首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Many of the nanometer‐scale grains from comet 81P/Wild 2 did not survive hypervelocity capture. Instead, they melted and interacted with silica melt derived from the aerogel used by the Stardust mission. Their petrological properties were completely modified, but their bulk chemistry was preserved in the chemical signatures of mostly vesicular Si‐rich glass with its typical Fe‐Ni‐S compound inclusions. Chondritic aggregate IDP L2011A9 that experienced atmospheric pre‐entry thermal modification was selected as an analog to investigate these Wild 2 chemical signatures. The chemical, petrologic, and mineralogical properties of the individual constituents in this aggregate IDP are presented and used to match the chemical signatures of these Wild 2 grains. Mixing of comet material and pure silica, which is used in a diagram that recognizes this mixing behavior, is used to constrain the probable petrologic and minerals that caused the Wild 2 signatures. The Wild 2 nanometer‐scale grain signatures in Si‐rich glass allocations from three different deceleration tracks resembled mixtures of ultrafine‐grained principal components and dense agglomerate‐like material, Mg‐rich silicates (<500 nm) and Fe,Ni‐sulfides (<100 nm), and Si‐rich amorphous material. Dust resembling the mixed matrix of common chondritic aggregate IDPs was present in Jupiter‐family comet Wild 2.  相似文献   

2.
Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 “Febo” in aerogel, which contains fine‐grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine‐grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Dark‐field imaging and multidetector energy‐dispersive X‐ray mapping were used to compare GEMS‐like‐objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS‐like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant, is present, consistent with ablation, melting, abrasion, and mixing of the SiOx aerogel with crystalline Fe‐sulfide and minor enstatite, high‐Ni sulfide, and augite identified by elemental mapping in the terminal particle. Thus, GEMS‐like objects in “caches” of fine‐grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.  相似文献   

3.
Abstract— Does comet 81P/Wild 2 have indigenous glass? Glass is used here to include all types of amorphous materials that could be either indigenous or modified comet Wild 2 grains, and all amorphous phases in chondritic aggregate interplanetary dust particles (IDPs). The answer is that it probably does, but very little is known of their compositions to allow a definitive answer to be given. There is no evidence among the collected comet dust for interstellar glass with embedded metals and sulfides. There is, however, ample evidence for melting of the smallest, sub‐micrometer comet particles of nanometer‐scale grains similar to those in the matrix of chondritic aggregate IDPs, including pyrrhotite. Massive patches of Mg‐SiO, Al‐SiO, or Ca‐Si‐O glass are incorporated in the familiar, vesicular Si‐rich glass are melted Wild 2 silicates. Magnesiosilica glass has a deep metastable eutectic smectite‐dehydroxylate composition. It indicates that very high temperatures well above the liquidus temperatures of forsterite were achieved very rapidly and were followed but ultra‐rapid quenching. This predictable and systematic response is not limited to Mg‐silicates, and recognizing this phenomenon among massive glass will provide a means to complete the reconstruction of this comet's original minerals, as well as constrain the physiochemical environment created during aerogel melting and evaporation.  相似文献   

4.
So far there is no conclusive evidence for water in the nucleus of 81P/comet Wild 2. Recently magnetite in collected Wild 2 samples was cited as proxy evidence for parent body aqueous alteration in this comet (Hicks et al. 2017 ). A potentional source for water of hydration would be layer silicates but unfortunately there is no record, neither texturally nor chemically, for hydrated layer silicates that survived hypervelocity impact in the Wild 2 samples. This paper reports large vesicles in the matrix of allocation C2044,2,41,2,5 from a volatile‐rich type B/C Stardust track. These vesicles were probably caused by boiling water that were generated when hydrated Wild 2 silicates impacted the near‐surface silica aerogel layer. Potential water sources were partially and fully hydrated GEMS (glass with embedded metal and sulfides) and CI carbonaceous chondrite materials among the earliest dusts that experienced hydration and icy‐body formation and long‐range transport and mixing with materials from across the solar system.  相似文献   

5.
Abstract— We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large‐scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra‐clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. Many similarities can be found between Antarctic micrometeorites and Wild 2 samples, in terms of chemical, mineralogical, and isotopic compositions, and in the structure and composition of their carbonaceous matter. Cosmic dust in the form of CONCORDIA Antarctic micrometeorites and primitive IDPs are preferred samples to study the asteroid‐comet continuum.  相似文献   

