首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
During the first stage of the project work on the Indian Deep-Sea Environment Experiment (INDEX), the abundance and distribution of deep-sea benthos were surveyed in the Central Indian Basin for the collection of baseline data. The deep-sea community of the sediment was characterized by a moderately high standing crop and diverse fauna. The macrofaunal component was dominated by polychaetes (100% prevalence) and peracarid crustaceans, whereas the meiofauna was dominated by nematodes and harpacticoid copepods. The results of this study conform to the general distribution reported elsewhere. The macrofaunal abundance showed an inverse relation to the abundance of polymetallic nodules. However, the relation between meiofaunal vertical distribution and the vertical profile of the total organic matter and total labile matter was positive.  相似文献   

2.
Abstract

During the first stage of the project work on the Indian Deep-Sea Environment Experiment (INDEX), the abundance and distribution of deep-sea benthos were surveyed in the Central Indian Basin for the collection of baseline data. The deep-sea community of the sediment was characterized by a moderately high standing crop and diverse fauna. The macrofaunal component was dominated by polychaetes (100% prevalence) and peracarid crustaceans, whereas the meiofauna was dominated by nematodes and harpacticoid cope-pods. The results of this study conform to the general distribution reported elsewhere. The macrofaunal abundance showed an inverse relation to the abundance of polymetallic nodules. However, the relation between meiofaunal vertical distribution and the vertical profile of the total organic matter and total labile matter was positive.  相似文献   

3.
Density, taxonomic composition at higher taxon level and vertical distribution of benthic macrofaunal communities and sediment characteristics (pore water, nitrogen, organic carbon, sulfur, C/N ratio, n-alcohol biomarkers) were examined at three deep sites on the Congo–Gabon continental margin. This study was part of the multidisciplinary BIOZAIRE project that aimed at studying the deep benthic ecosystems in the Gulf of Guinea. Sampling of macrofaunal communities and of sediment was conducted during three cruises (January 2001, December 2001 and December 2003) at two downslope sites (4000 m depth), one located near the Congo submarine channel (15 km in the south) and the other one far from the channel (150 km in the South). The third area located 8 km north of the Congo channel in the surroundings of a giant pockmark at 3160 m depth was sampled during one cruise in December 2003.At these three locations the macrofaunal communities presented relatively high densities (327–987 ind. 0.25 m−2) compared with macrofaunal communities at similar depths; that is due to high levels of food input related to the Congo river and submarine system activities that affect the whole study area. The communities were different from each other in terms of taxonomic composition at higher taxon level (phylum, class, order for all the groups except for the polychaetes classified into families). The polychaetes dominated the communities and were responsible for the increase in densities observed at both deep sites (4000 m) between January 2001 and December 2003 whereas the tanaidaceans, the isopods and the bivalves were the other most abundant taxa responsible for the spatial differences between these sites. The community at 3150 m differed from the two deep communities by higher abundances in bivalves, nemerteans and holothuroids. The composition of the polychaete community also differed among sites.In the vicinity of the Congo channel, the expected positive effect of the additional organic matter transported through the turbiditic currents on to the surrounding benthic communities was not observed, as the increase in densities during the study period was higher at the site located away from the Congo channel than near the channel (80% vs 30%). That may be due to the low food value of the organic matter of terrestrial origin carried through the turbidites, and/or to the disturbance caused by these turbidites. Conversely, far from the channel the macrofaunal communities benefit from organic matter of higher energetic value originating mainly from marine sources, but also from continental sources, carried by the Congo plume or by near-bed currents across or along the continental slope. Spatial and temporal variability in trophic and physical characteristics of the sediment habitat at both deep sites also affected the vertical distribution of the macrofaunal communities.The activities of the very active Congo system structure the deep macrofaunal communities on a large area in terms of densities, composition and vertical distribution. The food input is enhanced at regional scale as well as the heterogeneity of the sediment characteristics, mainly in terms of organic matter quality (marine vs terrigenous). In turn, the densities are enhanced as well as the regional diversity of the macrofaunal communities in terms of taxonomic composition and distribution.  相似文献   

4.
Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25–5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25–0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8–5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20–30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0–5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to β and γ diversity in deep-sea ecosystems.  相似文献   

