首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Understanding the nature of global ice-equivalent eustatic sea-level changes during the mid to late Holocene is important to our understanding of how ice sheets will respond to future climate change. This study re-analyses the indicative meaning and age control of existing relative sea-level (RSL) data from Cleveland Bay, North Queensland, Australia and presents new RSL data from a foraminifera-based transfer function as a preliminary test of global geophysical models in this region during the mid to late Holocene. The foraminifera-based transfer function produces reliable RSL estimates, consistent through the mid to late Holocene at different locations in Cleveland Bay. Analysis of the combined RSL database reveals that RSL rose above present between 8 and 6.2 ka cal. BP, with the peak of the sea-level highstand c. 2.8 m above present at c. 5 ka cal. BP, remaining relatively stable above +1.5 m from 6.2 until at least 2.3 ka cal. BP, falling to present in the last millennia. This long period of sea level above present in the mid to late Holocene suggests a gradual rather than abrupt end to global ice melt, which must have continued into the late Holocene. This new analysis also shows no evidence for episodic fluctuations within the highstand, although they cannot be entirely ruled out by this study. This study demonstrates that more sea-level data needs to be collected from locations uncontaminated by glacio-isostasy, hydro-isostasy and tectonic effects, in order to better constrain the late Holocene melt histories of the large polar ice sheets.  相似文献   

2.
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of ?35.7 ± 1.1 m MSL at 11062–10576 cal a BP to ?4.2 m ± 0.4 m MSL at 4240–3592 cal a BP.We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ± 0.03 mm year?1 and 0.82 ± 0.02 mm year?1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL trends from Regions 1 and 2 support the spatial variation in RSL across North Carolina, and imply an additional increase of mean sea level of greater than 2 mm year?1 during the latter half of the 20th century; this is in general agreement with historical tide gauge and satellite altimetry data.  相似文献   

3.
Temperate latitude salt marshes are a proven environment from which high precision (±0.10–0.20 m) relative sea level (RSL) records can be developed over recent decades and centuries. Such records provide an important link between millennial histories of RSL change and instrumental records. The high latitude salt marshes in Greenland have not previously been explored as potential archives of recent RSL change. Here we develop four diatom-based transfer functions using contemporary diatom data collected from three salt marshes located 40 km south of the coastal town of Sisimiut, West Greenland. Our preferred model has a good fit between observed and predicted elevations (r2 = 0.94) and a root mean square error prediction of ±0.19 m. We apply the four models to a short sediment profile collected from one of the marshes that formed between c. 600 cal. year BP and the present. Three of the four models predict the same trend in which RSL rose from ?0.55 ±0.19 m mean tide level (MTL) to ?0.05 ± 0.19 m MTL between c. 600 and 400 cal. year BP at a rate of c. 2.7 mm year?1. After 400 cal. year BP RSL slowed and remained stable until the present day. The results of this study demonstrate that Greenland salt marshes are potentially valuable archives of data for developing quantitative estimates of RSL change during the last few centuries, thereby bridging the gap between existing millennial-scale approaches and more recent direct observations of ice sheet behaviour and associated vertical land motions.  相似文献   

4.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Forty-eight new and previously published radiocarbon ages constrain deglacial and postglacial sea levels on southern Vancouver Island, British Columbia. Sea level fell rapidly from its high stand of about +75 m elevation just before 14 000 cal BP (12 000 radiocarbon yrs BP) to below the present shoreline by 13 200 cal BP (11 400 radiocarbon years BP). The sea fell below its present level 1000 years later in the central Strait of Georgia and 2000 years later in the northern Strait of Georgia, reflecting regional differences in ice sheet retreat and downwasting. Direct observations only constrain the low stand to be below ?11 m and above ?40 m. Analysis of the crustal isostatic depression with equations utilizing exponential decay functions appropriate to the Cascadia subduction zone, however, places the low stand at ?30 ± 5 m at about 11 200 cal BP (9800 BP). The inferred low stand for southern Vancouver Island, when compared to the sea-level curve previously derived for the central Strait of Georgia to the northwest, generates differential isostatic depression that is consistent with the expected crustal response between the two regions. Morphologic and sub-bottom features previously interpreted to indicate a low stand of ?50 to ?65 m are re-evaluated and found to be consistent with a low stand of ?30 ± 5 m. Submarine banks in eastern Juan de Fuca Strait were emergent at the time of the low stand, but marine passages persisted between southern Vancouver Island and the mainland. The crustal uplift presently occurring in response to the Late Pleistocene collapse of the southwestern sector of the Cordilleran Ice Sheet amounts to about 0.1 mm/yr. The small glacial isostatic adjustment rate is a consequence of low-viscosity mantle in this tectonically active region.  相似文献   

