首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Analysis of wintertime CLIMODE data for 2007 indicates that a substantial portion of new Eighteen Degree Water (EDW) is likely ventilated within the eastward flowing Gulf Stream (GS) between 67°W and 52°W longitudes, possibly exceeding that formed elsewhere in the northern Sargasso Sea. Use of some global air–sea interaction data sets applied to the study region for Feb/Mar of 2007 indicate that this winter may have been anomalously energetic in air–sea exchange compared to the mean of the prior 19 yr. The largest heat and freshwater fluxes found directly over the meandering warm core of the Gulf Stream are capable of removing most of the subtropical heat anomaly of the GS, but cross-frontal fluxes of salinity are required to account for the observed regional salinity structure. An isopycnal diffusivity of ∼100 m2 s−1 is inferred from the salinity balance. This mixing would also account for the observation that EDW formed in the GS is slightly fresher than that formed in northern Sargasso Sea. The lateral flux of heat across the GS north wall also acts to cool the resulting EDW water, but the heat balance for EDW production is largely determined from GS advection and air–sea fluxes, in contrast to salinity. Based on oxygen saturation data, we estimate that 1.8–3.0 Sv-yr of new EDW is formed in the GS for the winter of 2007. EDW originating from the GS is generated in a separate location from where it is accumulated in the northern Sargasso Sea. This manner of EDW formation will produce unique characteristics of EDW found in the northern Sargasso Sea: ones that differ in T/S properties from that formed south of the GS under the more traditional 1D, cooling-driven convection process.  相似文献   

2.
Studies of nitrogen and phosphorus dynamics in the oligotrophic surface waters of the western North Atlantic Ocean have been constrained because ambient concentrations are typically at or below the detection limits of standard colorometric methods, except during periods of deep vertical mixing. Here we report the application of high-sensitivity analytical methods—determinations of nitrate plus nitrite (N+N) by chemiluminescence and soluble reactive phosphorus (SRP) by the magnesium induced co-precipitation (MAGIC) protocol—to surface waters along a transect from the Sargasso Sea at 26°N through the Gulf Stream at 37°N, including sampling at the JGOFS Bermuda Atlantic Time-series Study (BATS) station. The results were compared with data from the BATS program, and the HOT station in the Pacific Ocean, permitting cross-ecosystem comparisons. Microbial populations were analyzed along the transect, and an attempt was made to interpret their distributions in the context of the measured nutrient concentrations.Surface concentrations of N+N and SRP during the March 1998 transect separated into 3 distinct regions, with the boundaries corresponding roughly to the locations of the BATS station (∼31°N) and the Gulf Stream (∼37°N). Although N+N and SRP co-varied, the [N+N] : [SRP] molar ratios increased systematically from ∼1 to 10 in the southern segment, remained relatively constant at ∼40–50 between 31°N and 37°N, then decreased again systematically to ratios <10 north of the Gulf Stream. Dissolved organic N (DON) and P (DOP) dominated (⩾90%) the total dissolved N (TDN) and P (TDP) pools except in the northern portion of the transect. The [DON] : [DOP] molar ratios were relatively invariant (∼30–60) across the entire transect.Heterotrophic prokaryotes (operationally defined as “bacteria”), Prochlorococcus, Synechococcus, ultra- and nanophytoplankton, cryptophytes, and coccolithophores were enumerated by flow cytometry. The abundance of bacteria was well correlated with the concentration of SRP, and that of the ultra- and nanophytoplankton was well correlated with the concentration of N+N. The only group whose concentration was correlated with temperature was Prochlorococcus, and its abundance was unrelated to the concentrations of nutrients measured at the surface.We combined our transect results with time-series measurements from the BATS site and data from select depth profiles, and contrasted these North Atlantic data sets with time-series of N and P nutrient measurements from a station in the North Pacific subtropical gyre near Hawaii [Hawaii Ocean Time-series (HOT) site]. Two prominent differences are readily observed from this comparison. The [N+N] : [SRP] molar ratios are much less than 16 : 1 during stratified periods in surface waters at the BATS site, as is the case at the HOT site year round. However, following deep winter mixing, this ratio is much higher than 16 : 1 at BATS. Also, SRP concentrations in the upper 100 m at BATS fall in the range 1–10 nM during stratified periods, which is at least one order of magnitude lower than at the HOT site. That two ecosystems with comparable rates of primary and export production would differ so dramatically in their nutrient dynamics is intriguing, and highlights the need for detailed cross ecosystem comparisons.  相似文献   

