首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits,with the exception of Carlin-type deposits and rare intrusion-related gold systems,there has been continuing debate on their genesis.Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable.Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially- associated granitic intrusions and inconsistent temporal relationships.The most plausible,and widely accepted,models involve metamorphic fluids,but the source of these fluids is hotly debated.Sources within deeper segments of the supracrustal successions hosting the deposits,the underlying continental crust,and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents.The orogenic gold deposits of the giant Jiaodong gold province of China,in the delaminated North China Craton,contain ca.120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization.The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package,or the associated mantle wedge.This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks:basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic.Alternatively,if a holistic view is taken,Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history.The latter model satisfies all geological,geochronological,isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release,like many other subduction-related processes,are model-driven and remain uncertain.  相似文献   

2.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.  相似文献   

3.
The Tower Hill gold deposit is distinguished from most Archaean lode deposits of the Yilgarn Craton by virtue of its formation early in the regional deformation history and its consequent deformation. The deposit is located in ultramafic schist, adjacent to the contact with a small pluton of biotite monzogranite that intrudes pervasively foliated granodiorite, the dominant component of the Raeside Batholith. Gold, accompanied by local concentrations of bismuth minerals and molybdenite, occurs in a number of quartz vein ‘packages‘. Mineralised quartz veins at Tower Hill lie within an envelope of potassic alteration (talc‐biotite‐chlorite‐pyrite schist), up to several hundred metres wide. They are spatially and temporally associated with the biotite monzogranite and felsic porphyry intrusions, and their deformed equivalents. The deposit lies in a broad zone of ductile deformation (the Sons of Gwalia Shear Zone). Within the altered ultramafic schist, thin units of felsic schist, derived from biotite monzogranite and felsic porphyry, provided sites of contrasting competency that localised quartz vein formation. The mineralised quartz veins were subsequently deformed during alternating periods of shortening and extension, probably related to the syntectonic, solid‐state emplacement of the Raeside Batholith. These deformations pre‐dated strike‐slip movement on the Cemetery Fault, which truncates the ductile fabrics of the Sons of Gwalia Shear Zone, south of Tower Hill. In terms of the regional deformation history, gold mineralisation at Tower Hill formed during early D2 (regional upright folding); subsequent deformation of the orebody pre‐dated D3 (strike‐slip movement on the Cemetery Fault). The nearby Sons of Gwalia and Harbour Lights deposits also probably formed at an early stage, in contrast to most lode gold deposits in the Yilgarn Craton, which formed during or after D3.  相似文献   

4.
The present study utilizes the processed SPOT 5 data to discriminate and to generate 1:10,000 geologic image map to delineate the mineralized diorite–tonalite intrusion around Bulghah gold mine area, Saudi Arabia. The rock units exposed in the area include gossan, marble, Hulayfah volcanics, diorite–tonalite, gneissose granite, and alkali granite. Gold mineralization at Bulghah mine is hosted mainly by Syn- to Late-tectonic diorite–tonalite intrusion aligned along N–S direction and is associated mainly with cataclastic zones and quartz veins. Gossans and jasparoidal gossans (Hulayfah group), recorded at the western side of Bulghah mine area as discontinuous small lenses, can be easily discriminated on 4/2 and 4/3 band ratio SPOT images by their white and black image signatures, respectively. Granitoids (gneissose granite and alkali granite) are easily discriminated in 3/2 ratio image, in which gneissose granite has gray image signature, whereas alkali granite has dark gray image signature. On the SPOT false color composite band ratios image (3/2 R, 4/2 G, and 4/3 B), gossan, marble, Hulayfah volcanics, diorite–tonalite, gneissose granite, and alkali granite have sky blue, blood red, bluish light brown, orange, brick red, and deep blue colors, respectively. Fusion of the false color composite SPOT ratios image (3/2 R, 4/2 G, and 4/3 B) with the high spatial resolution SPOT pan image is performed using IHS transformation method. The fused image is used to delineate the mineralized diorite–tonalite intrusion and to produce 1:10,000 geologic image map for Bulghah gold mine area. The present study reveals the usefulness of the processed SPOT 5 data for adding new extensions at the southern and northern boundaries of diorite–tonalite intrusion.  相似文献   