6.
《Quaternary Science Reviews》2007,26(17-18):2128-2151
After the first emergence following deglaciation, relative sea level rose by 10 m in western Norway and culminated late in the Younger Dryas (YD). The relative sea-level history, reconstructed by dating deposits in isolation basins, shows a sea-level low-stand between ∼13 640 and 13 080 cal yr BP, a 10 m sea-level rise between ∼13 080 and 11 790 cal yr BP and a sea-level high-stand between ∼11 790 and 11 550 cal yr BP. Shortly after the YD/Holocene boundary, sea level fell abruptly by ∼37 m. The shorelines formed during the sea-level low-stand in the mid-Allerød and during the sea-level high-stand in the YD have almost parallel tilts with a gradient of ∼1.3 m km−1, indicating that hardly any isostatic movement has taken place during this period of sea-level rise. We conclude that the transgression was caused by the major re-advance of the Scandinavian Ice Sheet that took place in western Norway during the Lateglacial. The extra ice load halted the isostatic uplift and elevated the geoid due to the increased gravitational attraction on the sea. Our results show that the crust responded to the increased load well before the YD (starting ∼12 900 cal yr BP), with a sea-level low-stand at 13 640 cal yr BP and the subsequent YD transgression starting at 13 080 cal yr BP. Thus, we conclude that the so-called YD ice-sheet advance in western Norway started during the Allerød, possibly more than 600 years before the Allerød/YD transition.  相似文献   

7.
《Quaternary Science Reviews》2005,24(10-11):1203-1216
This paper presents preliminary relative sea level curves for the Marguerite Bay region and for the South Shetland Islands. The Marguerite Bay curve is constrained by both new and previously published 14C dates on penguin remains and shells, and on two isolation basins dating back to 6500 14C yr BP. Extrapolation back to the marine limit yields a minimum deglaciation date for Marguerite Bay of ca 9000 14C yr BP. Analysis of beach clasts suggests that there was a period of increased wave activity, perhaps related to a reduction in summer sea-ice extent, between ca 3500 and ca 2400 14C yr BP. The curve for the South Shetland Islands is derived entirely from published 14C dates from isolation basins and on whalebone, penguin bone and seal bone. The curve shows an initial relative sea level fall, which was interrupted by a period in the mid-Holocene when relative sea level rose to a highstand of between 14.5 and 16 m above mean sea level (amsl), before falling again.  相似文献   

8.
Modern deltas are understood to have initiated around 7.5–9 ka in response to the deceleration of sea-level rise. This episode of delta initiation is closely related to the last deglacial meltwater events and eustatic sea-level rises. The initial stage of the Mekong River delta, one of the world's largest deltas, is well recorded in Cambodian lowland sediments. This paper integrates analyses of sedimentary facies, diatom assemblages, and radiocarbon dates for three drill cores from the lowland to demonstrate Holocene sedimentary evolution in relation to sea-level changes. The cores are characterized by a tripartite succession: (1) aggrading flood plain to natural levee and tidal–fluvial channel during the postglacial sea-level rise (10–8.4 ka); (2) aggrading to prograding tidal flats and mangrove forests around and after the maximum flooding of the sea (8.4–6.3 ka); and (3) a prograding fluvial system on the delta plain (6.3 ka to the present). The maximum flooding of the sea occurred at 8.0 ± 0.1 ka, 2000 years before the mid-Holocene sea-level highstand, and tidal flats penetrated up to 20–50 km southeast of Phnom Penh after a period of abrupt ~5 m sea-level rise at 8.5–8.4 ka. The delta progradation then initiated as a result of the sea-level stillstand at around 8–7.5 ka. Another rapid sea-level rise at 7.5–7 ka allowed thick mangrove peat to be widely deposited in the Cambodian lowland, and the peat accumulation endured until 6.3 ka. Since 6.3 ka, a fluvial system has characterized the delta plain, and the fluvial sediment discharge has contributed to rapid delta progradation. The uppermost part of the sedimentary succession, composed of flood plain to natural-levee sediments, reveals a sudden increase in sediment accumulation over the past 600–1000 years. This increase might reflect an increase in the sediment yield due to human activities in the upper to middle reaches of the Mekong, as with other Asian rivers.  相似文献   

