首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On 27 December 2004, just the third giant flare was observed from a magnetar, in this case SGR 1806-20. This giant flare was the most energetic of the three, and analysis of a Very Large Array observation of SGR 1806-20 after the giant flare revealed the existence of a new, bright, transient radio source at its position. Follow-up radio observations of this source determined that initially, this source underwent a mildly relativistic one-sided expansion which ceased at the same time as a temporary rebrightening of the radio source. These observational results imply that the radio emission is powered by ∼1024 g of baryonic material which was ejected off the surface on the neutron star during the giant flare.   相似文献   

2.
The recent discovery of high frequency oscillations during giant flares from the Soft Gamma Repeaters SGR 1806-20 and SGR 1900+14 may be the first direct detection of vibrations in a neutron star crust. If this interpretation is correct it offers a novel means of testing the neutron star equation of state, crustal breaking strain, and magnetic field configuration. We review the observational data on the magnetar oscillations, including new timing analysis of the SGR 1806-20 giant flare using data from the Ramaty High Energy Solar Spectroscopic Imager and the Rossi X-ray Timing Explorer. We discuss the implications for the study of neutron star structure and crust thickness, and outline areas for future investigation.   相似文献   

3.
We analyze the data obtained when the Konus-Wind gamma-ray spectrometer detected a giant flare in SGR 1806-20 on December 27, 2004. The flare is similar in appearance to the two known flares in SGR 0526-66 and SGR 1900+14 while exceeding them significantly in intensity. The enormous X-ray and gamma-ray flux in the narrow initial pulse of the flare leads to almost instantaneous deep saturation of the gamma-ray detectors, ruling out the possibility of directly measuring the intensity, time profile, and energy spectrum of the initial pulse. In this situation, the detection of an attenuated signal of inverse Compton scattering of the initial pulse emission by the Moon with the Helicon gamma-ray spectrometer onboard the Coronas-F satellite was an extremely favorable circumstance. Analysis of this signal has yielded the most reliable temporal, energy, and spectral characteristics of the pulse. The temporal and spectral characteristics of the pulsating flare tail have been determined from Konus-Wind data. Its soft spectra have been found to contain also a hard power-law component extending to 10 MeV. A weak afterglow of SGR 1806-20 decaying over several hours is traceable up to 1 MeV. We also consider the overall picture of activity of SGR 1806-20 in the emission of recurrent bursts before and after the giant flare.  相似文献   

4.
We present one possible mechanism for the giant flares of the soft gamma-ray repeaters (SGRs) within the framework of the magnetar (superstrongly magnetized neutron star) model, motivated by the positive period increase associated with the August 27 event from SGR 1900+14. From second-order perturbation analysis of the equilibrium of the magnetic polytrope, we find that there exist different equilibrium states separated by the energy of the giant flares and the shift in the moment of inertia to cause the period increase. This suggests that, if we assume that global reconfiguration of the internal magnetic field of     suddenly occurs, the positive period increase     as well as the energy ≳1044 erg of the giant flares may be explained. The moment of inertia can increase with a release of energy, because the star shape deformed by the magnetic field can be prolate rather than oblate. In this mechanism, since oscillation of the neutron star will be excited, a ∼ ms-period pulsation of the burst profile and an emission of gravitational waves are expected. The gravitational waves could be detected by planned interferometers such as LIGO, VIRGO and LCGT.  相似文献   

5.
SGR J1745-2900 is a magnetar near the Galactic center. X-ray observations of this source found a decreasing X-ray luminosity accompanied by an enhanced spindown rate. This negative correlation between X-ray luminosity and spindown rate is hard to understand. The wind braking model of magnetars is employed to explain this puzzling spindown behavior. During the release of magnetic energy of magnetars,a system of particles may be generated. Some of these particles remain trapped in the magnetosphere and may contribute to the X-ray luminosity. The rest of the particles can flow out and take away the rotational energy of the central neutron star. A smaller polar cap angle will cause the decrease of X-ray luminosity and enhanced spindown rate of SGR J1745-2900. This magnetar is shortly expected to have a maximum spindown rate.  相似文献   