5.
Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above ∼750 m marking the change from shelf species to bathyal species; (2) a zone from ∼750 to 1900 m that corresponds to the upper and mid-bathyal zones taken together; (3) a lower bathyal zone from ∼1900 to 2900 m; (4) a transition zone from ∼2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyal species with very broad distributions. The ∼4100 m boundary marked the lower limit of distribution of many bathyal species. There was a pattern of increasing diversity downslope from ∼500 to 1600 m, followed by a decrease to minimum values at about 2700 m. This drop in diversity was followed by an increase up to maximum values at ∼4100 m and then again, a fall to ∼4900 m (the lower depth limit in this study).  相似文献   

6.
The flatfish yellowfin sole (Limanda aspera), northern rock sole (Lepidopsetta polyxystra), and Alaska plaice (Pleuronectes quadrituberculatus) in the southeastern Bering Sea prey mainly on infauna. Spatial correspondence between their stomach contents and infauna assemblages across habitat types was examined to identify indices of prey availability for flatfish habitat characterization and quality assessment. Benthic samples and flatfish stomachs were collected in 2009 near the Alaska Peninsula in the southeastern Bering Sea. Polychaetes and bivalves were the most dominant infauna groups, each comprising 35–60% by weight in each infauna sample. These two were also the only prey groups that frequently averaged > 50% of stomach content by weight. Bivalves dominated the infauna biomass on the relatively sandy inner shelf (0–50 m depth). The muddier middle shelf (50–100 m) had the highest infauna biomass, which was dominated by polychaetes. Diet compositions of the flatfish varied spatially in correspondence with the infauna assemblage. Polychaetes were prevalent in all flatfish diets on the middle shelf, even yellowfin sole whose typical primary prey are amphipods and bivalves. Polychaete-rich habitats are potentially prime for flatfish as polychaetes are readily utilized where available and generally have high nutritional value. Flatfish did not select for specific polychaete taxa, so an index of habitat quality could be based on the biomass of aggregate polychaetes or on dominant polychaete families of the region. Under normal environmental conditions, the three flatfish have slightly-offset spatial distributions, enabling each to utilize different infauna assemblages across the shelf. However, during cold phases in the Bering Sea ecosystem, as when this study was conducted, a cold pool of < 2 °C bottom water from the spring ice melt extends over the middle shelf in summer. This physiological barrier displaces all three flatfish to the inner shelf, intensifying competition for prey resources.  相似文献   

7.
This study provides new information about the composition, diversity and zoogeography of abyssal polychaetes in the little-studied South Eastern Atlantic (Angola Basin). During the austral winter of 2000, twenty-five box core samples (total area sampled 6 m2) were taken along a 500-km transect in five work areas at depths exceeding 5000 m. A total of 1047 individuals representing 86 species belonging to 32 families was collected. Well over half the polychaetes (58 species; 67%) appear to be new to science, with the highest number of new species among the Cirratulidae, Paraonidae, Phyllodocidae, Ampharetidae, Opheliidae, and Spionidae. Eight of these new species were among the 16 dominant species in the deep Angola Basin whereas, 32 species (37%) were considered to be rare with only 1–2 individuals collected. Species accumulation curves did not level off at a fixed number of species, indicating that diversity would increase with additional sampling. Polychaete community assemblages among box core samples were highly variable. Ten of the known species are biogeographically widespread outside the Angola Basin whereas five appear to be restricted to the deep Atlantic. Two species have only been recorded in the Southern Ocean, and one in the southern hemisphere. Twenty (35%) of the species considered to be new to science were also found in samples from the deep Southern Ocean, whereas eight of the known species found in the Angola Basin have not been reported from the Southern Ocean to date. Surface deposit feeders and carnivores were the dominant functional groups both in terms of number of individuals and number of species. Necessary steps to further our knowledge of the little-known abyssal ecosystem are discussed.  相似文献   