5.
Stable isotope analyses of quartz, sulphides, and magnetite were conducted to provide information on thermal history and source of hydrothermal fluids in the Palaeoproterozoic Enåsen gold deposit. Reequilibration and homogenization of oxygen isotopes throughout the rock have apparently not occurred despite the upper amphibolite to granulite facies regional metamorphism that has affected the rocks. However, oxygen isotope geothermometry on a coexisting quartz-magnetite pair gave a minimum temperature for peak metamorphism of around 650 °C which agrees with Fe-Mg geothermometry. This suggests that grain-scale equilibrium is achieved. The variation in oxygen isotope ratios (18O = 7.3 – 10.5) on quartz from the metamorphosed acid sulphate alteration zone is suggested to represent a cooling trend in the fossil hydrothermal system with higher 18O-values in more superficial parts. Temperatures of alteration and silicification and isotopic composition of hydrothermal fluids could not be defined from the present data but it was recognized that the data is compatible with a epithermal genesis for the deposit. It is suggested that alteration, silicification, and mineralization at the Enåsen gold deposit took place in a high sulphidation epithermal environment at temperatures of around 200–250 °C and that the hydrothermal fluids consisted of meteoric and magmatic water. A tentative reconstruction of the fossil hydrothermal system is presented. Sulphur isotope ratios of sulphides from the fold-bearing quartz-sillimanite gneiss gave 34S-values close to zero indicating a magmatic source of the sulphur.  相似文献   

6.
The Shkol’noe deposit is localized in a small granitoid stock, the root portion of which is traced using geophysical data to a depth of 5–8 km. The high-grade gold ore (33 gpt Au) is enriched in silver and principally differs in ore composition from the previously studied mesothermal gold-quartz and epithermal gold-silver deposits in the Russian Northeast. The main reserves of the Shkol’noe deposit concentrate in bonanzas (20% of the total volume of orebodies). The internal deformation is related to the rearrangement of matter in freibergite; exsolution structures in fahlore and native gold are related to postmineral metamorphism. It is suggested that the ore of the Shkol’noe deposit occupies a transitional position between porphyrytype and epithermal levels of ore deposition.  相似文献   

7.
Mineralogy and Petrology - The platiniferous gold–palladium belt of Minas Gerais, Brazil, forms an approximately 240-km-long, roughly north–south-trending domain that includes numerous...  相似文献   

8.

This paper presents the results of thermodynamic calculations on the solubility of gold and silver in low‐temperature, moderately saline, oxygen‐saturated fluids. Based on the solubilities of gold and silver it is argued that the quantity of gold transported by the fluids depends on the concentration of silver in the primary ores. In ores where the silver/gold ratio is high (1 to > 10), the fluids become saturated in silver and can not dissolve geologically significant concentrations of gold. In ores where the silver/gold ratio is low (< 1), the fluids remain undersaturated with respect to silver and are able to dissolve geologically realistic concentrations of gold and silver. The oxidized fluids start depositing gold and silver as they move downwards and are reduced by the Fe+2‐bearing minerals of the primary ores. The occurrence of gold in lateritic profiles can be explained by a prolonged process of interaction between the fluid and primary ores, during which gold and silver precipitate and redissolve selectively at the gradually advancing oxidation‐reduction interface.  相似文献   

