首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several distinct assemblages of Pb-Sb, Pb-As, Cu-Pb-Sb and Cu-Fe-Zn-Sn sulphosalts are identified in sulphide samples from Bleikvassli mine, Norway. Detailed optical microscopy and electron probe microanalysis have permitted investigation of textural relationships between minerals and compositional variations between different ore types. Tetrahedrite, typically containing 10–16?wt.% Ag (rare freibergite containing 25–30?wt.% Ag has also been identified in two samples), stannite (Cu2(Fe>Zn)SnS4), and meneghinite, CuPb13Sb7S24, are widely distributed as trace constituents throughout massive pyritic and galena-rich ores. Native antimony and pyrargyrite occur in trace amounts in all ore types, as the breakdown products of earlier sulphosalts. Several distinct types of wall-rock mineralisation are present at Bleikvassli. Of considerable mineralogical interest are the coarse-grained sulphide mobilisates within the wall rock which contain a distinct?and characteristic suite of Pb-As sulphosalts:?tennantite?+?jordanite (Pb14As6S23)?+?seligmannite (CuPbAsS3) ± dufrenoysite (Pb2As2S5). Bournonite (CuPbSbS3) is the only Sb-bearing sulphosalt recognised in significant amounts within the mobilisates, meneghinite and tetrahedrite being conspicuously absent. These mobilisates display considerable Au enrichment; electrum can be confirmed, intimately associated with jordanite and tennantite. Appreciable Sb (up to 3?wt.%) is contained within galena in the mobilisates, in contrast to galena from massive ores which contains only negligible Sb. Contents of Ag and Bi in galena vary considerably in all ore types, but confirm earlier suggestions that galena is a major Ag-carrier at Bleikvassli. Boulangerite (Pb5Sb4S11), jamesonite (FePb4Sb6S14) and gudmundite (FeSbS) occur in trace amounts. Sn-sulphosalts are represented by kësterite, (Cu2(Zn> Fe)SnS4), but commonly zoned with respect to Zn/Fe ratio, in the mobilisates, rather than by stannite. A rare type of mobilisate, also in the wall rock, in which chalcocite and bornite are the main minerals, contains native Ag, stromeyerite (AgCuS), mckinstryite ((Ag,Cu)2?S), Ag-free tetrahedrite, an unnamed Cu-Ag-Fe sulphide (Cu3Ag2FeS4) and native Bi, myrmekitically intergrown with chalcocite. Although a comprehensive genetic model for the wall-rock mineralisation at Bleikvassli is largely impossible given the limitations in the present state of knowledge regarding mechanisms involved in remobilisation processes, a multi-stage model of remobilisation during regional metamorphism is considered to best explain the observations. An interplay of different solid- and liquid-state remobilisation mechanisms, in various combinations, is required to account for the macro- and microscopic observations. Remobilisation probably began during the earlier stages of metamorphism, with crystallisation and further remobilisation taking place during the entire metamorphic cycle, giving rise to the extensive chemical and mineralogical diversity observed today. Preserved mineral assemblages and their textural relationships reflect a complex sequence of replacement and decomposition reactions taking place during the latest phase of late-metamorphic crystallisation and subsequent cooling.  相似文献   

2.
3.
Summary Polymetallic ore deposits of low temperature origin often contain thallium as a minor element. By means of modern analytical methods numerous new T1 minerals are described, but their coexistence and equilibria are not investigated yet.The equilibria at 200°C of the quasi-quaternary system Ag2S-Tl2S-Sb2-Sb2S3-Bi2S3 and the corresponding subsystems were studied. The system Ag2S-Tl2S-Sb2S3-Bi2S3 contains only one quasiquaternary phase, AgTlSbBiS4, which is connected by tie-lines with all quasiternary phases in the system (Ag4Sb3BiS8 and Ag3Tl3Sb2S6) and with most quasibinary phases: SbBiS3, weissbergite (TlSbS2), (TlBiS2, pyrargyrite (Ag3SbS3), miargyrite (AgSbS2) and matildite (AgBiS2). This phase diagram makes it possible to investigate all important naturally occurring parageneses of Ag and Tl sulphosalts containing Sb and Bi.
Die experimentelle Untersuchung des Ag-TI-Sb-Bi-S Systems
Zusammenfassung In polymetallischen Sulfiderzen niedriger Bildungstemperaturen sind Spuren von Thallium fast immer nachweisbar. In jüngster Zeit wurde mittels moderner Analysentechniken eine Reihe neuer Thalliumminerale entdeckt, charakteristische Paragenesen sind bisher und Phasengleichgewichte jedoch unerforscht.In einer experimentellen Studie wurde das quasi-quaternäre System Argentit (Ag2S)-Carlinit (Tl2S)-Antimonglanz (Sb2S3)-Wismutglanz (Bi2S3) bei 200 °C untersucht. Es enthält nur eine quasi-quaternäre Phase AgTlSbBiS4, welche durch Konoden mit den quasi-ternären Phasen Ag4Sb3BiS8 und Ag3Tl3Sb2S6, sowie mit den quasi-binären Phasen Pyrargyrit (Ag3SbS3), Miargyrit (AgSbS2), Schapbachit (Matildit, AgBiS2), Weissbergit (TlSbS2), TlBiS2 und SbBiS3 verknüpft ist. Das vorliegende Phasendiagramm ermöglichtes die Phasenbeziehungen natürlich vorkommender Ag- und Tl-Sulfosalze, die Sb und Bi enthallen, darzustellen.