9.
《Quaternary Science Reviews》2007,26(7-8):1129-1147
Paleoenvironmental reconstructions of three coastal waterbodies in Wellington, New Zealand, reveal that sites were isolated from the sea within the last 7500 years through coseismic uplift and barrier growth. Evidence for coseismic uplift consists of distinct transitions in diatom assemblages representing large changes in relative sea-level or water-table level, commonly in association with sedimentological evidence for catchment disturbance or marine influx. Transitions are abrupt, laterally extensive and synchronous within each waterbody. Amount of change across transition horizons is assessed using quantitative estimates of paleosalinity and waterbody type as proxies for relative sea-level change. Seven transitions involve large paleoenvironmental changes and provide evidence for earthquakes occurring at approximately 5100, 3200 (recorded at two sites), 2300 (recorded at two sites), 1000 cal years BP and 1855 AD. Five other transitions involve smaller paleoenvironmental changes and are considered to be consistent with effects of earthquakes but do not provide independent evidence for earthquake occurrence. These smaller transitions occur at approximately 6800, 3600, 2200, 1000 (coincident with a large transition) and 500 cal years BP. The data refine ages and provide information about the extent and effects of past large earthquakes in the region. These are the first paleoecologically derived earthquake signatures for Wellington and they contribute to the sparse collection worldwide of off-fault sedimentary earthquake records for predominantly strike-slip faults.  相似文献   

10.
A detailed relative sea-level (RSL) record was constructed for the time interval 600–1600 AD, using basal peat to track sea level and containing 16 sea-level index points that capture ~60 cm of RSL rise. The study area is in the Mississippi Delta where the spring tidal range is ~0.47 m, the impact of ocean currents on sea-surface topography is limited, and crustal motions are well constrained. Age control was obtained by AMS 14C dating and most ages represent weighted means of two subsamples. Sample elevations were determined by combining differential GPS measurements with optical surveying. All index points were plotted as error boxes using 2σ confidence intervals for the ages, plus all vertical errors involved in sampling and surveying, as well as the indicative range of the samples. A striking clustering of sea-level index points between ~1000 and ~1200 AD suggests a possible acceleration in the rate of RSL rise. Removal of the long-term trend (0.60 mm yr?1) allows for the possibility of a sea-level oscillation with a maximum amplitude of ~55 cm. However, given the size of the error boxes the possibility that oscillations did not occur cannot be entirely ruled out. Comparison of the new RSL record with various proxy climate records suggests that sea level in this area may have responded to hemispheric temperature changes, including the Medieval Warm Period and the Little Ice Age. However, given the error margins associated with this reconstruction, it is stressed that this causal mechanism is tentative and requires corroboration by high-resolution sea-level reconstructions elsewhere.  相似文献   

11.
Glacial isostatic adjustment and multiple earthquake deformation cycles produce temporal and spatial variability in the records of relative sea-level change across south-central Alaska. Bering Glacier had retreated inland of the present coast by 16 ka BP and north of its present terminus by ~14 ka BP. Reconnaissance investigations in remote terrain provide new but limited insights of post-glacial relative sea-level change and the palaeoseismology of the region. Relative sea-level was above present ~9.2 ka BP to at least 5 ka BP before falling to below present. It was above present by the early 20th century, before land uplift in the 1964 M 9.2 earthquake. The pattern of relative sea-level change differs what may be expected in comparison with model predictions for other seismic and non-seismic locations. Buried mud–peat couplets show a great earthquake ~900 cal BP, including evidence of a tsunami. Correlation with other sites suggest simultaneous rupture of adjacent segments of the Aleutian megathrust and the Yakutat microplate.  相似文献   