6.
On 27th December 2004 SGR 1806–20, one of the most active Soft γ-ray Repeaters (SGRs), displayed an extremely rare event, also known as giant flare, during which up to 1047 ergs were released in the ∼1–1000 keV range in less than 1 s. Before and after the giant flare we carried out IR observations by using adaptive optics (NAOS-CONICA) mounted on VLT which provided images of unprecedented quality (FWHM better than 0.1″). We discovered the likely IR counterpart to SGR 1806–20 based on positional coincidence with the VLA uncertainty region and flux variability of a factor of about 2 correlated with that at higher energies. Moreover, by analysing the Rossi-XTE/PCA data we have discovered rapid Quasi-Periodic Oscillations (QPOs) in the pulsating tail of the 27th December 2004 giant flare of SGR 1806–20. QPOs at ∼92.5 Hz are detected in a 50 s interval starting 170 s after the onset of the giant flare. These QPOs appear to be associated with increased emission by a relatively hard unpulsed component and are seen only over phases of the 7.56 s spin period pulsations away from the main peak. QPOs at ∼18 and ∼30 Hz are also detected ∼200–300 s after the onset of the giant flare. This is the first time that QPOs are unambiguously detected in the flux of a Soft Gamma-ray Repeater, or any other isolated neutron star. We interpret the highest QPOs in terms of the coupling of toroidal seismic modes with Alfvén waves propagating along magnetospheric field lines. The lowest frequency QPO might instead provide indirect evidence on the strength of the internal magnetic field of the neutron star.   相似文献   

7.
Based on the work of Wang et al. (Chin. Phys. Lett. 29:049701, 2012), we re-investigated electron capture on iron group nuclei in the outer crust of magnetars and studied magnetar evolution. Effects of ultra-strong magnetic field on electron capture rates for 57Co have been analyzed in the nuclear shell model and under the Landau-level-quantization approximation, and the electron capture rates and the neutrino energy loss rates on iron group nuclei in the outer crust of magnetar have been calculated. The results show that electron capture rates on 57Co are increase greatly in the ultra-strong magnetic field, and above 3 orders of magnitude generally; and the neutrino energy loss rates by electron capture on iron group nuclei increase above 3 orders of magnitude in the range from B=4.414×1013 G to B=4.414×1015 G. These conclusions play an important role in future studying the evolution of magnetar. Furthermore, we modify the expressions of the electron chemical potential (Fermi energy) and phase space factor by introducing Dirac δ-function, and select appropriate parameters of temperature T, magnetic field B and matter density ρ in the our crust, thus our results will be reliable than those of Wang et al.  相似文献   

8.
We have ascertained an important role of rotation effects in a collapsing stellar core using a quasi-one-dimensional hydrodynamic model with a rigorous allowance for the neutrino energy losses including the neutrino opacity stage. However, the neutrino scattering processes are not considered in the neutrino emission kinetics as secondary compared to the absorption processes. The quasi-one-dimensional approximation (with averaging of the expression for the centrifugal force over the polar angle) allows numerical calculations to be performed relatively easily up to the formation of a hydrostatically equilibrium neutron star after a very long stage of collapsar cooling by neutrino emission (about 2 s). We present detailed results of our numerical solution, including the neutrino spectra, with electron neutrinos making a dominant contribution to them and the contribution from electron antineutrinos being smaller by an order of magnitude. In the model under consideration, we solve the equation of matter neutronization kinetics by taking into account the main process of nuclear reactions on free nucleons, although the contribution from iron and helium nuclei is included in the equation of state.  相似文献   

9.
We study the electromagnetic radiation from a newborn magnetar whose magnetic tilt angle decreases rapidly. We calculate the evolution of the angular spin frequency, the perpendicular component of the surface magnetic field strength, and the energy loss rate through magnetic dipole radiation. We show that the spin-down of the magnetar experiences two stages characterized by two different timescales. The apparent magnetic field decreases with the decrease of the tilt angle. We further show that the energy loss rate of the magnetar is very different from that in the case of a fixed tilt angle. The evolution of the energy loss rate is consistent with the overall light curves of gamma-ray bursts which show a plateau structure in their afterglow stage. Our model supports the idea that some gamma-ray bursts with a plateau phase in their afterglow stage may originate from newborn millisecond magnetars.  相似文献   