With 5 Figures

Deceased  相似文献   

4.
Electron microprobe analysis of Pb-Cu(Fe)-Sb-Bi sulfosalts from Bazoges and Les Chalanches (France), and Pedra Luz (Portugal), give new data about (Bi, Sb) solid-solution and incorporation of the minor elements Cu, Fe or Ag in jaskolskiite, and in izoklakeite-giessenite and kobellite-tintinaite series. Jaskolskiite from Pedra Luz has high Sb contents (from 17.9 to 20.7 wt.%), leading to the extended general formula: Cu x Pb2+x (Sb1–y Bi y )2–x S5, with 0.10 x 0.22 and 0.19 y 0.41. Fe-free, Bi-rich izoklakeite from Bazoges has high Ag contents (up to 2.2 wt. %), leading to the simplified formula Cu2Pb22Ag2(Bi, Sb)22S57; in Les Chalanches it contains less Ag content (1.2 wt.%), but has an excess of Cu that gives the formula: Cu2.00 (Cu0.49Ag1.18)=1.67Pb22.70(Bi12.63Sb8.99)=21.62S57.27.In tintinaite from Pedra Luz, the variation of the Fe/Cu ratio can be explained by the substitution: Cu + (Bi, Sb) Fe + Pb; Fe-free kobellite from Les Chalanches has a Cu-excess, corresponding to the formula Cu2.81Ag0.54Pb9.88(Bi10.37Sb5.21)=15.38S35.09. Eclarite from the type locality, structurally related to kobellite, shows a Cu excess too. In natural samples of the kobellite homologous series, Fe is positively correlated with Pb, and its contents never exceed that of Cu. Ag substitutes for Pb, together with (Bi, Sb). Taking into account the possibility of Cu excess, but excluding formal Cu2+ and Fe3+, general formulae can be written:  相似文献   

5.
银多金属矿床中黝铜矿族银硫盐矿物的特征及其意义   总被引:10,自引:0,他引:10  
在国内外几个不同成因类型的银多金属矿床内产出的黝铜矿族银硫盐矿物中,除朗达矿床见有砷黝铜矿和含银砷黝铜矿外,较普遍共同发育有黝铜矿、含银黝铜矿和银黝铜矿、而后两者是最主要或主要的工业银矿物之一。按国际矿物学协会新矿物及矿物命名委员会的矿物命名原则,黝铜矿族矿物所含的Fe、Zn、Hg、Cd、Mn等不可作为矿物种的命名元素。蔡家营矿床的含银黝铜矿和银黝铜矿以Fe、Zn含量近似而有别于其余矿床的富Fe贫  相似文献   

6.
Twenty eight electron microprobe analyses of freibergite from the Mount Isa (Queensland) Pb-Zn-Ag stratiform orebody, range in silver content from 18.4 to 42.5 wt. % Ag. These values significantly extend the tetrahedrite-freibergite series. The compositional range based on twenty-one complete analyses is indicated by the formula (Ag,Cu)9.21–11.44(Fe,Zn)1.59–2.31(Sb,As)3.87–4.43S13.0. As far as could be determined, Mount Isa freibergite is homogeneous and no marked compositional changes were detected either across individual grains, or in different grains of the same electron microprobe sample. The linear, atom for atom, replacement of copper by silver reported for lower silver bearing tetrahedrites continues in Mount Isa freibergite. A maximum silver content of about 51 wt. % Ag is predicted. X-ray investigations indicate however that in contrast to the structural expansion with increasing silver content reported for argentian tetrahedrite, Mount Isa freibergite contracts with increase in silver. The extrapolated lattice parameter for the theoretical freibergite (Ag10(Fe,Zn)2Sb4S13) end member is of the same order as tetrahedrite.  相似文献   

