首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sets of high-resolution subsurface hydrographic and underway surface chlorophyll a (Chl a) measurements are used, in conjunction with satellite remotely sensed data, to investigate the upper layer oceanography (mesoscale features and mixed layer depth variability) and phytoplankton biomass at the GoodHope line south of Africa, during the 2010–2011 austral summer. The link between physical parameters of the upper ocean, specifically frontal activity, to the spatially varying in situ and satellite measurements of Chl a concentrations is investigated. The observations provide evidence to show that the fronts act to both enhance phytoplankton biomass as well as to delimit regions of similar chlorophyll concentrations, although the front–chlorophyll relationships become obscure towards the end of the growing season due to bloom advection and ‘patchy’ Chl a behaviour. Satellite ocean colour measurements are compared to in situ chlorophyll measurements to assess the disparity between the two sampling techniques. The scientific value of the time-series of oceanographic observations collected at the GoodHope line between 2004 to present is being realised. Continued efforts in this programme are essential to better understand both the physical and biogeochemical dynamics of the upper ocean in the Atlantic sector of the Southern Ocean.  相似文献   

2.
Phytoplankton fluorescence has been used historically as a means of assessing phytoplankton biomass, rates of primary production (PP) and physiological status in laboratory, in situ, and satellite based investigations. Assumptions about the quantum yield of phytoplankton fluorescence, φf, are often overlooked and can become problematic when fluorescence based methods are applied. A time series of φf observations from the northwestern Sargasso Sea is presented with the goal of understanding the controls on fluorescence and its applicability for assessing upper ocean biological processes. Accurate estimates of φf require accounting for Raman scattering and the conversion of planar to scalar irradiance. Variability in φf occurs on both seasonal and episodic time scales. Seasonal variations show maxima in the surface layer during summer months while lower, more uniform values are found throughout the winter when deep mixing occurs. Large episodic variations in φf are observed throughout the record which dwarf seasonal changes. Predictions of depth-dependent and depth-integrated PP rates using φf and natural fluorescence fluxes are only marginally successful (r2∼50%), although comparable with results from global bio-optical models for the Sargasso Sea. Improvements in PP predictions are hindered by weak statistical relationships with other parameters. φf is largely decoupled from the quantum yield of carbon assimilation, φc, indicating that an inverse relationship between fluorescence and photosynthesis does not exist. Consequently, variability in the quantum yield of thermal de-excitation, φh, is found to be of similar magnitude as φf on the timescales observed. These observations show that assumptions about photochemical energy flow through the phytoplankton community must be made carefully and that the fluorescence–photosynthesis relationship is not straightforward.  相似文献   

3.
The efficacy of ocean colour remote sensing in assessing the variability of phytoplankton biomass within Saldanha Bay is examined. Satellite estimates of chlorophyll a (Chl a) were obtained using the maximum peak-height (MPH) algorithm on full-resolution (300?m) data from the Medium Resolution Imaging Spectrometer (MERIS). Subsurface Chl a maxima often occur within Saldanha Bay below the mean detection depth of the satellite (1.5?m) during periods of thermal stratification. Consequently, the MPH product was poorly correlated to in situ data from 4?m depth (r2 and average relative percentage difference [RPD] of 0.094 and 53% respectively); however, the coefficient of determination was much improved if limited to in situ data collected under conditions of mixing (r2 and RPD of 0.869 and 89%, respectively). Composites of monthly MPH Chl a data reveal mean concentrations consistent with in situ seasonal trends of phytoplankton biomass, confirming the capability of the MPH algorithm to qualitatively resolve surface Chl a distribution within the bay.  相似文献   

4.
Carbonate system parameters (pH and alkalinity) were used to estimate the coastal water CO2 fluxes off central Chile (30°S) during September 2007. Coastal waters rich in nitrate and silicate were strongly CO2 supersaturated and normally poor in chlorophyll a. MODIS satellite chlorophyll a data suggest that phytoplankton biomass remained particularly low during September 2007 although coastal waters were highly fertilized with nitrate and silicate. The phytoplankton gross primary productivity in macronutrient-rich waters was very low with the exception of shallow waters (e.g. within or near bays). Several iron-enrichment bottle experiments show that fCO2 rapidly decreases during iron-enrichment treatments compared to controls. This suggests that iron limitation of phytoplankton growth (mainly diatoms) plays a role in maintaining high-CO2 outgassing by preventing rapid interception of upwelled CO2.  相似文献   