3.
In July–September 1997 two hydrographic lines were done in the western N. Atlantic along longitudes of 52 and 66°W as part of the WOCE one-time hydrographic survey of the oceans. Each of these two lines approximately repeated earlier ones done during the International Geophysical Year(s) (IGY) and the mid-1980s. Because of this repeated sampling, long-term hydrographic changes in the water masses can be examined. In this report, we focus on temperature and salinity changes within the subtropical gyre mainly between latitudes of 20 and 35°N and compare our results to those presented by Bryden et al. (1996), who examined changes along a zonal line at 24°N, most recently occupied in 1992. Since this most recent 24°N section in 1992, substantial changes have occurred in the western part of the subtropical gyre at the depths of the Labrador Sea Water (LSW). In particular, we see clear evidence for colder, fresher Labrador Sea Water throughout the gyre on our two recent sections that was not yet present in 1992 at similar longitudes along 24°N. At shallower depths inhabited by waters that are an admixture of Mediterranean (MW) and Antarctic Intermediate Waters (AAIW), our recent survey shows an increase in salinity, which can only be attributed to changes in water masses on potential temperature or neutral density surfaces. Furthermore, waters above the MW/AAIW layer and into the deeper part of the main pycnocline have continued to become saltier and warmer throughout the 40-year period spanned by our sections. These latter changes have been dominantly due to a vertical sinking of density surfaces as T/S changes in density surfaces are small, but depths of individual T/S horizons have increased with time. The net change since the IGY shows a mean temperature increase between 800 and 2500 m depth at a rate of 0.57°C/century with a corresponding steric sea level rise of 1 mm/yr, and a net downward heave with small values near the top and bottom, and a maximum rate of −2.7 m/yr at 1800 m depth. Changes in the deep Caribbean indicate a warming since the IGY due to temperature increases of the inflowing source waters in the subtropical gyre at 1800m depth, but no significant change in the deep salinity.  相似文献   

4.
Year-long Lagrangian trajectories within the Labrador Sea Water of the eastern North Atlantic Ocean are analysed for basic flow statistics. Root-mean-square velocities at 1750 m depth are about 2 cm/s, except within the North Atlantic Current, where they are twice as large. These values are consistent with previous Eulerian measurements and extend those results to a much larger domain of the eastern basin. Mean flow estimates in boxes large enough to contain about 1 float-year of data indicate that Labrador Sea Water, having crossed the Mid- Atlantic Ridge (not resolved) near 50–55°N, presumably with the North Atlantic Current, partially recirculates to the north in the subpolar gyre, as well as entering the subtropical gyre and continuing south and west. The circulation of this water mass, as defined by the 1 yr average velocities, is stronger than traditional models of deep circulation would suggest, with an interior flow of roughly 1 cm/s. Mean speeds up to 3 cm/s were observed, with the highest values near the Azores Plateau. North of 45°N–55°N, mean eastward speeds closer to 0.2 cm/s were observed. Wind-generated barotropic fluctuations may be responsible for some part of the transport at this depth.  相似文献   

5.
Airborne infrared and synthetic aperture radar imagery collected over the Gulf Stream are used to examine the surface patterns of small-scale thermal convection and wind-driven Langmuir circulation. These patterns have a thermal contrast of ~0.25 °C, which is roughly an order of magnitude larger than predicted by large-eddy simulations but consistent with the effect on surface temperature of surfactant accumulations induced by mixed-layer eddies.  相似文献   