7.
东珺矿床是近年在内蒙古额尔古纳地区陆相火山岩系内新发现的一处脉状Pb-Zn-Ag矿床,其以富含多量Ag及微量Au为特征。在野外考察的基础上,本文以电子探针、能谱-扫描电镜及多项光谱分析等方法查明了其矿石中Au、Ag的赋存状态及矿物组成,其主要矿物包括辉银矿、火硫锑银矿、黝锑银矿、深红银矿、硫锑铜银矿及脆银矿。除此,还发现了一些罕见的矿物,如碲铋矿、硫锑铜矿的锌变种、针硫铋铅矿、库辉铋铜铅矿以及某些未知的Pb-Bi相金属矿物。为了估算本矿床的成矿温度,着重对矿床中的银锑黝铜矿系列的组成做了分析,并将其Ag/(Ag+Cu)及Zn/(Zn+Fe)数值投至Sack等温曲线图上,由其结果可判断出本矿床应属于浅成低温成因,而深部矿体中碲铋矿及无Ag硫盐的出现亦可视为一重要旁证。东珺矿床丰富的银矿物及其粗大粒度对于矿山工艺流程选定以及开发利用将会大有裨益,而本矿床Au含量过低,仅具有地球化学的理论意义。  相似文献   

8.
The lead-zinc-silver bearing vein of Praz-Jean (Vallis, Switzerland) is hosted in a suite of metamorphic rocks, most likely of Palaeozoic age. Sphalerite, galena and sulfosalts (freibergite and boulangérite) are its main ore-forming minerals. The results of the microprobe investigation indicate that the silver is contained in a freibergite of the following composition (weight percent): Cu 23.0, Ag 23.0, Fe 4.9, Zn 1.9, As 1.0, Sb 26.9, S 23.0, and not in an argentian galena as it was believed. The mineral previously described as jamesonite (Pb4FeSb6S14) is in reality a boulangérite (Pb5Sb4S11). The mineralogical and metallogenetic characteristics of the freibergite of Praz-Jean are discussed in relation to those of other ore deposits in which this mineral is of interest.
Resumé Le filon de plomb-zinc-argent de Praz-Jean (Valais, Suisse), se trouve dans un encaissant composé de roches métamorphiques vraisemblablement d'âge Paléozoïque. Ses minéraux constitutifs, qui ont été étudiés en détail à la microsonde, appartiennent à une suite classique de sulfures à blende et galène dominantes, et de sulfosels (freibergite, boulangérite). L'argent du gisement n'est pas contenu dans une galène argentifère comme on le croyait auparavant, mais dans une freibergite de composition pondérale: Cu 23,0, Ag 23,0, Fe 4,9, Zn 1,9, As 1,0, Sb 26,9, S 23,0. Le minéral décrit précédemment comme jamesonite (Pb4FeSb6S14) est en réalité une boulangérite (Pb5Sb4S11). La freibergite de Praz-Jean est comparée du point de vue minéralogique et gîtologique à des freibergites d'autres gisements dans lesquels la freibergite joue un rôle important.
  相似文献   

9.
内蒙古大井矿床中银矿物的研究   总被引:1,自引:0,他引:1  
本文总结了内蒙古大井矿床中银矿物的类型,产出特征以及矿物命名的问题,详细描述了黝铜矿族,浓红银矿,脆银矿,自然银以及含银的铅-铋(锑)硫盐类矿物等主要银矿物的产出状态和化学成分特征,并讨论了相应的形成条件,同时指出本区银矿物主要形成于两个矿化阶段,即:早期黄铜矿-黄铁矿阶段,主要形成了黝铜矿族的含银矿物以及辉锑银矿,硫锑铜银矿等含铜的硫盐类矿物,晚期方铅矿-闪锌矿阶段,形成的银矿物种类较为繁杂,除形成黝铜矿族矿物外,多数含铅,铋的硫盐矿物以及自然银、硫化物和浓红银矿、脆银矿等无铜的简单硫盐等均是在这一阶段形成。  相似文献   

10.
The Pb–Zn–Ag quartz vein from Terramonte cuts the Neoproterozoic–Cambrian schist–greywacke complex. This orebody was partially exploited. The paragenetic sequence consists of four stages containing quartz accompanied mainly by arsenopyrite and pyrite in the first stage, sphalerite in the second stage, galena showing many inclusions of several sulphosalts in the third stage and carbonates in the fourth remobilization stage. Several sulphide and sulphosalt grains are oscillatory zoned. The chemical distinction between lighter and darker zones in backscattered images of arsenopyrite, pyrite, sphalerite and freibergite is due to substitutions in the mineral lattices. But the distinction between these zones in semseyite is due to a higher Pb content and a lower Sb content in the lighter zone than in the darker zone and the metal and metalloid are the main constituents in the solid solution, but are not correlated. The Sb, Ag and Bi substitute for Pb in galena, but did not cause any zoning. Ore deposition was possible due to mixing of a hypersaline fluid with up to 26 wt.% NaCl equivalent (and occasionally with CaCl2 up to 17 wt.%), which carried the metallic content of the fluid, with an extremely low salinity fluid of presumed meteoric origin that percolated down into the basement. The metals could have been leached from a mixture of mainly metasediments and also previous Sb–Au deposits by fluids that acquire high salinity in one of two probable ways: leaching of salt beds or following seawater evaporation. The entire mineralizing event probably occurred at a relatively low temperature, possibly between 120 and 230 °C. Remobilization of Pb, Zn, Ag, As, Sb and Cu will be due to the tectonic evolution of the opening of the Atlantic Ocean. This vein is probably of Alpine age.  相似文献   