5.
为了评估海洋酸化和富营养化耦合作用对近海浮游生态环境的影响,本研究以天津市近岸海域浮游植物群落的生物地球化学指标为研究对象,分别采用一次性及连续培养的方式模拟自然水华及稳态条件,探究其对二氧化碳(CO2)和硝酸盐浓度变化及二者耦合作用的响应。实验条件设置如下:1)对照:二氧化碳分压p(CO2)40.53 Pa、无硝酸盐添加;2)酸化:p(CO2)101.3 Pa、无硝酸盐添加;3)加N:p(CO2)40.53 Pa、添加硝酸盐50 μmol·L–1;4)酸化加N:p(CO2)101.3 Pa、添加硝酸盐50 μmol·L–1。实验结果表明,硝酸盐加富比酸化更加显著地促进浮游植物群落总叶绿素(Chl a)生物量及颗粒有机碳(POC)和颗粒有机氮(PON)积累,酸化和加N使浮游植物群落粒径大小升高。连续培养实验表明,酸化和N加富对Chl a、生物硅(BSi)、PON浓度、PON与颗粒有机磷(POP)比值(N/P)、POC与BSi比值(C/BSi)及沉降速率有协同交互作用,对POP和POC浓度及POC与PON比值(C/N)有拮抗性交互作用。在一次性培养后,酸化显著降低了浮游植物群落的沉降速率;而在连续培养后,酸化和N加富使浮游植物群落沉降速率显著升高。这些结果表明酸化和N加富对与近岸浮游植物相关的生物地球化学循环及在不同生长阶段的种群碳沉降存在不同的潜在影响及交互效应。  相似文献   

6.
Ocean color sensors enable a quasi-permanent monitoring of the chlorophyll a concentration (Chl a) in surface waters. This ubiquitous photosynthetic pigment cannot, however, be used to distinguish between phytoplankton species. Distinguishing phytoplankton groups from space is nevertheless necessary to better study some biochemical processes such as carbon fixation at the global scale, and is thus one of the major challenges of ocean color research. In situ data have shown that the water-leaving radiances (nLw), measured by ocean color sensors at different wavelengths in the visible spectrum, vary significantly for a given Chl a. This natural variability is due partly to differences in optical properties of phytoplankton species. Here, we derive relationships between nLw and phytoplankton species by using a large set of quantitative inventories of phytoplankton pigments collected during nine cruises from Le Havre (France) to Nouméa (New Caledonia) in the framework of the GeP&CO program. Coincident SeaWiFS nLw data between 412 and 555 nm are extracted and normalized to remove the effect of Chl a. These normalized spectra vary significantly with in situ pigment composition, so that four major phytoplankton groups, i.e., haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms, can be distinguished. This classification (PHYSAT) is applied to the global SeaWiFS dataset for year 2001, and global maps of phytoplankton groups are presented. Haptophytes and diatoms are found mostly in high latitudes and in eutrophic regions. Diatoms show a strong seasonal cycle with large-scale blooms during spring and summer. These results, obtained with only five channels in the visible spectrum, demonstrate that ocean color measurements can be used to discriminate between dominant phytoplankton groups provided that sufficient data are available to establish the necessary empirical relationships.  相似文献   