6.
Thermocline ventilation rates for the subtropical North Pacific are determined using a 1-dimensional (meridional) along-isopycnal advective–diffusive model tuned to chlorofluorocarbon (CFC) concentrations measured along 152°W in 1991 during WOCE P16. Mean southward advection rates in the subtropics range from 1.03 to 0.56 cm s-1 between σθ=25.5 and 26.6. Model-derived ventilation times for the subtropical gyre increase from about 10 to 27 years for that isopycnal range. Oxygen utilization rates (OURs) determined using the advective-diffusive model decrease with depth from 6.6 to 3.2 μmol kg-1 yr-1 between σθ=25.5 and 26.6. Extrapolation of the OUR versus depth trend to the base of the euphotic zone with the 1/Z power function of Martin et al. (1987) and integration from 500 to 100 m depth implies a carbon export rate from the overlying euphotic zone of 2.2±0.5 moles C m-2 yr-1 at 30°N, 152°W. Analysis of the WOCE radiocarbon and salinity distributions indicates that zonal and cross-isopycnal transport terms would have to be considered in modeling these tracers in the subtropical North Pacific.  相似文献   

7.
Euphotic zone plankton production (P) and respiration (R) were determined from the in vitro flux of dissolved oxygen during six latitudinal transects of the Atlantic Ocean, as part of the Atlantic Meridional Transect (AMT) programme. The transects traversed the North and South Atlantic Subtropical Gyres (N gyre, 18–38°N; S gyre, 11–35°S) in April–June and September–November 2003–2005. The route and timing of the cruises enabled the assessment of the seasonal variability of P, R and P/R in the N and S gyres, and the comparison of the previously unsampled N gyre centre with the more frequently sampled eastern edge of the gyre. Mean euphotic zone integrated rates (±SE) were P=63±23 (n=31), R=69±22 (n=30) mmol O2 m−2 d−1 in the N gyre; and P=58±26 (n=30), R=62±24 (n=30) mmol O2 m−2 d−1 in the S gyre. Overall, the N gyre was heterotrophic (R>P) and it was more heterotrophic than the S gyre, but the metabolic balance of both gyres changed with season. Both gyres were net heterotrophic in autumn, and balanced in spring. This seasonal contrast was most pronounced for the S gyre, because it was more autotrophic than the N gyre during spring. This may have arisen from differences in nitrate availability, because spring sampling in the S gyre coincided with periods of deep mixing to the nitracline, more frequently than spring sampling within the N gyre. Our results indicate that the N gyre is less heterotrophic than previous estimates suggested, and that there is an apparent decrease in R from the eastern edge to the centre of the N gyre, possibly indicative of an allochthonous organic carbon source to the east of the gyre.  相似文献   

8.
The distribution and optical absorption characteristics of chromophoric dissolved organic matter (CDOM) were systematically investigated along three meridional transects in the North Atlantic Ocean and Caribbean Sea conducted as part of the 2003 US CLIVAR/CO2 Repeat Hydrography survey. Hydrographic transects covered in aggregate a latitudinal range of 5° to 62° north along longitudes 20°W (line A16N, Leg 1), 52°W (A20), and 66°W (A22). Absorption spectra of filtered seawater samples were collected and analyzed for depths ranging from the surface to ∼6000 m, sampling all the ocean water masses in the western basin of the subtropical North Atlantic and several stations on the North and South American continental slopes. The lowest surface abundances of CDOM (< 0.1 m−1 absorption coefficient at 325 nm) were found in the central subtropical gyres while the highest surface abundances (∼0.7 m−1) were found along the continental shelves and within the subpolar gyre, confirming recent satellite-based assessments of surface CDOM distribution. Within the ocean interior, CDOM abundances were relatively high (0.1–0.2 m−1 absorption coefficient at 325 nm) except in the subtropical mode water, where a local minimum exists due to the subduction of low CDOM surface waters during mode water formation. In the subthermocline water masses of the western basin, changes in CDOM abundance are not correlated with increasing ventilation age as assessed using chlorofluorocarbon (CFC) concentrations and the atmospheric CFC history. But dissolved organic carbon (DOC) mass-specific absorption coefficients of CDOM increase with increasing ventilation age in the deep sea, indicating that CDOM is a refractory component of the DOC pool. The overall CDOM distribution in the North Atlantic reflects the rapid advection and mixing processes of the basin and demonstrates that remineralization in the ocean interior is not a significant sink for CDOM. This supports the potential of CDOM as a tracer of ocean circulation processes for subducted water masses.  相似文献   

