首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Purposeful deep-sea carbon dioxide sequestration by direct injection of liquid CO2 into the deep waters of the ocean has the potential to mitigate the rapid rise in atmospheric levels of greenhouse gases. One issue of concern for this carbon sequestration option is the impact of changes in seawater chemistry caused by CO2 injection on deep-sea ecosystems. The effects of deep-sea carbon dioxide injection on infaunal deep-sea organisms were evaluated during a field experiment in 3600 m depth off California, in which liquid CO2 was released on the seafloor. Exposure to the dissolution plume emanating from the liquid CO2 resulted in high rates of mortality for flagellates, amoebae, and nematodes inhabiting sediments in close proximity to sites of CO2 release. Results from this study indicate that large changes in seawater chemistry (i.e. pH reductions of ∼0.5–1.0 pH units) near CO2 release sites will cause high mortality rates for nearby infaunal deep-sea communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Biogenic structures in the deep sea often act as hard substratum 'islands’ for the attachment of encrusting fauna. At an abyssal station in the NE Pacific, stalks of hexactinellid sponges in the genus Hyalonema are habitat islands for species-rich epifaunal communities. An experimental study was conducted to (1) determine the colonization rates of artificial Hyalonema stalks, (2) compare the species composition and diversity of recruits to newly available substrata to that of the natural communities, and (3) examine the vertical distribution of recruits. Four sets of six artificial sponge stalks, constructed of Hyalonema spicules, were deployed at 4100 m depth for 3- to 5-month periods. There was no difference in net colonization or immigration rate among the four deployments. Colonization rates were similar to those reported for other deep-sea, hard substratum recruitment experiments. The taxa that recruited to the artificial stalks were a subset of the taxa found in natural communities. However, several taxa important in structuring natural communities did not recruit to the artificial stalks. The two taxa with the highest invasion rates, a calcareous foraminiferan (Cibicides lobatulus) and a serpulid polychaete (Bathyvermilia sp.), also were the two taxa with greatest relative abundance in natural communities. Vertical distributions of Cibicides and an agglutinated foraminiferan (Telammina sp.) were skewed towards the top of the artificial stalks, potentially because of active habitat selection. These results have several implications for natural Hyalonema stalk communities. Most importantly, species composition and abundance of individuals in the stalk communities appear to be maintained by frequent recruitment of a few common taxa and infrequent recruitment of many rare taxa. An argument is presented for temporal-mosaic maintenance of diversity in these deep-sea, hard substratum communities.  相似文献   

3.
The option of storing CO2 in subsea rock formations to mitigate future increases in atmospheric CO2 may induce problems for animals in the deep sea. In the present study the deep-sea bivalve Acesta excavata was subjected to environmental hypercapnia (pHSW 6.35, PCO2 = 33,000 μatm) corresponding to conditions reported from natural CO2 seeps. Effects on acid–base status and metabolic rate were related to time of exposure and subsequent recovery. During exposure there was an uncompensated drop in both hemolymph and intracellular pH. Intracellular pH returned to control values, while extracellular pH remained significantly lower during recovery. Intracellular non-bicarbonate buffering capacity of the posterior adductor muscle of hypercapnic animals was significantly lower than control values, but this was not the case for the remaining tissues analyzed. Oxygen consumption initially dropped by 60%, but then increased during the final stages of exposure, which may suggest a higher tolerance to hypercapnia than expected for a deep-living species.  相似文献   