12.
We constrain a three-dimensional thermomechanical model of Greenland ice sheet (GrIS) evolution from the Last Glacial Maximum (LGM, 21 ka BP) to the present-day using, primarily, observations of relative sea level (RSL) as well as field data on past ice extent. Our new model (Huy2) fits a majority of the observations and is characterised by a number of key features: (i) the ice sheet had an excess volume (relative to present) of 4.1 m ice-equivalent sea level at the LGM, which increased to reach a maximum value of 4.6 m at 16.5 ka BP; (ii) retreat from the continental shelf was not continuous around the entire margin, as there was a Younger Dryas readvance in some areas. The final episode of marine retreat was rapid and relatively late (c. 12 ka BP), leaving the ice sheet land based by 10 ka BP; (iii) in response to the Holocene Thermal Maximum (HTM) the ice margin retreated behind its present-day position by up to 80 km in the southwest, 20 km in the south and 80 km in a small area of the northeast. As a result of this retreat the modelled ice sheet reaches a minimum extent between 5 and 4 ka BP, which corresponds to a deficit volume (relative to present) of 0.17 m ice-equivalent sea level. Our results suggest that remaining discrepancies between the model and the observations are likely associated with non-Greenland ice load, differences between modelled and observed present-day ice elevation around the margin, lateral variations in Earth structure and/or the pattern of ice margin retreat.  相似文献   

13.
The Niayes of Senegal are sahelian interdunal fens, that hosted an azonal subguinean vegetation during the Holocene thanks to the availability of fresh groundwater despite contrasted climatic conditions. Exploratory scenario-based modeling of the zonal hydrogeology has been conducted for different periods with the Cast3M code. The results show that the delay in the onset of humid vegetation ca. 10 ky cal. BP could be ecosystemic and denote a start of the African Humid Period (AHP) ca. 11.5 ky cal. BP. Alternatively, the AHP could have started earlier while its beneficial effects would have been canceled by low sea levels. Vegetation degradation around 7.5 ky cal. BP is shown to have resulted from a climate minoration, that possibly alleviated until 4 ky cal. BP. The rising watertable allowed the degraded forest to persist during that period however. The forest expansion that followed ca. 3.5 ky cal. BP had then clearly a climatic origin. The interpretation of pollens for climate research requires a careful filtering-out of local groundwater availability.  相似文献   

14.
Sedimentological, geomorphic, and ground penetrating radar (GPR) data are combined with optically stimulated luminescence data to define the Holocene evolution of a coastal system in peninsular Malaysia. The Setiu coastal region of northeast Malaysia comprises five geological and geomorphic units representing distinct evolutionary phases of this coastline. Estimated marine limiting point elevations indicate deposition of an early aggradational shoreline associated with a sea-level elevation of −0.1 to +1.7 m (MSLPMVGD datum) between ∼6.8 ka and 5.7 ka, in agreement with previous sea-level studies from the Malay–Thai peninsula. A hiatus occurs in the record between ∼5.7 ka and 3.0 ka, possibly due to a relative sea-level oscillation and shoreline erosion. Long-term relative sea-level fall and possible still-stands created strandplains that are interrupted by aggradational to transgressive paleo-barrier and estuary formation corresponding with brief episodes of RSL rise. Analyses of GPR facies and OSL ages suggest annual clinoform deposition, with geometries dictated by variations in ENSO. These data demonstrate the utility of high resolution studies of coastal facies as useful proxy indicators for paleoclimate studies at subdecadal to millennial time-scales.  相似文献   

15.
《Quaternary Science Reviews》2007,26(19-21):2463-2486
We provide new data on relative sea-level change from the late Holocene for two locations in the central Mediterranean: Sardinia and NE Adriatico. They are based on precise measures of submerged archaeological and tide notch markers that are good indicators of past sea-level elevation. Twelve submerged archaeological sites were studied: six, aged between 2.5 and 1.6 ka BP, located along the Sardinia coast, and a further six, dated ∼2.0 ka BP, located along the NE Adriatic coast (Italy, Slovenia and Croatia). For Sardinia, we also use beach rock and core data that can be related to Holocene sea level. The elevations of selected significant archaeological markers were measured with respect to the present sea level, applying corrections for tide and atmospheric pressure values at the time of surveys. The interpretation of the functional heights related to sea level at the time of their construction provides data on the relative changes between land and sea; these data are compared with predictions derived from a new glacio–hydro-isostatic model associated with the Last Glacial cycle. Sardinia is tectonically relatively stable and we use the sea-level data from this island to calibrate our models for eustatic and glacio–hydro-isostatic change. The results are consistent with those from another tectonically stable site, the Versilia Plain of Italy. The northeast Adriatic (Italy, Slovenia and Croatia) is an area of subsidence and we use the calibrated model results to separate out the isostatic from the tectonic contributions. This indicates that the Adriatic coast from the Gulf of Trieste to the southern end of Istria has tectonically subsided by ∼1.5 m since Roman times.  相似文献   