11.
R. O. Sack 《Petrology》2017,25(5):498-515
Possible topologies of miscibility gaps in arsenian (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores are examined. These topologies are based on a thermodynamic model for fahlores whose calibration has been verified for (Cu,Ag)10(Fe,Zn)2Sb4S13 fahlores, and conform with experimental constraints on the incompatibility between As and Ag in (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores, and with experimental and natural constraints on the incompatibility between As and Zn and the nonideality of the As for Sb substitution in Cu10(Fe,Zn)2(Sb,As)4S13 fahlores. It is inferred that miscibility gaps in (Cu,Ag)10(Fe,Zn)2As4S13 fahlores have critical temperatures several °C below those established for their Sb counterparts (170 to 185°C). Depending on the structural role of Ag in arsenian fahlores, critical temperatures for (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores may vary from comparable to those inferred for (Cu,Ag)10(Fe,Zn)2As4S13 fahlores, if the As for Sb substitution stabilizes Ag in tetrahedral metal sites, to temperatures approaching 370°C, if the As for Sb substitution results in an increase in the site preference of Ag for trigonal-planar metal sites. The latter topology is more likely based on comparison of calculated miscibility gaps with compositions of fahlores from nature exhibiting the greatest departure from the Cu10(Fe,Zn)2(Sb,As)4S13 and (Cu,Ag)10(Fe,Zn)2Sb4S13 planes of the (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlore cube.  相似文献   

12.
Microprobe and fluid inclusion analyses of hydrothermal ore deposits containing the subassemblage sphalerite+ tetrahedrite-tennantite [(Cu, Ag)10(Fe, Zn)2(As,Sb)4S13] reveal that the Gibbs energies of the reciprocal reaction Cu10Zn2Sb4S13 + Cu10Fe2As4S13 = Cu10Fe2Sb4S13 + Cu10Zn2As4S13 and the Fe-Zn exchange reaction 1/2Cu10Fe2Sb4S13 + ZnS = 1/2Cu10Zn2Sb4S13 + FeS are within the uncertainties of the values established by Sack and Loucks (1985) and Raabe and Sack (1984), 2.59±0.14 and 2.07±0.07 kcal/gfw. However, this study suggests that the Fe-Zn exchange reaction between sphalerite and Sb and Ag-rich tetrahedrites does not obey the simple systematics suggested by Sack and Loucks (1985) wherein tetrahedrite is assumed to behave as an ideal reciprocal solution. Instead these studies show that the configurational Gibbs energy of this exchange reaction,RTln[(X Fe/X Zn)TET(X ZnS/X FeS)SPH], corrected for sphalerite nonideality exhibits both a local maximum and minimum as a function of Ag/(Cu+Ag) ratio at a givenX FeS SPH and temperature. The local maximum forX FeS SPH 0.10 corresponds to the position of the cell edge maximum established for natural tetrahedrites by Riley (1974), Ag/(Ag+Cu)0.4. These studies and the results of structural refinements of Ag-bearing tetrahedrites suggest that in low silver tetrahedrites Ag is preferentially incorporated in trigonal-planar sites but that in tetrahedrites with intermediate and greater Ag/(Ag+Cu) ratio, Ag is preferentially incorporated in tetrahedral sites. A nonconvergent site ordering model for tetrahedrite is developed to quantify and extrapolate these predictions.  相似文献   