4.
This study explores the changes in the surface water fugacity of carbon dioxide (fCO2) and biological carbon uptake in two Southern Ocean iron fertilisation experiments with different hydrographic regimes. The Southern Ocean Iron Release Experiment (SOIREE) experiment was carried out south of the Antarctic Polar Front (APF) at 61°S, 141°E in February 1999 in a stable hydrographic setting. The EisenEx experiment was conducted in a cyclonic eddy north of the APF at 48°S, 21°E in November 2000 and was characterised by a rapid succession of low to storm-force wind speeds and dynamic hydrographic conditions. The iron additions promoted algal blooms in both studies. They alleviated algal iron limitation during the 13-day SOIREE experiment and probably during the first 12 days of EisenEx. The fCO2 in surface water decreased at a constant rate of 3.8 μatm day−1 from 4 to 5 days onwards in SOIREE. The fCO2 reduction was 35 μatm after 13 days. The evolution of surface water fCO2 in the iron-enriched waters (or ‘patch’) displayed a saw tooth pattern in EisenEx, in response to algal carbon uptake in calm conditions and deep mixing and horizontal dispersion during storms. The maximum fCO2 reduction was 18–20 μatm after 12 and 21 days with lower values in between. The iron-enriched waters in EisenEx absorbed four times more atmospheric CO2 than in SOIREE between 5 and 12 days, as a result of stronger winds. The total biological uptake of inorganic carbon across the patch was 1389 ton C (±10%) in SOIREE and 1433 ton C (±27%) in EisenEx after 12 days (1 ton=106 g). This similarity probably reflects the comparable size of the iron additions, as well as algal growth at a similar near-maximum growth rate in these regions. The findings imply that the different mixing regimes had less effect on the overall biological carbon uptake across the iron-enriched waters than suggested by the evolution of fCO2 in surface water.  相似文献   

5.
pH and alkalinity measurements from a coastal upwelling area located near 30°S (Coquimbo, Chile), are used to describe the short-term variations of CO2 air–sea exchanges over a period of one week in summer 1996. A 180 km ocean–coastal transect, together with two almost-synoptic grid surveys off Coquimbo covering approximate 2500 km2 each, showed that during and immediately after a 4 day long southwesterly wind event (24–28 January) a large area of cold surface water (≈14°C), highly supersaturated in CO2 (fCO2 up to 900 μatm), was located near the coast. Three days after the end of the event, the second grid survey showed that in most of the study area the surface temperature and pH had increased significantly (by 1–3°C and 0.05–0.2, respectively), and that the surface water was no longer supersaturated in CO2. The CO2-supersaturated water observed in the first grid survey was identified as upwelled subsurface equatorial water, a water mass with its core at about 200 m depth: the depth from which the water upwells is a major determinant of the surface water fCO2. Integrated C fluxes within a 20 km wide coastal strip (1900 km2) indicate a strong outgassing of CO2 from the ocean under upwelling conditions (Grid 1; 121 t C day-1), while the net C exchange was directed to the ocean during the relaxation period (Grid 2; 19 t C day-1). Estimates of CO2 fluxes in upwelling areas based on surface water fCO2 measurements must therefore take into account these short-term variations: reliance on longer-term averages and interpolation will lead to erroneous results.  相似文献   

6.
The aggregation response of fish populations following the addition of artificial structures to seafloor habitats has been well documented in shallow-water reefs and at deeper structures such as oil extraction platforms. A long-term time-lapse camera was deployed for 27 four-month deployment periods at 4100 m in the eastern North Pacific to study abyssal megafauna activity and surface–benthos connections. The unique time-series data set provided by this research presented an opportunity to examine how deep-sea benthopelagic fish and epibenthic megafauna populations were affected by an isolated artificial structure and whether animal surveys at this site were biased by aggregation behavior. Counts were taken of benthopelagic grenadiers, Coryphaenoides spp., observed per week as well as numbers of the epibenthic echinoid Echinocrepis rostrata. No significant correlation (rs=−0.39; p=0.11) was found between the duration of deployment (in weeks) and the average number of Coryphaenoides observed at the site. There was also no evidence of associative behavior around the time-lapse camera by E. rostrata (rs=−0.32; p=0.19). The results of our study suggest that abyssal fish and epibenthic megafauna do not aggregate around artificial structures and that long-term time-lapse camera studies should not be impacted by aggregation response behaviors.  相似文献   