16.
《Quaternary Science Reviews》2005,24(12-13):1479-1498
Multiple peat-silt couplets preserved in tidal marsh sediment sequences suggest that numerous great plate boundary earthquakes caused the coast around Cook Inlet, Alaska, to subside over the past 3500 years. Field and laboratory analyses of the two youngest couplets record the well-documented earthquake of AD 1964 and the penultimate one, approximately 850 cal yr BP. Diatom assemblages from a range of modern day estuarine environments from tidal flat through salt marsh to acidic bog produce quantitative diatom transfer function models for elevation reconstructions based on fossil samples. Only nine out of 124 fossil assemblages analysed, including previously published data for the AD 1964 earthquake, have a poor modern analogue. Calibration of fossil samples indicate co-seismic subsidence of 1.50±0.32 m for AD 1964, similar to measurements taken after the earthquake, and 1.45±0.34 m for the ∼850 cal yr BP earthquake. Elevation standard errors for individual fossil samples range from ∼0.08 m in peat layers to ∼0.35 m in silt units. Lack of a chronology within fossil silt units prevents identification of changes in the rate of recovery and land uplift between the post-seismic and inter-seismic periods. However, preservation of multiple peat-silt couplets indicates no net emergence over multiple earthquake cycles. Glacio-isostatic movements from Little Ice Age glacier advance and retreat explains a ∼0.15 m relative sea-level oscillation recorded within the peat layer subsequently submerged as a result of the AD 1964 earthquake. Before both this and the ∼850 cal yr BP earthquake, diatom assemblages suggest pre-seismic relative sea-level rise of ∼0.12±0.13 m, representing possible precursors to great earthquakes.  相似文献   

17.
《Quaternary Science Reviews》2007,26(7-8):894-919
This study presents relative sea level (RSL) curves for seven coastal areas in Akarnania and the northwestern Peloponnese (NW Greece) since the mid-Holocene. RSL fluctuations are deduced from 48 14C-AMS dated sedimentological sea level markers from 27 vibracores drilled in near-coast geological archives as well as from six geoarchaeological sea level indicators of known ages. Seven palaeo sea level curves including uncertainty bands are reconstructed for a coastal zone spanning a distance of 150 km. Considerable intra-regional differences in sea level evolution exist. These differences are mainly due to tectonic reasons. In general, RSL in northwestern Greece has never been higher than today. Rates of local sea level rise were highest until 5500–5000 cal BC (up to 12.3 m/ka) and lowest during 4000–500 cal BC (0.2–1.4 m/ka). During the past 2500 or so years, RSL has accelerated anew (0.7–2.7 m/ka). Calculating differences between local mean sea level curves provides quantitative information on intra-regional differences of tectonic activity. The coastal plains of Palairos and Elis show signs of uplift, whereas the Mytikas and Boukka plains are strongly subsiding. Compared to other areas of the eastern Mediterranean, northwestern Greece has been subject to significant net long-term subsidence. Regional tectonic events (RTEs) were detected for the time around 4000, 2500, 500 and 250 cal BC as well as around 250 and 1250 cal AD. RTEs are characterized by changes of uplift/subsidence rates or by the redirection of local tectonic movements. The question if some of the RTEs were of a supra-regional nature is still open. From a geodynamic point of view, the results presented show that Akarnania's southwestern fringe is being downwarped while the tectonic block as a whole is moving towards the southwest. Strongest subsidence rates are observed for central Akarnania. At Akarnania's fringes, subsidence is reduced by the influence of strong uplift of adjacent areas such as around Preveza and the northern Peloponnese.  相似文献   