8.
Detailed surveying with an ROV found that a dense and diverse cold-seep community colonises a giant pockmark located at 3200 m depth, 8 km north from the deep Congo channel. Several types of assemblages, either dominated by Mytilidae and Vesicomyidae bivalves or Siboglinidae polychaetes, are distributed on the 800-m diameter active area. The site is characterised by a most active central zone in a depression with abundant carbonate concretions and high methane fluxes where high-density clusters of mussels and siboglinids dominate. In contrast, the peripheral zones display large fields of dead and live vesicomyids on soft sediment, with a lower mean density and lower methane concentration in seawater. The associated megafauna includes Alvinocarididae shrimps, echinoids, holothurians of the family Synaptidae, several species of gastropods, two species of galatheids, and Zoarcidae and Ophidiidae fishes. Multivariate analyses of video transect data show that the distribution of these major megafauna species at the pockmark scale is influenced by the habitat heterogeneity due to fluid or gas emission, occurrence of hydrates, substratum variability and by the presence of large symbiont-bearing species. Several assemblages dominated either by mytilids, vesicomyids, or siboglinids have been sampled for megafauna densities and biomass estimations and stable isotope measurements (δ13C and δ15N) of dominant species and food sources. The highest estimates of megafauna densities have been obtained in mytilid beds. According to their stable isotopes values, non-symbiont-bearing species mainly rely on chemosynthesis-originated carbon, either as primary consumers of chemoautotrophic microorganisms, or at higher trophic level recycling organic matter, or relying on bivalve and tubeworm production. Most of them likely feed on different sources like shrimps, but differences according to habitat have been evidenced. Carbon and nitrogen isotope ratios of galatheids and benthic or benthopelagic fishes captured by trawls at increasing distances from the pockmark provide evidence of the high variability in the proportion of chemosynthesis-originated carbon in their diet, from 15% to 38%, according to the species captured as far as 4 km to the site.  相似文献   

9.
Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.  相似文献   

10.
Bathymetric patterns of macrofaunal species diversity are best documented in the western North Atlantic where diversity is a unimodal function of depth, peaking in the mid-bathyal zone and being depressed in the upper slope and abyss. There are few inter-basin studies of diversity-depth trends that are controlled for taxonomy, sampling gear, and diversity measures. In this paper, we compare gastropod diversity gradients in the North American Basin of the Atlantic to estimates of diversity in 9 other regions: the Norwegian Sea, West European Basin, Guiana Basin, Gambia Basin, Equatorial Mid-Atlantic, Brazil Basin, Angola Basin, Cape Basin and Argentine Basin. All samples were collected with epibenthic sleds, and diversity calculated by the Sanders-Hurlbert normalized expected number of species. While sampling in other regions is generally less complete than in the western North Atlantic, results indicate that a unimodal pattern is not universal. Diversity can increase, decrease or show no relationship with depth. The level of diversity also varies among basins relative to the western North Atlantic, being depressed in the Norwegian Sea, at bathyal depths in the eastern North Atlantic, and below an oxygen minimum zone in the Cape Basin, and generally elevated at tropical latitudes and in abyssal regions where food supply is high. Associations between gastropod diversity and the ecology and geology of basins suggest that productivity, oxygen concentration, hydrographic disturbance and evolutionary-historical processes may be implicated in shaping bathymetric diversity gradients, but specific causes are difficult to discern. Much more intensive sampling, analyses of other major taxa, and more detailed ecological data are necessary to understand deep-sea biogeography at within- and between-basin spatial scales.  相似文献   

11.
The spatial and temporal changes of near-bottom macrofauna (suprabenthos and macroplankton) and the trophic relationships of megabenthic decapod crustaceans were analyzed off the Catalonian coasts (western Mediterranean) around Berenguera submarine canyon in four periods (April and December 1991, March and July 1992) and four zones (within Berenguera Canyon at ca. 450 m, and on adjacent slope at ca. 400, 600 m and 1200 m). In March 1992, we found the highest macrofauna abundance and the smallest sizes in the canyon, suggesting a positive effect of river discharges on suprabenthos recruitment. By contrast, macroplankton (decapods, fishes and euphausiids) did not show higher recruitment into canyons. After analyzing the diet of 23 decapod crustaceans, we found a significant segregation between guilds feeding on zooplankton and on benthos. Zooplankton (euphausiids and Pasiphaeidae) and infauna (polychaetes, Calocaris macandreae and ophiuoroids) were consistently the main prey exploited by decapod crustaceans around Berenguera Canyon. We also found some macrophyte (Posidonia oceanica) consumption, which was higher in periods of water column homogeneity (winter–spring and late autumn). Positive correlations between decapods' gut fullness (F) and decapod abundance indicate feeding aggregations, while positive correlations were also found between F and Llobregat River (situated ca. 18 km from Berenguera head) flow 1 to 2 months before sampling. Increases in F were delayed only 1 month when zooplankton feeders were analyzed alone, while benthos feeders did not show significant relationships with any environmental variables. That indicates that the response of megabenthic decapods feeding on benthos to environmental shifts is slower than that of zooplankton feeders. The importance of river flows in enhancing food supply of macro- and megabenthos dwelling close to submarine canyons was apparent, with a delay in the fauna response of 0–2 months after river flow peaks.  相似文献   