7.
An intra-annual investigation of the fugacity of CO2 (fCO2) has been conducted in surface waters of the north-eastern shelf of the Gulf of Cádiz (SW Iberian Peninsula) in four cruises made in 2006 and 2007. Intra-annual variability of fCO2 was assessed and is discussed in terms of mixing, temperature and biology. In the study area of the shelf, thermodynamic control over fCO2 predominates from early May to late November, and this is opposite and similar in magnitude to the net biological effect. However, biological control over fCO2 predominates during winter. The results suggest that surface waters in the coastal area are under-saturated with respect to atmospheric CO2 during most of the year; therefore they represent a sink for atmospheric CO2 between November and May (? 1.0 mmol m? 2 day? 1), but a weak source in June (1.3 mmol m? 2 day? 1). In contrast, the coastal ecosystems studied (the lower estuary of Guadalquivir Estuary and Bay of Cádiz) acted as a weak sink for atmospheric CO2 during February (? 1.3 mmol m? 2 day? 1) and as a source between May and November (2.6 mmol m? 2 day? 1). The resulting mean annual CO2 flux in the north-eastern shelf of the Gulf of Cádiz was ? 0.07 mol m? 2 year? 1 (? 0.2 mmol m? 2 day? 1), indicating that the area acts as a net sink on an annual basis.  相似文献   

8.
The deep sea has been shown to exhibit strong depth zonation in species composition and abundance. Examination of these patterns can offer ecological insight into how organisms adapt and respond to changing environmental parameters that co-occur with depth. Here we provide the first tropical study on bathymetric zonation and other depth-related trends (size, abundance, and species richness) spanning shelf to abyssal depths of scavenging megafauna. Baited time-lapse free-vehicle cameras were used to examine the deep-sea benthic and demersal scavenging communities of the Hawaiian Islands, an area for which the biology and ecology have remained poorly studied below 2000 m. Twenty-two deployments ranging in depth from 250 to 4783 m yielded 37 taxa attracted to bait, including the first known occurrence of the family Zoarcidae in the Hawaiian Islands. Cluster analysis of Bray–Curtis similarity of species peak abundance (nmax) revealed four main faunal zones (250–500, 1000, 1500–3000, and ?4000 m) with significant separation (ANOSIM, global R=0.907, p=0.001) between designated depth groups. A major faunal break was identified at the 500–1000 m transition where species turnover was greatest, coinciding with the location of the local oxygen minimum zone. Dominance in species assemblage shifted from decapod crustaceans to teleosts moving from shallow to deeper faunal zones. Significant size differences in total length with depth were found for two of the four fish species examined. A logarithmic decline was observed in scavenger relative abundance with depth. Evidence of interaction between scavenging species was also noted between Synaphobranchus affinis and Neolithodes sp. (competition) and Histiobranchus sp. and aristeid shrimp (predation), suggesting that interactions between scavengers could influence indices of abundance generated from baited camera data.  相似文献   

9.
The distribution of pH and alkalinity has been used to calculate the distribution of total inorganic carbon (TC) and fugacity of carbon dioxide (fCO2) in the upper 200 m of the water column in coastal upwelling areas off northern Chile (23–24°S, near Antofagasta) and central Chile (30–31°S, near Coquimbo) during austral summer 1997. In these upwelling areas, colder surface waters were oxygen poor and strongly CO2 supersaturated (100% near Antofagasta and 200% near Coquimbo), although below the pycnocline the CO2 supersaturation invariably exceeded 200% in both areas. The larger surface CO2 supersaturation and outgassing at 30°S were associated with stronger winds that promoted the upwelling of denser water (richer in CO2) as well as a higher air–sea CO2 transfer velocity. The consistent decrease in intensity of the southerly winds (as derived from NSCAT scatterometer data) from 30–31°S to 23–24°S suggests a corresponding decline in the intensity of the CO2 outgassing due to upwelling. Additionally, we suggest here that the intensity of the local upwelling forcing (i.e. alongshore–equatorward winds) plays a role in determining the water mass composition and phytoplankton biomass of the coastal waters. Thus, while deep upwelling of salty and cold water resulted in high fCO2 (up to 1000 μatm) and very low phytoplankton biomass (chlorophyll a concentration lower than 0.5 mg m−3), the shallow upwelling of less salty (e.g. salinity <34.5) and less CO2-supersaturated water resulted in a higher phytoplankton biomass, which further reduced surface water fCO2 by photosynthesis.  相似文献   