9.
The distribution of gold in the weathering blanket at the Belikombone gold prospect in east Cameroon provides insights into gold mobility in the secondary environment and in tropical terrains worldwide. Both gridline-controlled sampling of topsoil (surface samples) and sampling of various layers in pits are used and the gold assay for each sample determined by NiS fire assay with ICP-AES finish. One hundred and thirty-two (132) surface samples and a total of 206 samples from 19 exploration pits were analyzed. The results from the topsoil samples show an anomaly with the highest Au concentration at 5.9 mgkg−1. The mineralization corridor follows a NE-SW trend. The horizons within the pits range from sap rock at the base, through saprolite, rubble layer rich in relict quartz material to a ferruginous loose layer at the top although some horizons are missing in some pits. All the layers contain gold and the highest concentration in the sap rock horizon is 3.4 mgkg−1 while the rubble layer has a gold high of 6.1 mgkg−1. The individual soil horizons show no systematic gold trends and given the presence of gold in all layers, the patterns point towards supergene dissolution and redistribution of gold. Gold enrichment within the upper horizons in the weathering blanket is attributed to sequestration by Fe oxides of chemically remobilized gold. However, the high gold content within the sap rock and saprolite layers suggests that migration of gold in the particulate form supersedes chemical gold redistribution. Particulate gold obtained by panning samples from the pits varies in shape from euhedral, elongated to irregular. Electron microprobe analysis on the grains record high contents of gold in the rim zones (90.0 to 99.8 wt%). The cores are relatively rich in Ag (12.6 to 14.2 wt%) while the rims are poor in Ag. The low Ag content in the rims is attributed to the preferential leaching of Ag. The soil pH value in this area varies between 3.6 and 7.3. Under such acidic to near neutral conditions, bisulfide and thiosulfate ions can dissolve and transport Au and Ag to be precipitated under surficial conditions creating authigenic Au haloes especially in the saprolite and sap rock layers. Such pH values together with oxidizing Eh conditions explain the solubility of gold in the area. These results are important for geochemical exploration of gold in tropical terrains, and confirm previous studies.  相似文献   

10.
11.
The Duolanasayi gold deposit, 60 km NW of Habahe County, Xinjiang Uygur Autonomous Region, is a mid-large-scale gold deposit controlled by brittle-ductile shearing, and superimposed by albitite veins and late-stage magma hydrothermal solutions. There are four types of pyrite, which are contained in the light metamorphosed rocks (limestone, siltstone), altered-mineralized rocks (chlorite-schist, altered albite-granite, mineralized phyllite), quartz veins and carbonatite veinlets. The pyrite is the most common ore mineral. The Au-barren pyrite is present mainly in a simple form and gold-bearing pyrite is present mainly in a composite form. From the top downwards, the pyrite varies in crystal form from {100} and {210} {100} to {210} {100} {111} to {100} {111}. Geochemical studies indicate that the molecular contents of pyrite range from Fe1.057S2 to Fe0.941S2. Gold positively correlates with Mn, Sr, Zn, Te, Pb, Ba and Ag. There are four groups of trace elements: Fe-Cu-Sr-Ag, Au-Te-Co, As-Pb-Zn and Mn-V-Ti-Ba-Ni-Cr in pyrite. The REE characteristics show that the total amount of REE (ΣREE) ranges from 32.35×10 -6 to 132.18×10 -6; LREE/HREE, 4.466-9.142; (La/Yb)N, 3.719-11.133; (Eu/Sm)N, 0.553-1.656; (Sm/Nd)N, 0.602-0.717; La/Yb, 6.26-18.75; δEu, 0.628-2.309; δCe, 0.308-0.816. Sulfur isotopic compositions (δ 34S=-2.46‰--7.02‰) suggest that the sulfur associated with gold mineralization was derived from the upper mantle or lower crust.  相似文献   

12.
The Tanami region of northern Australia has emerged over the last two decades as the largest gold-producing region in the Northern Territory. Gold is hosted by epigenetic quartz veins in sedimentary and mafic rocks, and by sulfide-rich replacement zones within iron formation. Although limited, geochronological data suggest that most mineralization occurred at about 1,805–1,790 Ma, during a period of extensive granite intrusion, although structural relationships suggest that some deposits predate this period. There are three main goldfields in the Tanami region: the Dead Bullock Soak goldfield, which hosts the world-class Callie deposit; The Granites goldfield; and the Tanami goldfield. In the Dead Bullock Soak goldfield, deposits are hosted by carbonaceous siltstone and iron formation where a late (D5) structural corridor intersects an early F1 anticlinorium. In The Granites goldfield, deposits are hosted by highly sheared iron formation and are interpreted to predate D5. The Tanami goldfield consists of a large number of small, mostly basalt-hosted deposits that probably formed at a high structural level during D5. The D5 structures that host most deposits formed in a convergent structural regime with σ 1 oriented between E–W and ENE–WSW. Structures active during D5 include NE-trending oblique thrust (dextral) faults and ESE-trending (sinistral) faults that curve into N- to NNW-trending reverse faults localized in supracrustal belts between and around granite complexes. Granite intrusions also locally perturbed the stress field, possibly localizing structures and deposits. Forward modeling and preliminary interpretations of reflection seismic data indicate that all faults extend into the mid-crust. In areas characterized by the N- to NW-trending faults, orebodies also tend to be N- to NW-trending, localized in dilational jogs or in fractured, competent rock units. In areas characterized by ESE-trending faults, the orebodies and veins tend to strike broadly east at an angle consistent with tensional fractures opened during E–W- to ENE–WSW-directed transpression. Many of these deposits are hosted by reactive rock units such as carbonaceous siltstone and iron formation. Ore deposition occurred at depths ranging from 1.5 to 11 km from generally low to moderate salinity carbonic fluids with temperatures from 200 to 430°C, similar to lode–gold fluids elsewhere in the world. These fluids are interpreted as the product of metamorphic dewatering caused by enhanced heat flow, although it is also possible that the fluids were derived from coeval granites. Lead isotope data suggest that lead in the ore fluids had multiple sources. Hydrogen and oxygen isotope data are consistent with both metamorphic and magmatic origins for ore fluids. Gold deposition is interpreted to be caused by fluid unmixing and sulfidation of host rocks. Fluid unmixing is caused by three different processes: (1) CO2 unmixing caused by interaction of ore fluids with carbonaceous siltstone; (2) depressurization caused by pressure cycling in shear zones; and (3) boiling as ore fluids move to shallow levels. Deposits in the Tanami region may illustrate the continuum model of lode–gold deposition suggested by Groves (Mineralium Deposita 28:366–374, 1993) for Archean districts.  相似文献   