12.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

13.
The structure of the benthic macrofaunal assemblages of the estuarine portion of Paraguaçu River, NE, Brazil, and its relationship with surface sediment characteristics (trace metals, PAHs, nutrients and grain size) and physical variables were investigated at ten stations on two contrasting occasions, summer (dry season) and winter (rainy season). A total of 1258 individuals (632 in winter and 626 in summer) and 62 taxa representing polychaetes, crustaceans, bivalves, echinoderms, bryozoans, sponges, cnidarians and cephalochordates were collected. Benthic assemblages in the upper estuary were unlike those in the lower estuary and a clear substitution of benthic taxa along the estuary was observed. Macrofaunal invertebrates in the low salinity region, composed of coarse sediments, were dominated by tellinids, venerids (bivalves), cirolanids (isopods), cyclopoids (copepods), and nereidids (polychaetes). While the high salinity region, composed of fine sediments, were dominated by nuculids (bivalves), cirratulids (polychaetes), and by amphiurids (ophiuroids). The Paraguaçu estuarine system is not severely affected by anthropogenic activities. In the great majority of the study sites, concentrations of trace metals and PAHs in the sediments were near background values. Nutrients values were also low. We formulated new models of taxon distribution and suggested detailed studies on the effects of salinity variation and studies using functional approaches to better understand the processes causing the spatial patterns in tropical estuarine benthic assemblages.  相似文献   

14.
《Oceanologica Acta》1999,22(5):517-528
The recent expansion of the Red Sea macroalga Caulerpa racemosa and its impact on the diversity and abundance of macrobenthos were examined and compared in the summers of 1992 and 1997, in Moni Bay, Cyprus. The phytobenthic community of the bay in 1992 was dominated by the seagrass Posidonia oceanica while, in 1997, the Lessepsian migrant C. racemosa became the most dominant, forming extensive mats. Changes in the vegetation system in Moni Bay have caused significant compositional changes in macrofaunal assemblages. A total of 178 individuals of 62 species are recorded. The composition of the macrofauna in 1992 was dominated by gastropods (44 %), crustaceans (22%), bivalves (17 %), polychaetes (11 %) and echinoderms (6 %). In 1997, the gastropods and crustaceans had decreased to 13 % and 16 % respectively, while, polychaetes had increased to 38 % becoming the most dominant taxon. Bivalves and echinoderms also increased to 22 % and 11 %, respectively, in 1997. The proliferative growth of C. racemosa imposed successional changes on the macrofaunal assemblages in Moni Bay, Cyprus, between 1992 and 1997. It remains to be tested whether the expansion of C. racemosa is related to the increase of water temperature associated with global warming or nutrient inputs or with the differences in the life history characteristics of this migrant vs. native algal species.  相似文献   

15.
Sediments were sampled and oxygen profiles of the water column were determined in the Indian Ocean off west and south Indonesia in order to obtain information on the production, transformation, and accumulation of organic matter (OM). The stable carbon isotope composition (δ13Corg) in combination with C/N ratios depicts the almost exclusively marine origin of sedimentary organic matter in the entire study area. Maximum concentrations of organic carbon (Corg) and nitrogen (N) of 3.0% and 0.31%, respectively, were observed in the northern Mentawai Basin and in the Savu and Lombok basins. Minimum δ15N values of 3.7‰ were measured in the northern Mentawai Basin, whereas they varied around 5.4‰ at stations outside this region. Minimum bottom water oxygen concentrations of 1.1 mL L?1, corresponding to an oxygen saturation of 16.1%, indicate reduced ventilation of bottom water in the northern Mentawai Basin. This low bottom water oxygen reduces organic matter decomposition, which is demonstrated by the almost unaltered isotopic composition of nitrogen during early diagenesis. Maximum Corg accumulation rates (CARs) were measured in the Lombok (10.4 g C m?2 yr?1) and northern Mentawai basins (5.2 g C m?2 yr?1). Upwelling-induced high productivity is responsible for the high CAR off East Java, Lombok, and Savu Basins, while a better OM preservation caused by reduced ventilation contributes to the high CAR observed in the northern Mentawai Basin. The interplay between primary production, remineralisation, and organic carbon burial determines the regional heterogeneity. CAR in the Indian Ocean upwelling region off Indonesia is lower than in the Peru and Chile upwellings, but in the same order of magnitude as in the Arabian Sea, the Benguela, and Gulf of California upwellings, and corresponds to 0.1–7.1% of the global ocean carbon burial. This demonstrates the relevance of the Indian Ocean margin off Indonesia for the global OM burial.  相似文献   