10.
An experiment was performed to determine the effect of injected CO2 on the deep-sea (3200 m) meiofaunal community in the Monterey Canyon. Approximately 20 L of liquid CO2 was added to each of three cylindrical corrals (PVC rings pushed into the seabed) that were arranged in a triangular array 10 m on a side. After a 30-day period, sediment cores were collected within an area exposed to the dissolution plume emanating from the CO2 pools and from a reference site approximately 40 m away; cores were also collected from within two of the CO2 corrals. Sediment cores were sectioned into 0–5, 5–10, and 10–20 mm layers. Abundances of major groups (harpacticoid copepods, nematodes, nauplii, kinorhynchs, polychaetes, and total meiofauna) were determined for each layer. CO2 exposure did not significantly influence the abundances or vertical distributions of any of the major taxa. However, other evidence suggests that abundance alone did not accurately reflect the effect of CO2 on meiofauna. We argue that slow decomposition rates of meiofaunal carcasses can mask adverse effects of CO2 and that longer experiments and/or careful examination of meiofaunal condition are needed to accurately evaluate CO2 effects on deep-sea meiofaunal communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The seasonal variability of the carbon dioxide (CO2) system in the Southern Ocean, south of 50°S, is analysed from observations obtained in January and August 2000 during OISO cruises conducted in the Indian Antarctic sector. In the seasonal ice zone, SIZ (south of 58°S), surface ocean CO2 concentrations are well below equilibrium during austral summer. During this season, when sea-ice is not obstructing gas exchange at the air–sea interface, the oceanic CO2 sink ranges from −2 to −4 mmol/m2/d in the SIZ. In the permanent open ocean zone, POOZ (50–58°S), surface oceanic fugacity fCO2 increases from summer to winter. The seasonal fCO2 variations (from 10 to 30 μatm) are relatively low compared to seasonal amplitudes observed in the subtropics or the subantarctic zones. However, these variations in the POOZ are large enough to cross the atmospheric level from summer to winter. Therefore, this region is neither a permanent CO2 sink nor a permanent CO2 source. In the POOZ, air–sea CO2 fluxes calculated from observations are about −1.1 mmol/m2/d in January (a small sink) and 2.5 mmol/m2/d in August (a source). These estimates obtained for only two periods of the year need to be extrapolated on a monthly scale in order to calculate an integrated air–sea CO2 flux on an annual basis. For doing this, we use a biogeochemical model that creates annual cycles for nitrate, inorganic carbon, total alkalinity and fCO2. The changing pattern of ocean CO2 summer sink and winter source is well reproduced by the model. It is controlled mainly by the balance between summer primary production and winter deep vertical mixing. In the POOZ, the annual air–sea CO2 flux is about −0.5 mol/m2/yr, which is small compared to previous estimates based on oceanic observations but comparable to the small CO2 sink deduced from atmospheric inverse methods. For reducing the uncertainties attached to the global ocean CO2 sink south of the Polar Front the regional results presented here should be synthetized with historical and new observations, especially during winter, in other sectors of the Southern Ocean.  相似文献   