9.
The results from a~1 km resolution HYbrid Coordinate Ocean Model (HYCOM), forced by 1/2° Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric data, were used in order to study the dynamic response of the Persian Gulf to wintertime shamal forcing. Shamal winds are strong northwesterly winds that occur in the Persian Gulf area behind southeast moving cold fronts. The period from 20 November to 5 December 2004 included a well defined shamal event that lasted 4–5 days. In addition to strong winds (16 m s?1) the winter shamal also brought cold dry air (Ta=20 °C, qa=10 g kg?1) which led to a net heat loss in excess of 1000 W m?2 by increasing the latent heat flux. This resulted in SST cooling of up to 10 °C most notably in the northern and shallower shelf regions. A sensitivity experiment with a constant specific humidity of qa=15 g kg?1 confirmed that about 38% of net heat loss was due to the air–sea humidity differences. The time integral of SST cooling closely followed the air–sea heat loss, indicating an approximate one-dimensional vertical heat balance. It was found that the shamal induced convective vertical mixing provided a direct mechanism for the erosion of stratification and deepening of the mixed layer by 30 m. The strong wind not only strengthened the circulation in the entire Persian Gulf but also established a northwestward flowing Iranian Coastal Current (ICC, 25–30 cm s?1) from the Strait of Hormuz to about 52°E, where it veered offshore. The strongest negative sea level of 25–40 cm was generated in the northernmost portion of the Gulf while the wind setup against the coast of the United Arab Emirates established a positive sea level of 15–30 cm. The transport through the Strait of Hormuz at 56.2°E indicated an enhanced outflow of 0.25 Sv (Sv≡106 m3 s?1) during 24 November followed by an equivalent inflow on the next day.  相似文献   

10.
《Journal of Sea Research》2008,59(4):331-334
Few studies have looked at the ecological significance of the ice foot in intertidal habitats. During the 2007 winter, we quantified the hourly variation of temperature at the intertidal zone and at the upper, dry coast on the southern Gulf of St. Lawrence (Nova Scotia, Canada) using submersible data loggers. While air temperature dropped to − 20 °C at the peak of the winter, intertidal temperature was never below − 7 °C during the winter. In fact, for almost two months when the ice foot was stable, temperature ranged only between − 2.4 °C and − 1.1 °C at the intertidal zone. The intertidal values are higher than published values of lethal temperature for cold-water intertidal invertebrates and seaweeds. Thus, the ice foot may prevent these organisms from experiencing lethal levels of thermal stress, contributing to their long-term persistence in these environmentally stressful habitats.  相似文献   

11.
The northward flowing Antarctic Intermediate Water (AAIW) is a major contributor to the large-scale meridional circulation of water masses in the Atlantic. Together with bottom and thermocline water, AAIW replaces North Atlantic Deep Water that penetrates into the South Atlantic from the North. On the northbound propagation of AAIW from its formation area in the south-western region of the Argentine Basin, the AAIW progresses through a complex spreading pattern at the base of the main thermocline. This paper presents trajectories of 75 subsurface floats, seeded at AAIW depth. The floats were acoustically tracked, covering a period from December 1992 to October 1996. Discussions of selected trajectories focus on mesoscale kinematic elements that contribute to the spreading of AAIW. In the equatorial region, intermittent westward and eastward currents were observed, suggesting a seasonal cycle of the AAIW flow direction. At tropical latitudes, just offshore the intermediate western boundary current, the southward advection of an anticyclonic eddy was observed between 5°S and 11°S. Farther offshore, the flow lacks an advective pattern and is governed by eddy diffusion. The westward subtropical gyre return current at about 28°S shows considerable stability, with the mean kinetic energy to eddy kinetic energy ratio being around one. Farther south, the eastward deeper South Atlantic Current is dominated by large-scale meanders with particle velocities in excess of 60 cm s-1. At the Brazil–Falkland Current Confluence Zone, a cyclonic eddy near 40°S 50°W seems to act as injector of freshly mixed AAIW into the subtropical gyre. In general, much of the mixing of the various blends of AAIW is due to the activity of mesoscale eddies, which frequently reoccupy similar positions.  相似文献   