10.
We study an active region coronal jet that evolved from southward of a major sunspot of NOAA AR12178 on 04 October 2014. This jet is associated with an onset of the GOES C1.4 flare. We use SDO/AIA, SDO/HMI, GONG \(H\upalpha\) and GOES data for analysing the observed event. We term this jet as a two-stage confined eruption of the plasma. In the first stage, some plasma erupts above the compact flaring region. In the second stage, this eruptive jet plasma and associated magnetic field lines interact with another set of distinct magnetic field lines present in its south-east direction. This creates an X-point region, where the second stage of the jet eruption is deflected above it on a curvilinear path into overlying corona. The lower part of the jet is followed by a cool surge eruption, which is visible only in \(H{\upalpha}\) emissions. The magnetic flux cancellation at the footpoint causes the triggering of C-class flare eruption. This flare energy release further triggers first stage of the coronal jet eruption. The second stage of the jet eruption is a consequence of an interaction of two distinct sets of magnetic field lines in the overlying corona. The first stage of the coronal jet and co-spatial but lagging cool surge may have common origin due to the reconnection generated heating pulses. This complex evolution of the coronal jet involves flare heating induced first stage plasma eruption, guiding of jet’s material above a junction of two distinct sets of field lines in the corona, and intra-relationship with cool surge. In effect, it imposes rigid constraints on the existing jet models.  相似文献   

11.
The central compact object for some gamma-ray bursts (GRBs) may be a strongly magnetized millisecond pulsar. It can inject energy to the outer shock of the GRB by through the magnetic dipole radiation, and therefore causes the shallow decay of the early afterglow. Recently, from a large number of GRB X-ray afterglows observed by Swift/XRT(X-ray telescope), it is revealed that many of them exhibit the shallow decay about 102∼104 s after the burst prompt emission. We have fitted the X-ray afterglow light curves of 11 GRBs by using the energy injection model of a magnetar with the rotation period in the millisecond order of magnitude. The obtained result shows the validity and universality of the magnetar energy injection model in explaining the shallow decay of afterglows, and simultaneously provides some constraints on the magnetic field strength and rotation period of the central magnetar.  相似文献   

12.
Heating of the deep chromosphere by a vertically descending beam of non-thermal electrons with power-law energy spectrum, in flares, is analysed. In lower regions of the flare, radiative losses can balance the energy input and the flare structure is described in terms of instantaneous quasi-steady temperature/depth profiles. Motion of the optical flare material is at constant pressure and is constrained to be purely vertical by a vertical magnetic field. The ionisation of hydrogen is determined by the same non-LTE processes as in the quiet chromosphere. Temperature profiles are obtained for a wide range of electron beam intensities and spectral indices and are discussed in terms of optical flare observations. Due to the steepness of the electron spectra, typical densities in the optical flare vary only over a narrow range, despite the diversity of beam intensities, in agreement with observation.Above a certain region, the flare material cannot attain a radiatively steady state against the electron input but evaluation of the level at which this occurs leads to an estimate of the mass of material involved in the high temperature flare plasma in this model. Results, which are again insensitive to the electron beam parameters, are found to be in satisfactory agreement with observations of the mass of flare ejecta and of soft X-ray flare emission measures.  相似文献   

13.
We present a systematic analysis of all the BeppoSAX data of SGR1900+14. The observations spanning five years show that the source was brighter than usual on two occasions: ~20 days after the August 1998 giant flare and during the 105?s long X-ray afterglow following the April 2001 intermediate flare. In the latter case, we explore the possibility of describing the observed short term spectral evolution only with a change of the temperature of the blackbody component. In the only BeppoSAX observation performed before the giant flare, the spectrum of the SGR1900+14 persistent emission was significantly harder and detected also above 10 keV with the PDS instrument. In the last BeppoSAX observation (April 2002) the flux was at least a factor 1.2 below the historical level, suggesting that the source was entering a quiescent period.  相似文献   