12.
One proposal for ameliorating global warming is to sequester large amounts of carbon dioxide in the deep ocean, but the environmental consequences of sequestration for sediment-dwelling animals are poorly known. In a previous publication, we reported that ∼80% of benthic copepods were killed in an experimental release of CO2 off northern California at 3262 m. The effects of this release on nematodes are reported here. We examined samples of nematodes taken inside two ‘corrals’ into which CO2 was directly injected (providing an extreme endpoint for CO2 exposure) and taken near to and far from this CO2 source. After 30 days, pore-water pH was unchanged (∼7.8) at the sediment–water interface far (∼40 m) from corrals, but pH profiles were reduced by ∼0.75 near (∼2 m) corrals. Corral pH was highly acidic (5.4 in a measurement from a subsequent experiment). Fifty randomly selected nematodes from each of four vertical layers from the 14 cores were photographed. They were assigned to a tail group (based on morphology), and individual biovolume was estimated from measurements of body length and width. Although nematode abundance (expressed as total nematodes and by tail group) was not affected, length, width, and individual biovolume significantly differed between near and far samples. Median nematode biovolume examined across tail group and core layer increased by ∼48% inside and near corrals. Differences between near and corral samples were always less than differences between near and far samples. However, nematode length:width ratio did not differ between near and far, and the shapes of length, width, and biovolume frequency distributions were similar in all samples. We postulate that the nematode community throughout the upper 3 cm suffered a high rate of mortality after exposure to CO2, and that nematodes were larger because postmortem expansions in body length and width occurred. Decomposition rates were probably low and corpses did not disintegrate in 30 days. The observable effects of a reduction in pH to about 7.0 after 30 days were as great as an extreme pH reduction (5.4), suggesting that ‘moderate’ CO2 exposure, compared to the range of exposures possible following CO2 release, causes high mortality rates in the two most abundant sediment-dwelling metazoans (nematodes and copepods).  相似文献   

13.
Measurements of dissolved inorganic carbon (DIC), pH, total alkalinity (TA), and partial pressure of CO2 (pCO2) were conducted at a total of 25 stations along four cross shelf transects in the East China Sea (ECS) in January 2008. Results showed that their distributions in the surface water corresponded well to the general circulation pattern in the ECS. Low DIC and pCO2 and high pH were found in the warm and saline Kuroshio Current water flowing northeastward along the shelf break, whereas high DIC and pCO2 and low pH were mainly observed in the cold and less saline China Coastal Current water flowing southward along the coast of Mainland China. Difference between surface water and atmospheric pCO2 (ΔpCO2), ranging from ~ 0 to ? 111 μatm, indicated that the entire ECS shelf acted as a CO2 sink during winter with an average flux of CO2 of ?13.7 ± 5.7 (mmol C m? 2 day? 1), and is consistent with previous studies. However, pCO2 was negatively correlated with temperature for surface waters lower than 20 °C, in contrast to the positive correlation found in the 1990s. Moreover, the wintertime ΔpCO2 in the inner shelf near the Changjiang River estuary has appreciably decreased since the early 1990s, suggesting a decline of CO2 sequestration capacity in this region. However, the actual causes for the observed relationship between these decadal changes and the increased eutrophication over recent decades are worth further study.  相似文献   

14.
During the SoJaBio expedition, the deep sea fauna of the north-western Sea of Japan was sampled in August–September 2010. From this study, 11 epibenthic sledge stations are analyzed, with a focus on species composition, diversity and distribution patterns of polychaetes. A total of 92 polychaete taxa belonging to 70 genera and 28 families and 3 indeterminate species were found. Twelve species and eight genera have not been reported from the Sea of Japan before, but were registered from other deep-sea basins. Calculation of diversity (Shannon–Wiener Index, Pielou's Evenness) showed that the upper bathyal of the Sea of Japan is an area of higher polychaete diversity than the abyssal plain. The increased richness and diversity here could possibly be explained by a zoogeographic overlapping with the shallower species' assemblages of the shelf. At a higher taxonomic level the polychaete fauna of the deep Sea of Japan does not seem to differ from that of other deep-sea regions world-wide. In depths below 2000 m about 30% polychaete species have wide distributional ranges.  相似文献   