12.
Dissolved oxygen (DO) in the ocean is a tracer for most ocean biogeochemical processes including net community production and remineralization of organic matter which in turn constrains the biological carbon pump. Knowledge of oxygen dynamics in the North Atlantic Ocean is mainly derived from observations at the Bermuda Atlantic Time-series Study (BATS) site located in the western subtropical gyre which may skew our view of the biogeochemistry of the subtropical North Atlantic. This study presents and compares a 15 yr record of DO observations from ESTOC (European Station for Time-Series in the Ocean, Canary Islands) in the eastern subtropical North Atlantic with the 20 yr record at BATS. Our estimate for net community production of oxygen was 2.3±0.4 mol O2 m−2 yr−1 and of oxygen consumption was −2.3±0.5 mol O2 m−2 yr−1 at ESTOC, and 4 mol O2 m−2 yr−1 and −4.4±1 mol m−2 yr−1 at BATS, respectively. These values were determined by analyzing the time-series using the Discrete Wavelet Transform (DWT) method. These flux values agree with similar estimates from in-situ observational studies but are higher than those from modeling studies. The difference in net oxygen production rates supports previous observations of a lower carbon export in the eastern compared to the western subtropical Atlantic. The inter-annual analysis showed clear annual cycles at BATS whereas longer cycles of nearly 4 years were apparent at ESTOC. The DWT analysis showed trends in DO anomalies dominated by long-term perturbations at a basin scale for the consumption zones at both sites, whereas yearly cycles dominated the production zone at BATS. The long-term perturbations found are likely associated with ventilation of the main thermocline, affecting the consumption and production zones at ESTOC.  相似文献   

13.
We use hydrographic and buoy data to compare the initial temperature fields and Lagrangian evolution of water parcels in two vortices generated by the southward flowing Canary Current passing around the island of Gran Canaria Island. One vortex is anticyclonic, shed in June 1998 as the result of an incident current of about 0.05 m s−1, and the second one is cyclonic, shed in June 2005 with the impinging current estimated as 0.03 m s−1. The two vortices exhibit contrasting characteristics yet display some important similarities. The isopycnals are depressed in the core of the anticyclonic vortex, at least down to a depth of 700 m, whilst they dome up in the core of the cyclonic vortex but only down to 450 m. In the top 300 m the depression/doming of the isotherms is similar for both vortices, with a maximum vertical displacement of the isotherm of about 80 m, which correspond to temperature anomalies of some 2.5 °C at a given depth. A simple method is developed to obtain the initial orbital velocity field from the temperature data, from which we estimate peak values of 0.7 and 0.5 m s−1 for the anticyclonic and cyclonic vortices, respectively. The buoys, three for the anticyclonic vortex and two for the cyclonic one, were drougued at 100 m depth, below the surface mixed layer, and their initial velocities are consistent with the above values. In both vortices, the buoys revolve either within a central core, where the rotation rate remains stable and large for several weeks, or in an outer ring, where the rotation rate is significantly smaller and displays large radial fluctuations. Within the inner core the anticyclonic vortex has significant inward radial velocity, while the cyclonic vortex has near-zero radial mean motions. The cyclonic vortex rotates more slowly than the anticyclonic, their initial periods being 4.5 and 2.5 days, respectively. A simple axisymmetric model with radial diffusion (coefficient Kh≅25 m2 s−1) and advection reproduces the observations reasonably well, the diffusive effect being more important than that resulting from the observed radial advection. The model also supports the hypothesis that the rotation rate of cyclonic vortices is less than that of anticyclonic vortices, as otherwise they would become inertially unstable. Both the buoys data and sea surface temperature images confirm that the vortices evolve from youth to maturity, as the cores shrink and the outer rings expands, and then to a decay stage, as the core rotation rates decrease, though frequent interactions with other mesoscale structures result in more accelerated aging. Despite these interaction they last many months as coherent structures south of the Canary Islands.  相似文献   