7.
Areas of high nutrients and low chlorophyll a comprise nearly a third of the world’s oceans, including the equatorial Pacific, the Southern Ocean and the Sub-Arctic Pacific. The SOLAS Sea-Air Gas Exchange (SAGE) experiment was conducted in late summer, 2004, off the east coast of the South Island of New Zealand. The objective was to assess the response of phytoplankton in waters with low iron and silicic acid concentrations to iron enrichment. We monitored the quantum yield of photochemistry (Fv/Fm) with pulse amplitude modulated fluorometry, chlorophyll a, primary productivity, and taxonomic composition. Measurements of Fv/Fm indicated that the phytoplankton within the amended patch were relieved from iron stress (Fv/Fm approached 0.65). Although there was no significant difference between IN and OUT stations at points during the experiment, the eventual enhancement in chlorophyll a and primary productivity was twofold by the end of the 15-day patch occupation. However, no change in particulate carbon or nitrogen pools was detected. Enhancement in primary productivity and chlorophyll a were approximately equal for all phytoplankton size classes, resulting in a stable phytoplankton size distribution. Initial seed stocks of diatoms were extremely low, <1% of the assemblage based on HPLC pigment analysis, and did not respond to iron enrichment. The most dominant groups before and after iron enrichment were type 8 haptophytes and prasinophytes that were associated with ∼75% of chlorophyll a. Twofold enhancement of biomass estimated by flow cytometry was detected only in eukaryotic picoplankton, likely prasinophytes, type 8 haptophytes and/or pelagophytes. These results suggest that factors other than iron, such as silicic acid, light or physical disturbance limited the phytoplankton assemblage during the SAGE experiment. Furthermore, these results suggest that additional iron supply to the Sub-Antarctic under similar seasonal conditions and seed stock will most likely favor phytoplankton <2 ??m. This implies that any iron-mediated gain of fixed carbon will most likely be remineralized in shallow water rather than sink and be sequestered in the deep ocean.  相似文献   

8.
《Marine Chemistry》2005,93(1):33-52
Storage carbohydrates (e.g., water-extractable β-1,3-d-glucan in diatoms) are of key importance for phytoplankton growth in a variable light climate, because they facilitate continued growth of the cells in darkness by providing energy and carbon skeletons for protein synthesis. Here, we tested the hypothesis that synthesis of storage carbohydrates by phytoplankton in the Southern Ocean is reduced by low iron and light availability. During the EisenEx/CARbon dioxide Uptake by the Southern Ocean (CARUSO) in situ iron enrichment experiment in the Atlantic sector of the Southern Ocean in November 2000, we studied the dynamics of water-extractable carbohydrates in the particulate fraction over the period of 3 weeks following the iron release. The areal amount (integral between 0- and 100-m depth) of carbohydrates increased from 1400 to 2300 mg m−2 inside the iron-enriched patch, while remaining roughly constant in the surrounding waters. Most of the increase inside the patch was associated with the fraction of large (>10 μm) phytoplankton cells, consistent with the shift in the community structure towards larger diatoms. Deck incubations at 60% of the ambient irradiance revealed that the diurnal chlorophyll a (Chl a)-specific production rates of water-extractable polysaccharides were significantly higher for “in-patch” than for “out-patch” samples (0.5 vs. 0.3 μg C [μg Chl a]−1 h−1, respectively). Together with the higher photochemical efficiency of photosystem II (Fv/Fm), this indicates enhanced photosynthetic performance in response to iron fertilization. In addition, the nocturnal polysaccharide consumption rates were also enhanced by iron release, causing a striking increase in the diel dynamics of polysaccharide concentration. An iron-stimulated increase in diel dynamics was also observed in the fluorescence and size of pico- and nanophytoplankton cells (measured by flow cytometry) and is indicative of enhanced phytoplankton growth. Diurnal polysaccharide production by phytoplankton inside the patch was light-limited when they were incubated at intensities below ca. 200 μmol m−2 s−1 (daytime average). These irradiance levels correspond to those at 20- to 30-m depth in situ, whereas the upper mixed layer was frequently several-fold deeper due to storms. Therefore, these first measurements of phytoplankton carbohydrates during an in situ iron release experiment have revealed that both light and iron availability are the key factors controlling the synthesis of storage carbohydrates in phytoplankton and, hence, the development of diatom blooms in the Southern Ocean.  相似文献   