15.
In the framework of the deep-sea environmental programme BIOZAIRE (Ifremer-Total), colonization trays were deployed for 283–433 days at three sites along the equatorial West African margin: ZA at 1300-m depth, ZC at 4000-m depth far from the Congo canyon and ZD at 4000-m depth close to the Congo canyon. The experiments aimed at determining the influence of depth and local environmental settings on macrofaunal colonization patterns and organic carbon degradation rates. The trays were filled with glass beads and this artificial substrate was enriched with ground particulate organic matter in a gradient of 0%, 0.34%, 1.02% and 3.43% organic carbon. The highest rates of organic carbon degradation ranged, according to the duration of the experiments, from 1.59 to 2.36 gC m−2 day−1 but were independent of depth or location. Colonization rates, conversely, varied by one order of magnitude between bathyal and abyssal experiments. The influence of experimental treatments on the structure of the colonizing macrofauna also varied according to location and depth. At ZA, colonization patterns were highly predictable and driven by a shift in dominance of opportunistic taxa along the enrichment gradient. To a lesser extent, this was also true at ZD, near the Congo canyon, while at ZC the treatments had no significant effect on the composition of the colonizing fauna. At abyssal depth, high rates of organic matter degradation associated with low rates of colonization suggested that pulse of organic matter would mainly benefit the resident community. At bathyal depth, high colonization rates of a specialized fauna might conversely play an important role in the functioning of the ecosystem. The regional and local coexistence of an opportunistic fauna via a spatial storage effect associated with dispersal might significantly contribute to the maintenance of high diversity on continental margins.  相似文献   

16.
CO2 currently accumulating in the atmosphere permeates into ocean surface layers, where it may impact on marine animals in addition to effects caused by global warming. At the same time, several countries are developing scenarios for the disposal of anthropogenic CO2 in the worlds' oceans, especially the deep sea. Elevated CO2 partial pressures (hypercapnia) will affect the physiology of water breathing animals, a phenomenon also considered in recent discussions of a role for CO2 in mass extinction events in earth history. Our current knowledge of CO2 effects ranges from effects of hypercapnia on acid-base regulation, calcification and growth to influences on respiration, energy turnover and mode of metabolism. The present paper attempts to evaluate critical processes and the thresholds beyond which these effects may become detrimental. CO2 elicits acidosis not only in the water, but also in tissues and body fluids. Despite compensatory accumulation of bicarbonate, acid-base parameters (pH, bicarbonate and CO2 levels) and ion levels reach new steady-state values, with specific, long-term effects on metabolic functions. Even though such processes may not be detrimental, they are expected to affect long-term growth and reproduction and may thus be harmful at population and species levels. Sensitivity is maximal in ommastrephid squid, which are characterized by a high metabolic rate and extremely pH-sensitive blood oxygen transport. Acute sensitivity is interpreted to be less in fish with intracellular blood pigments and higher capacities to compensate for CO2 induced acid-base disturbances than invertebrates. Virtually nothing is known about the degree to which deep-sea fishes are affected by short or long term hypercapnia. Sensitivity to CO2 is hypothesized to be related to the organizational level of an animal, its energy requirements and mode of life. Long-term effects expected at population and species levels are in line with recent considerations of a detrimental role of CO2 during mass extinctions in the earth's history. Future research is needed in this area to evaluate critical effects of the various CO2 disposal scenarios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The fugacity of CO2 and abundance of chlorophyll a (Chla) were determined in two long transects from the Polar Front to the Antarctic Continent in austral summer, December 1995–January 1996. Large undersaturations of CO2 in the surface water were observed coinciding with high Chla content. In the major hydrographic regions the mean air–sea fluxes were found to range from −3 to +7 mmol m−2 d−1 making these regions act as a sink as well as a source for CO2. In the total 40-d period, the summation of the several strong source and sink regions revealed an overall modest net source of 0.3 mmol m−2 d−1, this based on the Wanninkhof (J. Geophys. Res. 97 (1992) 7373) quadratic relationship at in situ windspeed. A simple budget approach was used to quantify the role of phytoplankton blooms in the inorganic carbonate system of the Antarctic seas in a time frame spanning several weeks. The major controlling physical factors such as air–sea flux, Ekman pumping and upwelling are included. Net community production varies between −9 and +7 mmol m−2 d−1, because of the large oscillations in the dominance of autotrophic (CO2 fixation) versus heterotrophic (CO2 respiration) activity. Here the mixed layer depth is the major controlling factor. When integrated over time the gross influx and efflux of CO2 from air to sea is large, but the net residual air/sea exchange is a modest efflux from sea to atmosphere.  相似文献   