14.
《Ocean Modelling》2011,40(3-4):209-219
Meridional shifts of the Gulf Stream (GS) jet on interannual to decadal timescales and the corresponding oceanic changes around the GS are investigated using a near global eddy-resolving ocean model hindcast from 1960 to 2003. The simulated variability in the shifts of the GS jet axis shows good agreement with observations, and lags atmospheric fluctuations characterized by the North Atlantic Oscillation by about 2 years. This lagged response of the GS jet to the atmospheric variations is attributed to the westward propagation of the undulation of the jet axis from 45°W to 75°W, which has a wavelength of about 4000 km and a displacement of 0.5°. The propagation direction and phase speed of about 2.8 cm s−1 are consistent with the thin-jet theory. The shifts of the jet axis in the downstream region are likely induced by wind fluctuations through Ekman convergence over the central North Atlantic. Associated with the northward (southward) shift of the jet axis, sea surface temperature is warming (cooling) around and north of the jet, and the former warming has a deep and meridionally narrow subsurface structure, consistent with the northward shift of the jet. The meridional shifts of the jet accompany coherent meridional shifts of energetic eddy activity regions around the GS. Our numerical results suggest that the GS jet brings the atmospheric signals from the central to the western North Atlantic, and the resultant meridional shift of the jet induces the notable oceanic changes around the GS.  相似文献   

15.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

16.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

17.
A review of oceanographic properties in the vicinity of Ocean Station Papa (OSP) is presented, using data collected over the past 42 years. Average annual signals at OSP and seasonal characteristics along Line P represent variability on a large scale in the Gulf of Alaska. Between winter and summer, the upper ocean mixed layer varies between 120 and 40 m, monthly average winds decrease from 12 m/s in winter to 7 m/s in July, seawater temperatures warm from lows of 6°C to highs >12°C, waters freshen slightly in summer, and macronutrients are partially depleted by phytoplankton growth (removal of 7.8 μM NO3 in 1970s and 6.5 μM NO3 in 1990s). El Niño events influence this area by transporting heat northward. During the prolonged El Niño of the early 1990s, warming persisted at OSP through 1994, resulting in a reduced macronutrient supply during winter mixing. Changes in water properties over the four decades of observations are evident. There are trends towards warmer and less saline surface waters, lower winter nitrate and silicate levels, and less macronutrient utilisation in the 1990s compared to the 1970s. We speculate that these changes must be reducing the productivity of NE subarctic Pacific waters.  相似文献   

18.
A novel shipboard gas tension device (GTD) that measures total dissolved air pressure in ocean surface waters is described and demonstrated. In addition, an improved method to estimate dissolved N2 levels from simultaneous measurements of gas tension, dissolved O2, water temperature, and salinity is described. Other than a flow-through plenum, the shipboard GTD is similar to the previously described moored-mode GTD (McNeil et al., 1995, Deep-Sea Research I 42, 819–826). The plenum has an integrated water-side screen to protect the membrane, and prevent the membrane from flexing in super-saturated near surface waters. The sampling scheme uses a well mixed and thermally insulated 15 L container that is flushed by the ship's seawater intake at a rate of 3–15 L min−1. Dissolved gas sensors are placed inside this container and flushed with a small recirculation pump. Laboratory data that characterize the response of the modified GTD are presented. The modified GTD has a constant, isothermal, characteristic (e-folding) response time of typically 11±2 min at 20 °C. The response time decreases with increasing temperature and varies by ±35% over a temperature range of 5–35 °C. Results of field measurements, collected on the R.V. Brown between New York and Puerto Rico during September 2002, are presented, and provide the first look at co-variability in surface ocean N2, O2, and CO2 levels over horizontal length scales of several kilometers. Dissolved N2 concentrations decreased by approximately 16% as the ship sailed from the colder northern continental shelf waters, across the Gulf Stream, and into the warmer northwestern Atlantic Ocean. Historical database measurements, buoy time series, and satellite imagery, are used to aid interpretation of the dissolved gas levels.  相似文献   