6.
Abstract— Flight aerogel in Stardust allocation C2092,2,80,47,6 contains percent level concentrations of Na, Mg, Al, S, Cl, K, Ca, Cr, Mn, Fe, and Ni that have a distinctive Fe‐ and CI‐normalized distribution pattern, which is similar to this pattern for ppb level chemical impurities in pristine aerogel. The elements in this aerogel background were assimilated in non‐vesicular and vesicular glass with the numerous nanometer Fe‐Ni‐S compound inclusions. After correction for the background values, the chemical data show that this piece of comet Wild 2 dust was probably an aggregate of small (<500 nm) amorphous ferromagnesiosilica grains with many tiny Fe,Ni‐sulfide inclusions plus small Ca‐poor pyroxene grains. This distinctive Fe‐ and CI‐normalized element distribution pattern is found in several Stardust allocations. It appears to be a common feature in glasses of quenched aerogel melts but its exact nature is yet to be established.  相似文献   

7.
Abstract– Transmission electron microscopy examination of 87 large fragments from 16 carrot‐shaped and bulbous Stardust (SD) tracks was performed to study the range and diversity of materials present in comet Wild 2. Olivines and low‐Ca pyroxenes represent the largest proportions of fragments observed; however, a wide range of minerals and rocks were found including probable ferromagnesian, Al‐rich and Si‐rich chondrule fragments, a refractory inclusion, possible matrix mineral/lithic clasts, and probable condensate minerals. These materials, combined with fine‐grained components in the tracks, are analogous to components in unequilibrated chondrite meteorites and cluster interplanetary dust particles (IDPs). Two unusual lithologies in the bulbous tracks are only observed in chondritic porous IDPs and may have direct links to IDPs. The absence of phyllosilicates indicates that comet Wild 2 may be a “dry” comet that did not accrete or form significant amounts of hydrated phases. Some large mineral fragments in the SD tracks are analogous to large mineral IDPs. The large variations of the coarse‐grained components within and between all 16 tracks show that comet Wild 2 is mineralogically diverse and unequilibrated on nearly all scales and must have accreted materials from diverse source regions that were widely dispersed throughout the solar nebula.  相似文献   

8.
Abstract– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s?1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.  相似文献   

9.
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous, porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested by elemental composition measurements on cometary meteors.  相似文献   

10.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

11.
In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low‐density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in‐situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3‐mediated electron beam–induced etching. The porous, low‐density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy‐dispersive X‐ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.  相似文献   

12.
Allocation FC6,0,10,0,26 from Stardust track 10 shows a slightly wavy silica glass/compressed silica aerogel interface exposing a patchwork of compressed silica aerogel domains and domains of silica glass with embedded Wild 2 materials in ultra‐thin TEM sections. This interface is where molten silica encountered compressed silica aerogel at temperatures <100 °C, and probably near room temperature, causing steep thermal gradients. An Mg, Fe‐olivine grain, and a plagioclase‐leucite intergrowth survived without melting in silica glass. A Mg‐, Al‐, Ca‐, K‐bearing silica globule moved independently as a single object. Two clusters of pure iron, low‐Ni iron, and low‐Ni, low‐sulfur Fe‐Ni‐S grains also survived intact and came to rest right at the interface between silica glass/compressed silica aerogel. There are numerous Fe‐Ni‐S nanograins scattered throughout MgO‐rich magnesiosilica glass, but compositionally similar Fe‐Ni‐S are also found in the compressed silica aerogel, where they are not supposed to be. This work could not establish how deep they had penetrated the aerogel. Iron nanograins in this allocation form core‐ring grains with a gap between the iron core and a surrounding ring of thermally modified aerogel. This structure was caused when rapid, thermal expansion of the core heated the surrounding compressed aerogel that upon rapid cooling remained fixed in place while the iron core shrank back to its original size. The well‐known volume expansion of pure iron allowed reconstruction of the quench temperature for individual core‐ring grains. These temperatures showed the small scale of thermal energy loss at the silica glass/compressed silica aerogel interface. The data support fragmentation of olivine, plagioclase, and iron and Fe ± low‐Ni grains from comet 81P/Wild 2 during hypervelocity capture.  相似文献   

13.
Abstract– The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non‐silica aerogel in future extra‐terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100 μm glass microspheres to determine the suitability of different non‐silica aerogels as hypervelocity particle capture mediums. It was found that non‐silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.  相似文献   