18.
A study of the diurnal and seasonal variation in the physico-chemical conditions within intertidal rock pools on the West coast of Scotland was undertaken to provide data on the environmental conditions experienced by animals inhabiting these pools. The temperature, pH, partial pressure of oxygen (PO2) and salinity were measured every hour for 24 h and the total alkalinity, partial pressure of carbon dioxide (PCO2) and carbon dioxide content (CCO2) calculated. This sampling regime was carried out once a month for 12 months to determine the extent of seasonal variation in conditions within temperate pools.Large diurnal variations were recorded in nearly all the physico-chemical parameters measured. The greatest variation was recorded in the temperature and PO2 of the water but significant changes in pH and PCO2 were also recorded. Total alkalinity varied little during any 24 h period but carbonate alkalinity, which was always lower than total alkalinity, showed slightly greater variation. There was also considerable variation in the magnitude of these diurnal changes between pools at different heights on the shore.Diurnal variation in the physico-chemical conditions within the pools were observed throughout the year although the magnitude of these changes varied seasonally. Detailed studies on individual pools demonstrated that appreciable local variation existed in the physico-chemical conditions within each pool.  相似文献   

19.
Although a great amount of information is available on bacteria inhabiting deep-sea sediments, the occurrence of fungi in this environment has been poorly studied and documented. We report here the occurrence of fungi in deep-sea sediments from ∼5000 m depth in the Central Indian Basin (9–16°S and 73–76°E). A total of 181 cultures of fungi, most of which belong to terrestrial sporulating species, were isolated by a variety of isolation techniques. Species of Aspergillus and non-sporulating fungi were the most common. Several yeasts were also isolated. Maximum species diversity was observed in 0–2 cm sections of the sediment cores. Direct staining of the sediments with Calcofluor, a fluorescent optical brightener, revealed the presence of fungal hyphae in the sediments. Immunofluorescence using polyclonal antibodies raised against a deep-sea isolate of Aspergillus terreus (# A 4634) confirmed its presence in the form of hyphae in the sub-section from which it was isolated. A total of 25 representative species of fungi produced substantial biomass at 200 bar pressure at 30° as well as at 5 °C. Many fungi showed abnormal morphology at 200 bar/5 °C. A comparison of terrestrial isolates with several deep-sea isolates indicated that the former could grow at 200 bar pressure when growth was initiated with mycelial inocula. However, spores of a deep-sea isolate A. terreus (# A 4634), but not the terrestrial ones, showed germination at 200 bar pressure and 30 °C. Our results suggest that terrestrial species of fungi transported to the deep sea are initially stressed but may gradually adapt themselves for growth under these conditions.  相似文献   

20.
Video analysis of a whale-fall discovered in the northeast Pacific Ocean, off Vancouver Island at a depth of 1288 m during ROV diving operations has identified 26 taxa of deep-sea benthic organisms inhabiting the seafloor immediately surrounding remnants of the whale skeleton. A photo-mosaic derived from high-definition video provides a quantitative visual record of the present condition of the site, the species richness, and substrate preference. Only the skull and caudal vertebrae remains of this large whale skeleton are estimated to have been approximately 16.5 m in length. Most organisms identified near the whale-fall are common benthic deep-sea fauna, typical of this water depth and seafloor composition. Much of this species richness comes from sessile suspension feeding cnidarians attached to the numerous glacial dropstones found throughout the area rather than the presence of the whale skeleton. Seep and bone specialists are rare (4 taxa) and may be, in part, a remnant population from a sulphophilic stage of whale-fall decomposition. Evidence of past colonization by Osedax sp. is visible on the remaining bones and we conclude that rapid degradation of the missing bones has occurred at this site as has been observed at whale-falls off central California in Monterey Canyon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号