14.
We discuss the high-energy afterglow emission (including high-energy photons, neutrinos and cosmic rays) following the 2004 December 27 giant flare from the soft gamma-ray repeater (SGR) 1806−20. If the initial outflow is relativistic with a bulk Lorentz factor  Γ0∼  tens, the high-energy tail of the synchrotron emission from electrons in the forward shock region gives rise to a prominent sub-GeV emission, if the electron spectrum is hard enough and if the initial Lorentz factor is high enough. This signal could serve as a diagnosis of the initial Lorentz factor of the giant flare outflow. This component is potentially detectable by the Gamma-Ray Large Area Telescope ( GLAST ) if a similar giant flare occurs in the GLAST era. With the available 10-MeV data, we constrain that  Γ0 < 50  if the electron distribution is a single power law. For a broken power-law distribution of electrons, a higher Γ0 is allowed. At energies higher than 1 GeV, the flux is lower because of a high-energy cut-off of the synchrotron emission component. The synchrotron self-Compton emission component and the inverse Compton scattering component off the photons in the giant flare oscillation tail are also considered, but they are found not significant given a moderate Γ0 (e.g. ≤ 10). The forward shock also accelerates cosmic rays to the maximum energy 1017 eV, and generates neutrinos with a typical energy 1014 eV through photomeson interaction with the X-ray tail photons. However, they are too weak to be detectable.  相似文献   

15.
We consider the electron—positron plasma generation processes in the magnetospheres of magnetars—neutron stars with strong surface magnetic fields, B ? 1014–1015 G. We show that the photon splitting in a magnetic field, which is effective at large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of γ-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the \(P - \dot P\) diagram that defines the plasma generation threshold in a magnetar magnetosphere.  相似文献   

16.
胡方浩 《天文学报》2011,52(4):288-296
某些伽玛射线暴(简称伽玛暴)的中心致密天体可能是一颗具有强磁场的毫秒脉冲星,它通过磁偶极辐射可对伽玛暴外激波注入能量,从而导致早期余辉光变曲线的变平.近年来,从Swift卫星观测到的大量伽玛暴X射线余辉中发现,很多X射线余辉光变曲线在暴后10~2~10~4s期间的确存在明显的变平现象.利用周期为毫秒量级的磁星能量注入模型对11个加玛暴的X射线余辉光变曲线进行了拟合,显示该模型在解释余辉变平现象上的有效性和广泛性,通过对余辉光变曲线的拟合,同时也给出了相关中心磁星的磁场强度和旋转周期.  相似文献   

17.
叙述和介绍了太阳爆发的磁通量绳灾变理论和模型的发展过程,强调了建立这样的模型所需要的观测基础。讨论了由模型所预言的爆发磁结构的几个重要特征以及观测结果对这种预言的证实。在此模型的基础上,讨论了一个典型的爆发过程中所出现的不同现象及它们之间的相互关系。最后,介绍了作者的一项最新尝试:将太阳爆发的灾变理论和模型应用到对黑洞吸积盘间歇性喷流的理论研究当中,以及研究所取得的初步结果。  相似文献   

18.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection.  相似文献   

19.
A model for the high-frequency (20–2400 Hz) quasi-periodic oscillations (QPOs) of magnetars based on the representation of coronal magnetic loops as equivalent electric RLC circuits is proposed. The observed periods of the QPOs and their high Q-factor (Q ≈ 104–105) are explained. It follows from the model that the QPOs can be excited not only in the tail of a flare but also before the main pulse. The parameters of the QPO source at the “ringing tail” stage of the flare from SGR 1806–20 on December 27, 2004, have been estimated: electric current I ≈ 3 × 1019 A, minimum magnetic field strength B min ≈ 1013 G, and electron density n ≈ 2 × 1016 cm−3.  相似文献   

20.
Kosovichev  A.G.  Zharkova  V.V. 《Solar physics》1999,190(1-2):459-466
Using high-cadence magnetograms from the SOHO/MDI we have investigated variations of the photospheric magnetic field during solar flares and CMEs. In the case of a strong X-class flare of May 2, 1998, we have detected variations of magnetic field in a form of a rapidly propagating magnetic wave. During the impulsive phase of the flare we have observed a sudden decrease of the magnetic energy in the flare region. This provides direct evidence of magnetic energy release in solar flares. We discuss the physics of the magnetic field variations, and their relations to the Moreton Hα waves and the coronal waves observed by the EIT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号