9.
The carbon flux through major phytoplankton groups, defined by their pigment markers, was estimated in two contrasting conditions of the Northwestern Mediterranean open ocean ecosystem: the spring bloom and post-bloom situations (hereafter Bloom and Post-bloom, respectively). During Bloom, surface chlorophyll a (Chl a) concentration was higher and dominated by diatoms (53% of Chl a), while during Post-bloom Synechococcus (42%) and Prymnesiophyceae (29%) became dominant. The seawater dilution technique, coupled to high pressure liquid chromatography (HPLC) analysis of pigments and flow cytometry (FCM), was used to estimate growth and grazing rates of major phytoplankton groups in surface waters. Estimated growth rates were corrected for photoacclimation based on FCM-detected changes in red fluorescence per cell. Given the 30% average decrease in the pigment content per cell between the beginning and the end of the incubations, overlooking photoacclimation would have resulted in a 0.40 d?1 underestimation of phytoplankton growth rates. Corrected average growth rates (μo) were 0.90±0.20 (SD) and 0.40±0.14 d?1 for Bloom and Post-bloom phytoplankton, respectively. Diatoms, Cryptophyceae and Synechococcus were identified as fast-growing groups and Prymnesiophyceae and Prasinophyceae as slow-growing groups across Bloom and Post-bloom conditions. The higher growth rate during Bloom was due to dominance of phytoplankton groups with higher growth rates than those dominating in Post-bloom. Average grazing rates (m) were 0.58±0.20 d?1 (SD) and 0.31±0.07 d?1. The proportion of phytoplankton growth consumed by microzooplankton grazing (m/μo) tended to be lower in Bloom (0.69±0.34) than in Post-bloom (0.80±0.08). The intensity of nutrient limitation experienced by phytoplankton indicated by μo/μn (where μn is the nutrient-amended growth rate), was similar during Bloom (0.78) and Post-bloom (0.73). Primary production from surface water (PP) was estimated with 14C incubations. A combination of PP and Chl a synthesis rate yielded C/Chl a ratios of 34±21 and 168±75 (g:g) for Bloom and Post-bloom, respectively. Transformation of group-specific Chl a fluxes into carbon equivalents confirmed the dominant role of diatoms during Bloom and Synechococcus and Prymnesiophyceae during Post-bloom.  相似文献   

10.
We have studied the epipelagic (0–100 m) metabolic balance between gross and net community production (Pg, Pn) and community respiration (Rd) around two seamounts (Seine: 34°N, 14°W; Sedlo: 40°N, 27°W) located in the subtropical northeast Atlantic. We looked for local effects causing seamounts to increase community production and/or community respiration with respect to the surrounding open ocean. Comparatively, Seine presented similar average living plankton biomass—chlorophyll a (Chl) and particulate proteins (Pt)—but higher Pg, due to higher Rd, presumably the result of organic matter loading from the NW Africa upwelling system, as supported by field results and satellite imagery. Nevertheless, the large temporal and spatial variability at each seamount make the average differences non-significant. Temporal variability in P, Rd and Chl was evident around the two seamounts. Sedlo showed higher Rd, Chl and Pt during winter, but higher Pn in summer. Seine presented higher Pt, Chl and Pn during spring, but higher Rd in summer. On average, the metabolic balance was heterotrophic (Rd>Pg) during all the sampling periods and at most stations of the two seamounts. Both Sedlo and Seine, showed higher Rd with respect to average values reported for the global ocean. A clear seamount effect on phytoplankton was only observed in Seine during spring, when Chl and Pt were enhanced at the summit of the seamount. Our results suggest that, rather than increasing primary production significantly, the two seamounts could act as trapping mechanisms for organic matter, favoured by the development of Taylor Columns on the top of the seamounts. Nevertheless these effects seem to be of a lower magnitude than changes caused by temporal or regional variability, questioning the role of these seamounts as hot-spots of productivity in the oceans.  相似文献   