13.
The system Ag-Sb-S was studied between 600°C and 200°C in evacuated silica glass tubes. Results from lower temperature runs require shifts in the stable tie-line configuration found by Barstad at 400°C. It is proposed that the configuration changes near 300°C, and that at 200°C the equilibrium assemblages correspond to those usually reported for minerals in ores. Most of the minerals of the system were synthesized. In addition, the synthetic phase Ag7SbS6 (antimony analogue of the arsenic mineral billingsleyite) is characterized, and the ease of its synthesis in the composition area bounded by argentite-pyrargyrite-sulfur suggests the probable existence of a mineral of this composition. The relatively common mineral stephanite (Ag5SbS4) was not formed as a synthetic product in the temperature range of this study. Combined DTA and X-ray data show that at 197±5°C stephanite decomposes in the absence of sulfur to form pyrargyrite plus argentite, whereas with excess sulfur the products are Sb-billingsleyite plus pyrargyrite. Pyrostilpnite (Ag3SbS3), the low temperature dimorph of pyrargyrite, is unstable above 192±5°C.
Das ternäre System Silber-Antimon-Schwefel wurde zwischen 600° und 200°C untersucht und versucht, die Gleichgewichtszustände aller stabilen Phasen zu analogen natürlichen Mineralien in Beziehung zu setzen. Neben den Elementen wurden an binären Phasen Allargentum, Dyskrasit, Antimonit, Argentit bzw. Akanthit gefunden oder bestätigt. Auf dem pseudo-binären Schnitt Ag2S-Sb2S3 liegen Pyrargyrit und Miargyrit, während eine als Mineral unbekannte ternäre Phase Ag7SbS6 (entsprechend dem natürlichen As-Analogon Billingsleyit) nur bei höherem Schwefelangebot beständig ist. Hier nicht synthetisch dargestellte Silber-Antimon-Sulfosalze liegen vermutlich unterhalb der 200°C-Grenze. So ließ sich mittels Differential-Thermo-Analyse und röntgenographischer Bestimmungsmethoden der inkongruente Zerfall von Stephanit in Argentit und Pyrargyrit bei 197±5°C bestimmen. Pyrostilpnit (Ag3SbS3) ist nur unterhalb 192±5°C beständig.
  相似文献   

14.
Résumé L'étude chimique comparée, à la microsonde électronique, d'owyheeite de treize gisements différents a révélé des fluctuations sensibles des teneurs en éléments majeurs, en liaison avec la nature des sulfosels associés, ainsi que la présence occasionnelle de différents éléments mineurs: Cu et As (très fréquents), Sn et Bi (moins fréquents), Tl et Se (exceptionnels). Compte tenu du mode de substitution de ces éléments mineurs, la projection des analyses dans le système Pb2S2–Ag2S–Sb2S3 délimite un champ restreint de solution solide dont l'allongement s'accorde avec la substitution 2 Pb2+Ag++Sb3+. Ce champ de solution solide englobe la composition de la variété téremkovite, mais exclue la formule donnée initialement parShannon. La formule Pb10–2x Sb11+x Ag3+x S28 (–0,13x+0,20) rend compte des termes à la résolution de la Ag/Sb maximal; l'obtention d'une formule plus générale reste subordonée à la résolution de la structure cristalline. Aucun élément mineur ne peut jouer à lui seul le rôle de stabilisateur de la structure, mais ce même rôle peut être joué complémentairement par différents éléments, tels que Cu et Sn. Les clichés de microdiffraction électronique montrent des phénomènes de sur-structure plus ou moins prononcés, en liaison avec la concentration en (Ag+Cu), ou avec le degré de finesse du maclage complexe spécifique de l'owyheeite.
Crystal chemistry of owyheeite: New data
Summary Comparative electron microprobe study of owyheeite from thirteen ore deposits shows significant variations in the concentration of major elements. These can be correlated with the chemical composition of the associated sulfosalts. Sometimes, some minor elements may be present: Cu and As (very frequent), Sn and Bi (less frequent), Tl and Se (exceptional). Considering certain substitution rules for minor elements, the analyses plotted in the Pb2S2–Ag2S–Sb2S3 system show a limited solid-solution field, the elongation of which follows the substitution 2 Pb2+Ag++Sb3+. This solid-solution field includes the composition of the variety teremkovite, but excludes the initial formula for owyheeite proposed byShannon. The formula Pb10–2x Sb11+x Ag3+x S28 (–0.13x+0.20) describes compositional variation of members with the highest Ag/Sb ratio; a more general formula would require the determination of the crystal structure. No individual minor element appears to be responsible for stabilizing owyheeite. The stabilization may be due to a combined effect of two elements, such as Cu and Sn. Electron diffraction patterns show superstructure reflections which are related to the (Ag+Cu) concentration, as well as to the scale of the complex twinning characteristic of owyheeite.


