass transfer as a result of mass loss by the latter, also begins to affect the evolution. Under the simplest assumptions of conservative mass transfer and exact equality between the Roche-lobe radius and the radius of the low-mass neutron star, it is still possible to extend the analytical solution of the problem of evolution to its second phase. We present this complete solution at both phases and, in particular, give theoretical light curves of gravitational radiation that depend only on two dimensionless parameters (m t and δ 0). Based on the solution found, we analyze the theoretical gravitational signals from SN 1987A; this analysis includes the hypothesis about the rotational explosion mechanism for collapsing supernovae.  相似文献   

14.
It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron–positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron–positron plasma generation becomes possible even for slowly rotating neutron stars, with   PB −2/312 < 10 s  , where P is the period of star rotation and   B 12= B /1012 G  is the magnitude of the magnetic field on the star surface.  相似文献   

15.
We study the structure of electromagnetic field of slowly rotating magnetized star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and frozen-in dipolar magnetic field. Maxwell’s equations for the external magnetic field of the star in the braneworld are analytically solved in approximation of small distance from the surface of the star. We have also found numerical solution for the electric field outside the rotating magnetized neutron star in the braneworld in dependence on brane tension. The influence of brane tension on the electromagnetic energy losses of the rotating magnetized star is underlined. Obtained “brane” corrections are shown to be relevant and have non-negligible values. In comparison with astrophysical observations on pulsars spindown data they may provide an evidence for the brane tension and, thus, serve as a test for the braneworld model of the Universe.  相似文献   

16.
The phenomenon of pulsars is considered as the evidence for existence of black holes in neutron and quark stars. Within the framework of the degenerated star model with black-hole interior the existence of millisecond pulsars withP<0.5 ms and single pulsars with negative derivative of the period were predicted. The anisotropic accretion of neutron (or quark) star matter on to a rotating black hole leads to the formation of directed radiation (projector), which makes heat spots at surface (volcanos), that explains the nature of pulsating radiation and the complicated structure of impulses. This model gives both the mechanism of self-acceleration of degenerated star rotation (mass accretion on to the internal black hole) producing millisecond pulsars and also the mechanism of significant deceleration of rotation (ejection of neutral mass through a volcanic crater), leading to long-periodic X-ray pulsars. The black hole produces high densities and temperatures of the degenerated star mass that transforms gradually the neutron star into quark star (Cygnus X-3).  相似文献   

17.
Plasma magnetosphere surrounding rotating magnetized neutron star in the braneworld has been studied. For the simplicity of calculations Goldreich-Julian charge density is analyzed for the aligned neutron star with zero inclination between magnetic field and rotation axis. From the system of Maxwell equations in spacetime of slowly rotating star in braneworld, second-order differential equation for electrostatic potential is derived. Analytical solution of this equation indicates the general relativistic modification of an accelerating electric field and charge density along the open field lines by brane tension. The implication of this effect to the magnetospheric energy loss problem is underlined. It was found that for initially zero potential and field on the surface of a neutron star, the amplitude of the plasma mode created by Goldreich-Julian charge density will increase in the presence of the negative brane charge. Finally we derive the equations of motion of test particles in magnetosphere of slowly rotating star in the braneworld. Then we analyze particle motion in the polar cap and show that brane tension can significantly change conditions for particle acceleration in the polar cap region of the neutron star.  相似文献   

18.
Undamped quasiradial fluctuations of rotating neutron stars and the gravitation radiation generated by them are discussed. Two possible sources of energy for maintaining these fluctuations are mentioned: the energy of deformation of the decelerating neutron star (spin down) and the energy released during a jump in the star's angular velocity (glitch). Expressions are derived for the intensity of the gravitational radiation and the amplitude of a plane gravitational wave for an earthbound observer. Estimates of these quantities are obtained for the Vela and Crab pulsars, for which the secular variation in the angular velocity is most often accompanied by irregular variations. It is shown that gravitational waves from these pulsars could be detected by the new generation of detectors.  相似文献   

19.
20.
A model for the Rapid X-ray Burster (MXB 1730-333) based on an accreting rotating magnetized neutron star in a binary system is proposed. The bursts are attributed to instabilities produced at an equilibrium surface above the poles of the neutron star, which is created by the infalling gas supported by a combination of radiation and relativistic gas pressures. The special feature of the proposed model is that, when accretion onto the poles is prevented by radiation pressure, relativistic gas streams out of the polar region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号