11.
The time series of multiple sources of satellite data are used to examine the interannual variability of chlorophyll a concentration (Chl a) and its relation to the physical environment during the autumn monsoon transitional period in the Taiwan Strait (TWS). The satellite data included the Chl a concentration and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)/ Aqua as well as the multi-sensors merged wind products from 2002 to 2012. The results show that the average Chl a concentration of the whole TWS is mainly contributed by the northern TWS. The average Chl a in the northern TWS is 3.6 times that in the southern TWS. The maximum variability of Chl a is located in the frontal regions between the cold Zhe-Min Coastal Water and the strait warm water. The temporal change of Chl a concentration is different in the northern and southern TWS. The changes in the relative strength of the cold and warm water masses is suggested to be the dominant processes in controlling the phytoplankton growth in the northern TWS, while there is wind-induced mixing in the southern TWS. Additionally, La Nina events exhibited complex effects on the interannual variability of Chl a concentration in autumn. The longterm time series of physical and biological observations are especially needed to better understand how the TWS complex ecosystem responds to climate variations.  相似文献   

12.
We examined short-term phytoplankton and sediment dynamics in Tampa Bay with data collected between 8 December 2004 and 17 January 2005 from optical, oceanographic, and meteorological sensors mounted on a coastal oceanographic tower and from satellite remote sensing. Baseline phytoplankton (chlorophyll-a, Chl) and sediment concentrations (particle backscattering coefficient at 532 nm, bbp(532)) were of the order of 3.7 mg m−3 and 0.07 m−1, respectively, during the study period. Both showed large fluctuations dominated by semidiurnal and diurnal frequencies associated with tidal forcing. Three strong wind events (hourly averaged wind speed >8.0 m s−1) generated critical bottom shear stress of >0.2 Pa and suspended bottom sediments that were clearly observed in concurrent MODIS satellite imagery. In addition, strong tidal current or swells could also suspend sediments in the lower Bay. Sediments remained suspended in the water column for 2–3 days after the wind events. Moderate Chl increases were observed after sediment resuspension with a lag time of ˜1–2 days, probably due to release of bottom nutrients and optimal light conditions associated with sediment resuspension and settling. Two large increases in Chl with one Chl > 12.0 mg m−3 over ˜2 days, were observed at neap tides. For the study site and period, because of the high temporal variability in phytoplankton and sediment concentrations, a monthly snapshot can be different by −50% to 200% from the monthly “mean” chlorophyll and sediment conditions. The combination of high-frequency observations from automated sensors and synoptic satellite imagery, when available, is an excellent complement to limited field surveys to study and monitor water quality parameters in estuarine environments.  相似文献   

13.
Chlorophyll-a concentration (C chl) variations in the cross section within and outside the Peter the Great Bay shelf during different stages of the winter–spring phytoplankton bloom in 2003–2005 has been considered based on a ship (obtained during the R/V Akademik M.A. Lavrent’ev voyage of February 26 to March 9, 2003) and MODIS-Aqua spectroradiometer and the SeaWiFS color-scanner satellite data. A comparison of the C chl variability obtained from the ship and satellite data indicates that these data are inconsistent. According to satellite data obtained at the MUMM atmospheric correction, the C chl variability is distorted less than the NIR-correction data. Studying the variations in the coefficients of light absorption by the detritus and yellow substance (a dg) and light backscattering by suspended particles (b bp), C chl, chlorophyll-a fluorescence (F chl) according to the satellite data allow us to state that the variations in the discrepancy between the satellite and ship C chl values are mainly caused by the variations in the content of the detritus and yellow substance in water. Based on the satellite data, it has been revealed that the a dg values increase with increasing wind mixing after the phytoplankton bloom (about 2–5 km areas where the a dg, C chl, F chl, and bbp values abruptly increased in 2005, apparently due to eddy formation). It has been indicated that the F chl characteristic, which is close to C chl, increases when the favorable conditions for the phytoplankton bloom deteriorate. Therefore, this characteristic cannot be used to identify C chl under the indicated conditions.  相似文献   