19.
Between 1996 and the mid-2000s the upper waters (200–700 m) of the Rockall Trough became warmer (+0.72 °C), saltier (+0.088) and reduced in nitrate and phosphate (−2.00 µM and −0.14 µM respectively). These changes, out-with calculated errors, can be explained by the varying influence of southern versus subpolar water masses in the basin as the Subpolar Gyre weakened and contracted. Upper water properties strongly correlate with a measure of the strength of the Subpolar Gyre (the first principal component of sea surface height over the Subpolar North Atlantic) prior to the mid-2000s. As the gyre weakens, the upper layers of the trough become warmer (r−0.85), more saline (r−0.86) and reduced in nitrate and phosphate (r+0.81 and r+0.87 respectively). Further the proportion of subpolar waters in the basin decreases from around 50% to less than 20% (r+0. 88). Since the mid−2000s the Subpolar Gyre has been particularly weak. During this period temperatures decreased slightly (−0.21 °C), salinities remained near constant (35.410±0.005) and phosphate levels low and stable (0.68±0.02 µM). These relative lack of changes are thought to be related to the maximum proportion of southern water masses within the Rockall Trough having been reached. Thus the upper water properties are no longer controlled by changes in the relative importance of different water masses in the basin (as prior to the mid-2000s), but rather a different process. We suggest that when the gyre is particularly weak the interannual changes in upper water properties in the Rockall Trough reflect changes in the source properties of the southern water masses. Since the early-2000s the Subpolar Gyre has been weaker than observed since 1992, or modelled since 1960–1970. Hence upper waters within the Rockall Trough may be warmer, saltier and more depleted in nitrate and phosphate than at any time in the last half century.  相似文献   

20.
Net community biological production in the euphotic zone of the ocean fuels organic matter and oxygen export from the upper ocean, which has a large influence on the atmospheric pressure of carbon dioxide and is the driving force for metabolite distributions in the sea. We determine the net annual biological oxygen production in the mixed layer of the northeast subarctic Pacific Ocean from in situ O2 and N2 measurements. Temperature, salinity, total gas pressure and O2 were measured every 3 h for 9 months in 2007 at about 3 m depth on a surface mooring at Station P (50°N, 145°W). The concentration of nitrogen gas, N2, determined from separate total gas pressure and pO2 measurements, was used as an inert tracer of the physical processes that induce gas departure from thermodynamic equilibrium with the atmosphere. We use a simple model of the ocean’s mixed layer along with the nitrogen concentration to constrain the importance of bubbles, gas exchange and horizontal advection, which are then used in the oxygen mass balance to derive net biological oxygen production. The mixed-layer oxygen mass balance is dominated by exchange with the atmosphere, and we determine a mean summertime oxygen production of 24 mmol O2 m?2 d?1. The annual pattern in the difference between the supersaturation of oxygen and nitrogen in the surface waters reveals very little net oxygen production during the winter at this location. The calculated annual net community production (NCP) of carbon from this new method, 2.5 mol m?2 yr?1, agrees to within its error of about×40% with previous determinations at this location from oxygen mass balance, NO3? draw down and 234Th measurements. This value is either indistinguishable from or lower than annual NCP measurements in the subtropical North Pacific, indicating that there is no experimental evidence for differences in annual NCP between the subarctic and subtropical North Pacific Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号