Avec 3 Figures  相似文献   

15.
(Ni-Sb)-bearing Cu-arsenides are rare minerals within the Mlakva and Kram mining sectors (Boranja ore field) one of the less-known Serbian Cu deposits. (Ni-Sb)-bearing Cu-arsenides were collected from the Mlakva skarn-replacement Cu(Ag,Bi)-FeS polymetallic deposit. The identified phases include β-domeykite, Ni-bearing koutekite and (Ni-Sb)-bearing α-domeykite. (Ni-Sb)-bearing Cu-arsenides are associated with nickeline, arsenical breithauptite, chalcocite, native Ag, native Pb and litharge. Pyrrhotite, pyrite, chalcopyrite, cubanite, bismuthinite, molybdenite, sphalerite, galena, Pb(Cu)-Bi sulfosalts and native Bi, as well as minor magnetite, scheelite and powellite are associated with the sulfide paragenesis. The electron microprobe analyses of the (Ni-Sb)-bearing Cu-arsenides yielded the following average formulae: (Cu2.73,Ni0.17,Fe0.03,Ag0.01) 2.94(As0.98,Sb0.05,S0.02) 1.06–β-domeykite (simplified formula (Cu2.7,Ni0.2) 2.9As1.1); (Cu3.40,Ni1.40,Fe0.11) 4.91(As1.94,Sb0.13,S0.02) 2.08–Ni-bearing koutekite (simplified formula (Cu3.4Ni1.5) 4.9As2.1); and Cu1.97(Ni0.98,Fe0.03) 1.01(As0.81,Sb0.22) 1.03–(Ni–Sb)-bearing α-domeykite (simplified formula Cu2NiAs). The Rietveld refinement yielded the following unit-cell parameters for β-domeykite and Ni–bearing koutekite: a = 7.1331(4); c = 7.3042(5) Å; V = 321.86(2) Å3, and a = 5.922(4); b = 11.447(9); c = 5.480(4) Å; V = 371.48(5) Å3, respectively. Ore geology, paragenetic assemblages and genesis of the Mlakva deposit are discussed in detail and the Cu-As-Ni-Sb-Pb mineralization has been compared with similar well-known global deposits.  相似文献   

16.
Cu-poor meneghinite from La Lauzière Massif (Savoy, France) has the composition (electron microprobe) (in wt%): Pb 59.50, Sb 20.33, Bi 1.19, Cu 0.87, Ag 0.05, Fe 0.03, S 17.62, Se 0.05, Total 99.64. Its crystal structure (X-ray on a single crystal) was solved with R1=0.0506, wR2=0.1026, with an orthorhombic symmetry, space group Pnma, and a=24.080(5) Å, b=4.1276(8) Å, c=11.369(2) Å, V=1130.0(4) Å3, Z=4. Relatively to the model of Euler and Hellner (1960), this structure shows a significantly lower site occupancy factor for the tetrahedral Cu site (0.146 against 0.25). Among the five other metallic sites, Bi appears in the one with predominant Sb. Developed structural formula: Cu0.15Pb2(Pb0.53Sb0.47)(Pb0.46Sb0.54)(Sb0.75Pb0.19Bi0.06)S6; the reduced one: Cu0.58Pb12.72(Sb7.04Bi0.24)S24. The formation of such a Cu-poor variety seems to be related to specific paragenetic conditions (absence of coexisting galena), or to crystallochemical constraints (minor Bi). To cite this article: Y. Moëlo et al., C. R. Geoscience 334 (2002) 529–536.  相似文献   