14.
An in situ iron addition experiment (SAGE) was carried out in high-nitrate low-chlorophyll low-silicic acid (HNLCLSi) sub-Antarctic surface waters south-east of New Zealand. In contrast to other iron addition experiments, the phytoplankton response was minor, with a doubling of biomass relative to surrounding waters, with the temporal trends in dissolved iron and macronutrients instead dominated by physical factors such as mixing and dilution. The initial increase in patch surface area indicated a lateral dilution rate of 0.125 d−1, with a second estimate from a model of the decline in peak SF6 concentration yielding a higher lateral dilution rate of 0.16-0.25 d−1. The model was tested on the SOIREE SF6 dataset and provided a lateral dilution of 0.07 d−1, consistent with previous published estimates. MODIS ocean colour images showed elevated chlorophyll coincident with the SF6 patch on day 10 and 12, and an elevated chlorophyll filament at the SAGE experiment location 3-4 days after ship departure, which provided additional lateral dilution estimates of 0.19 and 0.128 d−1. Dissolved iron at the patch centre declined by 85% within two days of the initial infusion, of which dilution accounted for 50-65%; it also decreased rapidly after the 2nd and 3rd infusions but remained elevated after the fourth infusion. Despite decreases in nitrate and silicic acid from day 7 and 10, respectively, the final nutrient concentrations in the patch exceeded the initial concentrations due to supply from lateral intrusion and mixed-layer deepening. The low Si:N loss ratio suggested that the observed limited response to iron was primarily by non-siliceous phytoplankton. Algal growth rate exceeded the minimum dilution rate during two periods (days 3-6 and 10-14), and coincided with net chlorophyll accumulation. However, as the ratio of algal growth to dilution was the lowest reported for an iron addition experiment, dilution was clearly a significant factor in the SAGE experiment recording the lowest phytoplankton response to mesoscale iron addition.  相似文献   

15.
In order to estimate primary production from ocean color satellite data using the Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski, 1997), we propose a two-phytoplankton community model. This model is based on the two assumptions that changes in chlorophyll concentration result from changes of large-sized phytoplankton abundance, and chlorophyll specific productivity of phytoplankton tends to be inversely proportional to phytoplankton size. Based on the analysis of primary production data, P opt B , which was one parameter in the VGPM, was modeled as a function of sea surface temperature and sea surface chlorophyll concentration. The two-phytoplankton community model incorporated into the VGPM gave good estimates in a relatively high productive area. Size-fractionated primary production was estimated by the two-phytoplankton community model, and P opt B of small-sized phytoplankton was 4.5 times that of large-sized phytoplankton. This result fell into the ranges observed during field studies.  相似文献   

16.
The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive subpolar zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment was conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study, quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at tenths of kilometer scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describe air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties and windspeed were quantified to further assist the development of gas exchange models for high-wind environments.There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 ton Fe2+, this was a very modest response compared to other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co-limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAXs to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.  相似文献   

17.
The effect of ocean acidification, caused by the increase in pCO2 in seawater, on phytoplankton population and on related organic nitrogen production was experimentally examined by use of a natural coastal microbial population. pCO2 and pH were controlled by aeration with air in which pCO2 was at the current level (control), for which ambient air was used, and with air in which pCO2 was ??800?? and ??1200?? ppm, in 500-L culture vessels. The experiment was continued for 15?days after addition of the inorganic nutrients such as nitrate, phosphate, and silicate. During most of the experimental period, a minor increase in phytoplankton biomass was noted, probably because of low irradiance, an increase in phytoplankton biomass was observed at the end of the experiment. Flow cytometric and microscopic observations revealed that this increase was because of Chrysochromulina sp. (Haptophyceae). The growth of Chrysochromulina sp. was most obvious in the control vessel, and tended to be obscured by increasing pCO2 (decrease in pH), indicating the possibility that ocean acidification inhibits the growth of specific phytoplankton groups, for example Chrysochromulina sp. Production of particulate organic nitrogen (PON), determined by the 15N tracer method, also diminished under acidified conditions compared with that at the current level.  相似文献   