16.
Surface drifters and subsurface floats drifting at depths near 800 m were used to study the pathways of warm, salty Indian Ocean water leaking into the South Atlantic that is a component of the upper limb of the Atlantic meridional overturning circulation (MOC). Four drifters and 5 floats drifted from the Agulhas Current directly into the Benguela Current. Others looped for various amounts of time in Agulhas rings and cyclones, which translated westward into the Atlantic, contributing a large part of Indian Ocean leakage. Agulhas rings translated into the Benguela Current, where they slowly decayed. Some large, blob-like Agulhas rings with irregular shapes were found in the southeastern Cape Basin. Drifter trajectories suggest these rings become more circular with time, eventually evolving into the circular rings observed west of the Walvis Ridge. Agulhas cyclones, which form on the north side of the Agulhas Current south of Africa, translated southwestward (to 6°E) and contributed water to the southern Cape Basin. A new discovery is a westward extension from the mean Agulhas retroflection measured by westward drifting floats near 41°S out to at least 5°W, with some floats as far west as 25°W. The Agulhas extension appears to split the South Atlantic Current (SAC) into two branches and to transport Agulhas water westward, where it is mixed and blended with eastward-flowing water from the western Atlantic. The blended mixture flows northeastward in the northern branch of the SAC and into the Benguela Current. Agulhas leakage transport was estimated from drifters and floats to be at least 15 Sv in the upper 1000 m, which is equivalent to the transport of the upper layer MOC. It is suggested that the major component of the upper layer overturning circulation in the Atlantic is Agulhas leakage in the form of Agulhas rings.  相似文献   

17.
The life-histories and the secondary production of four dominant peracarid crustaceans (the mysids Boreomysis arctica and Parapseudomma calloplura, the amphipod Rhachotropis caeca, and the isopod Ilyarachna longicornis) in bathyal depths of the Bay of Biscay (NE Atlantic; between 383 and 420 m) and the Catalan Sea (Northwestern Mediterranean; between 389 and 1355 m) were established. Both the Atlantic and the Mediterranean populations of the major part of the target-species had two generations/year with mean cohort-production intervals (CPI) ranging from 5.5 mo for Ilyarachna longicornis to 6.3 mo for Parapseudomma calloplura. The Hynes method showed secondary production to vary in the Bay of Biscay between 0.113 mg DW m−2 yr−1 for I. longirostris and 3.069 mg DW m−2 yr−1 for P. calloplura, with P/B ratios between 4.57 (I. longirostris) and 7.93 (Boreomysis arctica). In the Catalan Sea, production varied between 0.286 mg DW m−2 yr−1 for I. longirostris and 1.096 mg DW m−2 yr−1 for P. calloplura, with P/B between 5.72 (I. longirostris) and 6.66 (P. calloplura). Application of two different empiric models to the whole peracarid assemblage gave similar levels of secondary production in both study areas (between 29.26 and 32.14 mgDWm−2 yr−1 in the Bay of Biscay; between 26.23 and 26.54 mg DW m−2 yr−1 in the Catalan Sea). From the analysis of gut contents of 22 species the dominant species in each study area were assigned to two basic trophic levels, detritus feeders and predators. Also, cumulative curves of dominance showed high diversity (low dominance) for peracarid assemblages distributed at mid-bathyal depths (524–693 m) both in the Bay of Biscay off Arcachon and in the Catalan Sea off Barcelona. We also discuss and compare, both within and between areas, how environmental features may explain the observed diversity patterns, the trophic structure, and the production results obtained for the suprabenthos assemblages.  相似文献   