18.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

19.
《Quaternary Science Reviews》2007,26(17-18):2090-2112
The geomorphology and morphostratigraphy of numerous worldwide sites reveal the relative movements of sea level during the peak of the Last Interglaciation (Marine Isotope Stage (MIS) 5e, assumed average duration between 130±2 and 119±2 ka). Because sea level was higher than present, deposits are emergent, exposed, and widespread on many stable coastlines. Correlation with MIS 5e is facilitated by similar morphostratigraphic relationships, a low degree of diagenesis, uranium–thorium (U/Th) ages, and a global set of amino-acid racemization (AAR) data. This study integrates information from a large number of sites from tectonically stable areas including Bermuda, Bahamas, and Western Australia, and some that have experienced minor uplift (∼2.5 m/100 ka), including selected sites from the Mediterranean and Hawaii. Significant fluctuations during the highstand are evident at many MIS 5e sites, revealed from morphological, stratigraphic, and sedimentological evidence. Rounded and flat-topped curves derived only from reef tracts are incomplete and not representative of the entire interglacial story. Despite predictions of much different sea-level histories in Bermuda, the Bahamas, and Western Australia due to glacio- and hydro-isostatic effects, the rocks from these sites reveal a nearly identical record during the Last Interglaciation.The Last Interglacial highstand is characterized by several defined sea-level intervals (SLIs) that include: (SLI#1) post-glacial (MIS 6/5e Termination II) rise to above present before 130 ka; (SLI#2) stability at +2 to +3 m for the initial several thousand years (∼130 to ∼125 ka) during which fringing reefs were established and terrace morphology was imprinted along the coastlines; (SLI#3) a brief fall to near or below present around 125 ka; (SLI#4) a secondary rise to and through ∼+3–4 m (∼124 to ∼122 ka); followed by (SLI#5) a brief period of instability (∼120 ka) characterized by a rapid rise to between +6 to +9 m during which multiple notches and benches were developed; and (SLI#6) an apparently rapid descent of sea level into MIS 5d after 119 ka. U/Th ages are used to confirm the Last Interglacial age of the deposits, but unfortunately, in only two cases was it possible to corroborate the highstand subdivisions using radiometric ages.Sea levels above or at present were relatively stable during much of early MIS 5e and the last 6–7 ka of MIS 1, encouraging a comparison between them. The geological evidence suggests that significant oceanographic and climatic changes occurred thereafter, midway through, and continuing through the end of MIS 5e. Fluctuating sea levels and a catastrophic termination of MIS 5e are linked to the instability of grounded and marine-based ice sheets, with the Greenland (GIS) and West Antarctic (WAIS) ice sheets being the most likely contributors. Late MIS 5e ice volume changes were accompanied by oceanographic reorganization and global ecological shifts, and provide one ominous scenario for a greenhouse world.  相似文献   

20.
《Quaternary Science Reviews》2007,26(3-4):287-299
High-resolution seismic data from Lake Tana, the source of the Blue Nile in northern Ethiopia, reveal a deep sedimentary sequence divided by four strong reflectors. Data from nearshore cores show that the uppermost strong reflector represents a stiff silt unit, interpreted as a desiccation surface. Channel cuts in this surface, bordered by levee-like structures, are apparent in the seismic data from near the lake margin, suggesting fluvial downcutting and over-bank deposition during seasonal flood events. Periphytic diatoms and peat at the base of a core from the deepest part of the lake overlie compacted sediments, indicating that desiccation was followed by development of shallow-water environments and papyrus swamp in the central basin between 16,700 and 15,100 cal BP. As the lake level rose, open-water evaporation from the closed lake caused it to become slightly saline, as indicated by halophytic diatoms. An abrupt return to freshwater conditions occurred at 14,750 cal BP, when the lake overflowed into the Blue Nile. Further reflection surfaces with downcut structures are identifiable in seismic images of the overlying sediments, suggesting at least two lesser lake-level falls, tentatively dated to about 12,000 and 8000 cal BP. Since Lake Victoria, the source of the White Nile, was also dry until 15,000 cal BP, and did not reach overflow until 14,500 cal BP, the entire Nile system must have been reduced to intermittent seasonal flow until about 14,500 cal BP, when baseflow was re-established with almost simultaneous overflow of the headwater lakes of both the White and Blue Nile rivers. Desiccation of the Nile sources coincides with Heinrich event 1, when cessation of northward heat transport from the tropical Atlantic disrupted the Atlantic monsoon, causing drought in north tropical Africa. The strong reflectors at deeper levels in the seismic sequence of Lake Tana may represent earlier desiccation events, possibly contemporaneous with previous Late Pleistocene Heinrich events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号