18.
Abundance and distribution of phytoplankton in seawater at southwestern East/Japan Sea near Gampo were investigated by HPLC analysis of photosynthetic pigments during summer of 1999. Detected photosynthetic pigments were chlorophyll a, b, c1+2 (Chl a, Chl b, Chl c1+2), fucoxanthin (Fuco), prasinoxanthin (Pras), zeaxanthin (Zea), 19’-butanoyloxyfucoxanthin (But-fuco) and beta-carotene (β-Car). Major carotenoid was fucoxanthin (bacillariophyte) and minor carotenoids were Pras (prasinophyte), Zea (cyanophyte) and But-fuco (chrysophyte). Chl a concentrations were in the range of 0.16-8.3/land subsurface chlorophyll maxima were observed at 0-10m at inshore and 30–50 m at offshore. Thermocline and nutricline tilted to the offshore direction showed a mild upwelling condition. Results from size-fraction showed that contribution from nano+picoplankton at Chl a maximum layer was increased from 18% at inshore to 69% at offshore on average. The maximum contribution from nano+picoplankton was found as 87% at St. E4. It was noteworthy that contribution from nano+picoplanktonic crysophytes and green algae to total biomass of phytoplankton was significant at offshore. Satellite images of sea surface temperature indicated that an extensive area of the East/Japan Sea showed lower temperature (<18 °C) but the enhanced Chl a patch was confined to a narrow coastal region in summer, 1999. Exceptionally high flux of low saline water from the Korea/Tsushima Strait seemed to make upwelling weak in summer of 1999 in the study area. Results of comparisons among Chl a from SeaWIFs, HPLC and fluorometric analysis showed that presence of Chl b cause underestimation of Chl a about 30% by fluorometric analysis but overestimation by satellite data about 30-75% compared to HPLC data.  相似文献   

19.
Hong Kong waters receive high nutrient loading from year-round sewage effluent and Pearl River discharge during the summer wet season. We assessed the role of physical processes in reducing eutrophication by calculating a eutrophication reduction index for four different hydrographical areas and four seasons. We used outdoor incubation experiments to assess the response of phytoplankton when physical (mixing and dilution) processes and mesozooplankton grazing were reduced. The primary regulator of phytoplankton growth in low nutrient eastern waters (reference site) shifted from nutrients in the wet season to increased vertical mixing in the dry season. In the highly flushed western waters and Victoria Harbour, the majority (>86?%) of the eutrophication impacts were reduced by strong hydrodynamic mixing (turbulence, vertical mixing, and flushing effects) all year. In southern waters, eutrophication effects were severe (chlorophyll a of up to ~73?μg?L?1) and was regulated by the ambient phosphate (PO4) concentration (~0.1?μM) during summer. In contrast, 62–96?% of the potential eutrophication impacts were reduced by physical processes during other seasons. Bioassays also revealed that the yield of chlorophyll from dissolved inorganic nitrogen (DIN) that was taken up by phytoplankton [1.1–3.3?g?Chl (mol?N)?1] was not significantly different in both N- and P-limited cases. In contrast, the uptake ratios of DIN:PO4 (26:1–105:1) and Chl:P ratios [42–150?g?Chl (mol?P)?1] in the P-limited cases were significantly (p?<?0.05, t test) higher than the N-limited cases [~16DIN:1P and 22–48?g?Chl (mol?P)?1]. The C:Chl ratios ranged from 32 to 87?g?g?1. These potential ranges in ratios need to be considered in future nutrient models.  相似文献   

20.
认识海洋在全球碳循环中的作用及其对环境变化的响应,需要高时空分辨率的观测数据。由于轨道宽度、云雨天气、太阳耀斑等的影响,单一的水色传感器的观测能力十分有限,将多源海洋水色卫星进行融合是提高水色数据时空覆盖的一种有效途径。SeaWiFS和MERIS分别于2010年12月11日和2012年5月9日停止运行,在很大程度上降低了水色融合产品时空覆盖的提升。我们在融合过程中加入了FY-3 MERSI数据,生成了全球海洋叶绿素浓度遥感融合产品数据集。数据源包括SeaWiFS、MERIS、MODIS-Aqua、VIIRS和MERSI。结果表明:加入MERSI后,融合产品的日平均有效空间覆盖提高了9%;采样频率(同一区域一年中获取有效数据的次数)由57天/年提高到109天/年。利用实测数据和国外同类融合产品(ESA GlobColour和NASA MEaSUREs)对新的数据集进行了质量评价。与实测数据相比,加入MERSI的融合产品精度与未加入MERSI的融合产品基本一致;与国外同类融合产品的偏差小于10%。新数据集的时间序列特性与未加入MERSI的融合产品以及单传感器的一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号