14.
Abstract– The deceleration tracks in the Stardust aerogel display a wide range of morphologies, which reveal a large diversity of incoming particles from comet 81P/Wild 2. If the large and dense mineral grains survived the extreme conditions of hypervelocity capture, this was not the case for the fine‐grained material that is found strongly damaged within the aerogel. Due to their low mechanical strength, these assemblages were disaggregated, dispersed, and flash melted in the aerogel in walls of bulbous deceleration tracks. Their petrologic and mineralogical properties are found significantly modified by the flash heating of the capture. Originating from a quenched melt mixture of comet material and aerogel, the representative microstructure consists of silica‐rich glassy clumps containing Fe‐Ni‐S inclusions, vesicles and “dust‐rich” patches, the latter being remnants of individual silicate components of the impacting aggregate. The average composition of these melted particle fragments is close to the chondritic CI composition. They might originate from ultrafine‐grained primitive components comparable to those found in chondritic porous IDPs. Capture effects in aerogel and associated sample biases are discussed in terms of size, chemical and mineralogical properties of the grains. These properties are essential for the grain survival in the extremely hot environment of hypervelocity impact capture in aerogel, and thus for inferring the correct properties of Wild 2 material.  相似文献   

15.
We present the analyses results of two bulk Terminal Particles, C2112,7,171,0,0 and C2112,9,171,0,0, derived from the Jupiter‐family comet 81P/Wild 2 returned by the Stardust mission. Each particle embedded in a slab of silica aerogel was pressed in a diamond cell. This preparation, as expected, made it difficult to identify the minerals and organic materials present in these particles. This problem was overcome using a combination of three different analytical techniques, viz. FE‐SEM/EDS, IR, and Raman microspectroscopy that allowed identifying the minerals and small amounts of amorphous carbon present in both particles. TP2 and TP3 were dominated by Ca‐free and low‐Ca, Mg‐rich, Mg,Fe‐olivine. The presence of melilite in both particles is supported by IR microspectroscopy, but is not confirmed by Raman microspectroscopy, possibly because the amounts are too small to be detected. TP2 and TP3 show similar silicate mineral compositions, but Ni‐free and low‐Ni, subsulfur (Fe,Ni)S grains are present in TP2 only. TP2 contains indigenous amorphous carbon hot spots; no indigenous carbon was identified in TP3. These nonchondritic particles probably originated in a differentiated body. This work found an unanticipated carbon contamination following the FE‐SEM/EDS analyses. It is suggested that organic materials in the embedding silica aerogel are irradiated during FE‐SEM/EDS analyses creating a carbon gas that develops a strong fluorescence continuum. The combination of the selected analytical techniques can be used to characterize bulk Wild 2 particles without the need of extraction and removal of the encapsulating aerogel. This approach offers a relatively fast sample preparation procedure, but compressing the samples can cause spurious artifacts, viz. silica contamination. Because of the combination of techniques, we account for these artifacts.  相似文献   

16.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

17.
Abstract– Impacts of small particles of soda‐lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda‐lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda‐lime glass tracks have a carrot‐like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.7–3.2, if the glycine tracks were analyzed using the soda‐lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate.  相似文献   

18.
In Stardust tracks C2044,0,38, C2044,0,39, and C2044,0,42 (Brennan et al. 2007 ) and Stardust track 10 (this work) gold is present in excess of its cosmochemical abundance. Ultra‐thin sections of allocation FC6,0,10,0,26 (track 10) show a somewhat wavy, compressed silica aerogel/silica glass interface which challenges exact location identification, i.e., silica glass, compressed silica aerogel, or areas of overlap. In addition to domains of pure silica ranging from SiO2 to SiO3 glass, there is MgO‐rich silica glass with a deep metastable composition, MgO = 14 ± 6 wt%, due to assimilation of Wild 2 Mg‐silicate matter in silica melt. This magnesiosilica composition formed when temperatures during hypervelocity capture reached >2000 °C followed by ultrafast quenching of the magnesiosilica melt when it came into contact with compressed aerogel at ~155 °C. The compressed silica aerogel in track 10 has a continuous Au background as result of the melting point depression of gold particles <5 nm that showed liquid‐like behavior. Larger gold particles are scattered found throughout the silica aerogel matrix and in aggregates up to ~50 nm in size. No gold is found in MgO‐rich silica glass. Gold in track 10 is present at the silica aerogel/silica glass interface. In the other tracks gold was likely near‐surface contamination possibly from an autoclave used in processing of these particular aerogel tiles. So far gold contamination is documented in these four different tracks. Whether they are the only tiles with gold present in excess of its cosmochemical abundance or whether more tiles will show excess gold abundances is unknown.  相似文献   

19.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

20.
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe‐K X‐ray absorption spectroscopy with in situ transmission XRD and X‐ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe3O4. The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite (NWA 10256) was shot into the aerogel at 6.1 km s?1, using a light‐gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号