18.
Deep circulation in the southwestern East/Japan Sea through the Ulleung Interplain Gap (UIG), a possible pathway for deep-water exchange, was directly measured for the first time. Five concurrent current meter moorings were positioned to effectively span the UIG between the islands of Ulleungdo to the west and Dokdo to the east. They provided a 495-day time series of deep currents below 1800 m depth spanning the full breadth of the East Sea Deep and Bottom Water flowing from the Japan Basin into the Ulleung Basin. The UIG circulation is found to be mainly a two-way flow with relatively weak southward flows directed into the Ulleung Basin over about two-thirds of the western UIG. A strong, persistent, and narrow compensating northward outflow occurs in the eastern UIG near Dokdo and is first referred to here as the Dokdo Abyssal Current. The width of the abyssal current is about 20 km below 1800 m depth. The low-frequency variability of the transports is dominated by fluctuations with a period of about 40 days for inflow and outflow transports. The 40-day fluctuations of both transports are statistically coherent, and occur almost concurrently. The overall mean transport of the deep water below 1800 m into the Ulleung Basin over the 16.5 months is about 0.005 Sv (1 Sv=106 m3 s?1), with an uncertainty of 0.025 Sv indicating net transport is negligible below 1800 m through the UIG.  相似文献   

19.
Two new genera and three new species of large Vesicomyidae are described from cold-seep sites on pockmarks and other sulfide-rich environments in the Gulf of Guinea (tropical east Atlantic) off Gabon, Congo (Brazzaville) and northern Angola, from 500 to 4000 m depth: “Calyptogena” (s.l.) regab n. sp., Wareniconcha (n.g.) guineensis (Thiele and Jaeckel 1931), Elenaconcha guiness n.g. n. sp., and Isorropodon atalantae n. sp. For two other species already taken by the R/V Valdivia in 1898, Calyptogena valdiviae (Thiele and Jaeckel 1931) and Isorropodon striatum (Thiele and Jaeckel 1931) new localities were discovered, and the species are rediscussed. E. guiness n.g. n.sp. is also recorded from off Banc d’Arguin, Mauritania, collected by commercial fishing vessels. The vesicomyid species here treated were encountered in different depth ranges along the Gabon–Congo–Angola margin, between 500 and 4000 m depth, and it was found that, in comparison with the dredge samples taken by the Valdivia expedition off southern Cameroon and off Rio de Oro (both at 2500 m), the same species occur in other depth ranges, in some cases with a vertical difference of more than 1000 m. .That means that the species are not confined to a given depth thought being typical for them and that the characteristics of the biotope are likely to play a major role in the distribution of the vesicomyids associated to cold seeps or other reduced environments along the West African margin.  相似文献   

20.
In order to realize the spatiotemporal variations of benthic macrofaunal communities at the "Amphioxus Sand"habitat, six surveys including four seasons and three consecutive summers(i.e., 2014, 2015 and 2016) were conducted in two core sites, i.e., Huangcuo(HC) and Nanxian-Shibaxian(NX), in the Xiamen Amphioxus Nature Reserve in China. A total of 155 species of macrofauna were recorded, therein, polychaetes were dominant in terms of species number and density. Significant spatiotemporal variations of macrofaunal communities were observed. The density of polychaetes and the biomass of molluscs in the HC site were higher than those in the NX site. Macrofauna were more diverse and abundant in the cold seasons(winter and spring) than that in the warm seasons(summer and autumn). The annual variations of macrofaunal communities may be attributed to the changes in sediment texture among the three years of the survey. The variations in macrofaunal communities were mainly related to the proportion of polychaetes within the community. In addition, the density of amphioxus(include Branchiostoma japonicum and B. belcheri) was negatively correlated to that of polychaetes, bivalves, and crustaceans. Amphioxus was less likely to be found in the sediments with higher silt and clay content. Five biotic indices including Margaref's richness index(d), Peilou's evenness index(J′), Shannon-Wiener diversity index(H′),AMBI and M-AMBI were calculated in the present study. AMBI seems suitable in assessing benthic health at the"Amphioxus Sand" habitat, and a potential risk of ecological health in Xiamen Amphioxus Nature Reserve should be aware.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号