17.
Summary The Early Paleozoic Altkristallin of the Kreuzeck Mountains is well-known for its mostly small gold, silver, copper, lead, zinc, antimony, and mercury deposits. A detailed investigation of silver(-gold)-base metal mineralizations (Plattach, Niedermülleralm, Grakofel and DraBnitz) is presented in this paper. The deposits are structurally controlled. Faults and shear zones penetrate garnet-mica schists, gneisses (partly at Grakofel), and amphibolites (partly at DraBnitz). In places the mineralization occurs at the sheared contact between quartz porphyrite dykes (K/Ar ages of 30–40 Ma) and country rocks (e.g. at Niedermülleralm).The precious metal mineralization occurs as bundles of quartz veins, which were mined over a distance of 150-200 m along strike and dip. The depositional textures such as vugs, symmetrical banding, cockade and colloform structures clearly indicate open space filling. The mineral parageneses of Plattach, Niedermülleralm and Grakofel ores are similar to each other, but distinctly different from that of the DraBnitz deposit. The first mentioned deposits are characterized by abundant silver sulfosalts such as freibergite (21.7–36.3 wt.% Ag), pyrargyrite, miargyrite, diaphorite (Pb1 7–1.8Ag2.9–3.2Sb2.8–3.0S8), owyheeite (Ag2.69Pb9.44Sb10.38S28) and stephanite, as well as sphalerite and galena (100–1600 ppm Ag); hocartite ( [Ag, Cu]2 [Fe, Zn] SnS4) is intergrown with pyrargyrite and occurs as inclusions in pyritic ores at Niedermülleralm. Pyrite, arsenopyrite, and chalcopyrite are present in minor amounts. Au-Ag alloys with Ag contents ranging between 40.4–49.5 wt.% (electrum) and 73.5–74.2 wt.% (aurian silver) have grain sizes between 2 and 60 pin and are frequently associated with freibergite, pyrite and quartz.Draßnitz is a silver bearing base metal deposit with a possible but not proved silver enrichment in the uppermost 100 m of the vein system. Arsenopyrite, pyrrhotite, chalcopyrite, sphalerite, bournonite, Ag-tetrahedrite, and galena are the dominant ore minerals, locally accompanied by substantial amounts of zincian stannite (25 mol.% kesterite), ferberite, scheelite, and minor amounts of molybdenite, native bismuth, ullmannite and a silver sulfosalt.The most common types of hydrothermal wall-rock alteration are phyllic alteration (sericitization), silicification, carbonatization, and sulfidization. The alteration zone does not exceed a few decimeters on both sides of the veins.Fluid inclusion studies of quartz reveal formation temperatures of 165–250°C (Plattach) and 165–220°C (Niedermülleralm). The corresponding data for the Grakofel and Draßnitz ores are 180–330°C and 210–365°C, respectively. The salinities vary between 3–7 equiv. wt.-% NaCl (Niedermülleralm, Plattach, Draßnitz) and 4–13.3 equiv. wt.-% NaCl (Grakofel).A shallow-seated plutonic or subvolcanic magma (quartz porphyrite?) could be the reason for telescoping, different temperatures and heat gradient within the mineralized zone. The isotope compositions of the fluids give evidence for their metamorphic origin, probably contaminated by a minor meteoric component.
Gangförmige Ag-(Au)-Pb, Zn, Cu-(W, Sn) Vererzungen in der südlichen Kreuzeckgruppe, Kärnten, Österreich
Zusammenfassung Das altpaläozoische Altkristallin der Kreuzeckgruppe beherbergt eine große Zahl zumeist kleiner Gold-, Silber-, Kupfer-, Blei-, Zink-, Antimon- und Quecksilber-Lagerstätten. In dieser Arbeit werden detaillierte Untersuchungen von Silber(-Gold)-Buntmetall-Vererzungen (Plattach, Niedermülleralm, Grakofel und Draßnitz) vorgestellt. Die Lagerstätten sind strukturkontrolliert; Verwerfungs- und Scherzonen setzen in Granat-glimmerschiefern, Gneisen (teilweise Grakofel) und Amphiboliten (teilweise Draßnitz) auf. Bereichsweise tritt die Vererzung am zerscherten Kontakt zwischen Quarzporphyritgängen (K/Ar-Alter 30–40 Ma) und dem Nebengestein auf (z.B. Niedermülleralm).Die edelmetallhältige Vererzung ist an Quarzgang-Systeme gebunden, deren Ausdehnung aufgrund der bergbaulichen Aktivitäten kaum mehr als 150–200 m im Streichen und Einfallen betragen haben dürfte. Die beobachteten Ablagerungstexturen mit zahlreichen Drusen, symmetrischen Bänderungen, Kokarden- und kolloformen Strukturen sind eindeutige Indizien für eine Kristallisation in Hohlräumen. Die Mineral-paragenesen der Reviere Plattach-Niedermülleralm und des Grakofels sind einander sehr ähnlich, unterscheiden sich aber deutlich von jenen der Draßnitz. Die erstgenannten Lagerstätten zeichnen sich durch das bevorzugte Auftreten von Silber-Sulfosalzen, wie Freibergit (21,7–36,3 Gew.% Ag), Pyrargyrit, Miargyrit, Diaphorit (Pb1,7–1,8Ag2,9–3,2 Sb2,8–3,0S8), Owyheeit (Ag2. 69Pb9 ,44Sb10,38S28) und Stephanit sowie Sphalerit und Galenit (100–1600 ppm Ag) aus; Hocartit ( [Ag, Cu]2 [Fe, Zn] SnS4), der mit Pyrargyrit verwachsen ist, bildet Einschlüsse in Pyriterzen der Niedermülleralm. Zu geringeren Teilen kommen Pyrit, Arsenopyrit und Chalkopyrit vor. Gold-Silber-Legierungen mit Ag-Gehalten zwischen 40,4–49,5 Gew.% (Elektrum) und 73,5–74,2 Gew.% (Au-hältiges Silber) und Korngrößen zwischen 2 und 60 Mm sind häufig mit Freibergit, Pyrit und Quarz assoziiert.Die Lagerstätten der Draßnitz enthalten eine silberführende Buntmetallvererzung mit einer aufgrund der alten Bergbautätigkeit nur vermutbaren ehemaligen Silber-Reicherzzone in den obersten Gangabschnitten (Mächtigkeit ca. 100 m). Die Haldenerze bestehen heute aus Arsenopyrit, Pyrrhotin, Chalkopyrit, Sphalerit, Bournonit, Ag-Tetraedrit und Galenit; sie werden bereichsweise von beträchtlichen Anteilen an Zn-Stannit (25 Mol.% Kesterit), Ferberit, Scheelit, sowie in geringen Mengen von gediegenem Wismut, Ullmannit und Ag-Sulfosalzen begleitet.Serizitisierung, Silizihzierung, Karbonatisierung und Sulfidisierung sind die wesentlichen hydrothermalen Nebengesteinsveränderungen. Die Alterationszone erreicht allerdings nur einige Dezimeter auf beiden Seiten der Erzgänge.Die aus Flüssigkeitseinschlüssen in Quarz ermittelten Bildungstemperaturen zeigen für die Plattach 165–250°C, für die Niedermülleralm 165–220T. Die entsprechenden Temperaturdaten für die Grakofel-Vererzung betragen 180–330°C und 210–365°C für die Draßnitz. Die Salinitäten schwanken zwischen 3–7 Gew.% NaCl äq. (Niedermülleralm, Plattach, Draßnitz) und 4–13,3 Gew.% NaCl äq. (Grakofel).Ein hochplutonisches oder subvulkanisches Magma (Quarzporphyrit?) könnte eine mögliche Erklärung für das Teleskoping, die Temperaturunterschiede und den Wärmegradienten innerhalb der Vererzungszone sein. Die Isotopenzusammensetzung der Fluide deutet auf deren metamorphen Ursprung mit vermutlich untergeordneter meteorischer Komponente hin.