13.
Northern Sweden is currently experiencing active exploration within a new gold ore province, the so called Gold Line, situated southwest of the well-known Skellefte VMS District. The largest known deposit in the Gold Line is the hypozonal Fäboliden orogenic gold deposit. Mineralization at Fäboliden is hosted by arsenopyrite-rich quartz veins, in a reverse, mainly dip-slip, high-angle shear zone, in amphibolite facies supracrustal host rocks. The timing of mineralization is estimated, from field relationships, at ca. 1.8 Ga.The gold mineralization is hosted by two sets of mineralized quartz veins, one steep fault–fill vein set and one relatively flat-lying extensional vein set. Ore shoots occur at the intersections between the two vein sets, and both sets could have been generated from the same stress field, during the late stages of the Svecofennian orogen.The tectonic evolution during the 1.9–1.8 Ga Svecofennian orogen is complex, as features typical of both internal and external orogens are indicated. The similarity in geodynamic setting between the contemporary Svecofennian and Trans-Hudson orogens indicates a potential for world-class orogenic gold provinces also in the Svecofennian domain.The Swedish deposits discussed in this paper are all structurally associated with roughly N–S striking shear zones that were active at around 1.8 Ga, when gold-bearing fluids infiltrated structures related to conditions of E–W shortening.  相似文献   

14.
15.
The Bogosu-Prestea mining district of southwestern Ghana is a 33 km section of the Early Proterozoic Ashanti Gold Belt. Greenschist facies carbonaceous and carbonate-bearing turbidites and greywackes, and mafic dikes host numerous economic mesothermal gold deposits. Structurally higher ores in the Bogosu concession have brittle deformation and consist of disseminated-sulphide lodes in tectonically-disrupted sedimentary rocks and carbonate-altered mafic dikes. Most gold occurs as micrometre-size particles in arsenian pyrite, and as invisible gold in arsenian pyrite and arsenopyrite. The structurally deeper ores of the adjoining Prestea concession are associated with brittle-ductile deformation and consist of extensive crack-seal quartz-veins and graphitic shear zones. Only minor amounts of invisible gold were detected; in these deeper lodes, gold occurs dominantly as abundant microscopic and larger particles in sulphide/arsenide minerals and in gangue. The gold distribution patterns revealed by SIMS microprobe analysis and ion maps, EMP and colour staining suggest that most of the primary gold in the Bogosu-Prestea system precipitated in solid-solution with sulphide/arsenide minerals. However, post-depositional concentration and redistribution occurred, in increasing degree with: 1) increase in metamorphic/hydrothermal gradients in the gold system (depth), 2) decrease in the refractory properties of the host mineral, and 3) increase in the amount of post-depositional, host-mineral recrystallization and deformation. Gold evolved from primary solid-solution within sulphide/arsenide minerals, to colloidal and micrometre-size particles concentrated in voids, fractures and internal grain boundaries, and finally to microscopic and larger particles at sulphide/arsenide grain margins and in the gangue assemblage. The general conclusions presented here are applicable to As-rich gold deposits of all ages, worldwide. The presence of gold in late fractures is insufficient evidence for late-stage introduction of gold in mesothermal gold systems.  相似文献   