(Herrn Univ. Prof. Dr. Ing. 0. M. Friedrich () in Erinnerung zugeeignet)

With 10 Figures  相似文献   

18.
黄沙坪铅锌矿床中银矿化组合特征   总被引:6,自引:0,他引:6  
研究黄沙坪铅锌矿床中银矿化组合表明:与301花岗斑岩和304花斑岩岩体有关铅(锌)-银-锡-锑矿化组合,银矿化伴随铅矿化出现,其微量元素富Sn、Sb、Ag,低Bi、Te、Mo、Wo、W为特征;银矿物组合以硫银锡矿-银黄锡矿-深红银矿-螺状硫银矿-硫锑铜银矿组合为特征,与石英斑岩有关的铜(钼)-银-碲矿化组合,铜矿石以高Te、Bi、Mo和W,低Sb为特征,银矿物组合以碲银矿-六方碲银矿-粒碲银组合和硫银铋矿-块辉铋铅银矿-碲银矿组合为特征  相似文献   

19.
The minerals of the pearceite–polybasite group, general formula (Ag,Cu)16 M 2S11 with M = Sb, As, have been recently structurally characterized. On the whole, all the structures can be described as a regular succession of two module layers stacked along the c axis: a first module layer (labeled A), with general composition [(Ag,Cu)6(As,Sb)2S7]2−, and a second module layer (labeled B), with general composition [Ag9CuS4]2+. In detail, in the B layer of the pearceite structure silver cations are found in various sites corresponding to the most pronounced probability density function locations of diffusion-like paths. We have shown for the first time that the observed structural disorder in the B layer is strongly related to the fast ion conduction character exhibited by these minerals. This paper reports an integrated XREF, DSC, CIS and EPMA study on all the members of the pearceite–polybasite group. DSC and conductivity measurements pointed out that the 222 members show ionic-transitions at 340 K (arsenpolybasite-222) and 350 K (polybasite-222), whereas the 221 members have transitions at lower temperature, that is, 310–330 K (arsenpolybasite-221) and 335 K (polybasite-221). For the 111 members (pearceite and antimonpearceite), the transition occurs below room temperature at 273 K. In situ single-crystal X-ray diffraction experiments showed that these minerals present the same high temperature structure and are observed at room temperature either in their high temperature (HT) fast ion conductivity form or in one of the low temperature (LT) fully ordered (222), partially ordered (221) or still disordered (111) forms, with transition temperatures slightly above or below room temperature. The pearceite–polybasite group of minerals can be considered as a homogeneous series with the same aristotype, fast ion conducting form at high temperature. Depending upon the Cu content, an ordering occurs with transition temperatures related to that content: the lower the Cu content, the higher the transition temperature from the fast ion conducting HT form to the non-ion conducting form.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
Mn2+Sb2S4, a monoclinic dimorph of clerite, and benavidesite (Mn2+Pb4Sb6S14) show well-individualized single chains of manganese atoms in octahedral coordination. Their magnetic structures are presented and compared with those of iron derivatives, berthierite (Fe2+Sb2S4) and jamesonite (Fe2+Pb4Sb6S14). Within chains, interactions are antiferromagnetic. Like berthierite, MnSb2S4 shows a spiral magnetic structure with an incommensurate 1D propagation vector [0, 0.369, 0], unchanged with temperature. In berthierite, the interactions between identical chains are antiferromagnetic, whereas in MnSb2S4 interactions between chains are ferromagnetic along c-axis. Below 6 K, jamesonite and benavidesite have commensurate magnetic structures with the same propagation vector [0.5, 0, 0]: jamesonite is a canted ferromagnet and iron magnetic moments are mainly oriented along the a-axis, whereas for benavidesite, no angle of canting is detected, and manganese magnetic moments are oriented along b-axis. Below 30 K, for both compounds, one-dimensional magnetic ordering or correlations are visible in the neutron diagrams and persist down to 1.4 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号