16.
Tourmaline occurs as a minor but important mineral in the alteration zc,ne of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenst~ne belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli golcl deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the natrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). ~['he vein tourmaline, based upon the association of specific carbonate minerals, is further grouped as (i) albite-tourmaline-ankerite-quartz veins (vein-1 tourmaline) and (ii) albite-tourmaline-calcite-quartz veins (vein-2 tourmaline). Both the AMB tourmaline and the vein tourmalines (vein-I and vein-2) belong to the alkali group and are clas- sified under schorl-dravite series. Tourmalines occurring in the veins are zoned while the AMB tour- malines are unzoned. Mineral chemistry and discrimination diagrams 1eveal that cores and rims of the vein tourmalines are distinctly different. Core composition of the ve:n tourmalines is similar to the composition of the AMB tourmaline. The formation of the AMB tourmaline and cores of the vein tour- malines are proposed to be related to the regional D1 deformational event associated with the emplacement of the adjoining ca. 2.61 Ga Chitradurga granite whilst rims of the vein tourmalines vis-a- vis gold mineralization is spatially linked to the juvenile magmatic accretion (2.56-2.50 Ga) east of the studied area in the western part of the eastern Dharwar craton.  相似文献   

17.
18.
The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.  相似文献   

19.
胶东型金矿具有独特的成矿特征和成因机制,不同于国际已知金矿类型。为了深化认识控制矿床形成、变化和保存的地质要素及成矿过程,本文综合分析了胶东半岛晚中生代岩浆作用、构造活动和成矿特征及其构造背景,提出该区深部岩浆活动与地壳快速隆升及浅部变质核杂岩、张性断层、断陷盆地等伸展构造,共同控制了以Au为主的矿床成矿系列及成矿演化过程,谓之热隆-伸展成矿系统。阐明了晚中生代岩浆演化过程中的元素变化规律,发现了金矿化蚀变带中的低Ba、Sr含量异常及早白垩世胶东地壳中金丰度的显著变化,揭示了壳幔物质混合和伟德山型花岗岩岩浆活动对金成矿的贡献。认为这一成矿系统形成于古太平洋板块俯冲后撤的后俯冲伸展环境,由于软流圈上涌导致岩石圈地幔性质由富集向亏损转化,从而引起岩浆岩地球化学特征变化,地球化学元素重新调整,幔源含金流体与由重熔下地壳析出的壳源含金流体混合形成富金流体库,并产生贫金花岗岩。大规模岩浆活动为成矿元素的活化、迁移提供了热动力条件,上地壳伸展产生的断裂构造则为成矿元素聚集提供了良好空间。热隆-伸展成矿系统是中国东部晚中生代重要的成矿系统。  相似文献   

20.
We consider the formation of the Dal’nii (Dal’nyaya) eluvial gold placer (Bol’shoi Anyui ore–placer district, western Chukchi Peninsula), related to the Dal’nii (Dal’nee) gold-bearing porphyry Mo–Cu occurrence. The Dal’nii placer is located within the transition between the Kur’ya Ridge and Anyui basin, which has been relatively stable at the recent (Pliocene–Quaternary) tectonic stage. Minor recent uplift has determined the slight denudation of interfluves, the leading role of eluvial processes in the formation of a loose cover on them, and the preservation of the relict matter of pre-Pliocene chemical-weathering crusts (including the oxidized zones of orebodies) in present-day eluvium. The Dal’nii placer consists of relict weathering-crust placers altered by recent eluvial processes in different degrees. Therefore, it is relatively rich in metal, whereas the primary lode contains mainly fine-sized gold, which is almost not released from ore under periglacial lithogenesis in present-day interfluves. We suggest calling this genetic type of placers “residual-eluvial.” The primary lodes being highly eroded (during the formation of residual concentrations, which serve as an intermediate reservoir for these placers), residual-eluvial placers or their parts might not be directly related to specific orebodies at the present-day level of erosional truncation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号