首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The hydrogen isotopic composition of planetary reservoirs can provide key constraints on the origin and history of water on planets. The sources of water and the hydrological evolution of Mars may be inferred from the hydrogen isotopic compositions of mineral phases in Martian meteorites, which are currently the only samples of Mars available for Earth‐based laboratory investigations. Previous studies have shown that δD values in minerals in the Martian meteorites span a large range of ?250 to +6000‰. The highest hydrogen isotope ratios likely represent a Martian atmospheric component: either interaction with a reservoir in equilibrium with the Martian atmosphere (such as crustal water), or direct incorporation of the Martian atmosphere due to shock processes. The lowest δD values may represent those of the Martian mantle, but it has also been suggested that these values may represent terrestrial contamination in Martian meteorites. Here we report the hydrogen isotopic compositions and water contents of a variety of phases (merrillites, maskelynites, olivines, and an olivine‐hosted melt inclusion) in Tissint, the latest Martian meteorite fall that was minimally exposed to the terrestrial environment. We compared traditional sample preparation techniques with anhydrous sample preparation methods, to evaluate their effects on hydrogen isotopes, and find that for severely shocked meteorites like Tissint, the traditional sample preparation techniques increase water content and alter the D/H ratios toward more terrestrial‐like values. In the anhydrously prepared Tissint sample, we see a large range of δD values, most likely resulting from a combination of processes including magmatic degassing, secondary alteration by crustal fluids, shock‐related fractionation, and implantation of Martian atmosphere. Based on these data, our best estimate of the δD value for the Martian depleted mantle is ?116 ± 94‰, which is the lowest value measured in a phase in the anhydrously prepared section of Tissint. This value is similar to that of the terrestrial upper mantle, suggesting that water on Mars and Earth was derived from similar sources. The water contents of phases in Tissint are highly variable, and have been affected by secondary processes. Considering the H2O abundances reported here in the driest phases (most likely representing primary igneous compositions) and appropriate partition coefficients, we estimate the H2O content of the Tissint parent magma to be ≤0.2 wt%.  相似文献   

2.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

3.
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine‐hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine–phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76‐70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66‐55). REE‐plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole‐rock. Model calculations indicate two‐stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in ~10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole‐rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE‐rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.  相似文献   

4.
The Tissint meteorite is a geochemically depleted, olivine‐phyric shergottite. Olivine megacrysts contain 300–600 μm cores with uniform Mg# (~80 ± 1) followed by concentric zones of Fe‐enrichment toward the rims. We applied a number of tests to distinguish the relationship of these megacrysts to the host rock. Major and trace element compositions of the Mg‐rich core in olivine are in equilibrium with the bulk rock, within uncertainty, and rare earth element abundances of melt inclusions in Mg‐rich olivines reported in the literature are similar to those of the bulk rock. Moreover, the P Kα intensity maps of two large olivine grains show no resorption between the uniform core and the rim. Taken together, these lines of evidence suggest the olivine megacrysts are phenocrysts. Among depleted olivine‐phyric shergottites, Tissint is the first one that acts mostly as a closed system with olivine megacrysts being the phenocrysts. The texture and mineral chemistry of Tissint indicate a crystallization sequence of: olivine (Mg# 80 ± 1) → olivine (Mg# 76) + chromite → olivine (Mg# 74) + Ti‐chromite → olivine (Mg# 74–63) + pyroxene (Mg# 76–65) + Cr‐ulvöspinel → olivine (Mg# 63–35) + pyroxene (Mg# 65–60) + plagioclase, followed by late‐stage ilmenite and phosphate. The crystallization of the Tissint meteorite likely occurred in two stages: uniform olivine cores likely crystallized under equilibrium conditions; and a fractional crystallization sequence that formed the rest of the rock. The two‐stage crystallization without crystal settling is simulated using MELTS and the Tissint bulk composition, and can broadly reproduce the crystallization sequence and mineral chemistry measured in the Tissint samples. The transition between equilibrium and fractional crystallization is associated with a dramatic increase in cooling rate and might have been driven by an acceleration in the ascent rate or by encounter with a steep thermal gradient in the Martian crust.  相似文献   

5.
The asteroid 4 Vesta is one of the very few heavenly bodies to have been linked to samples on Earth: the howardite‐eucrite‐diogenite (HED) meteorite suite. This large and diverse suite of meteorites provides a detailed picture of Vesta's igneous and postigneous history. We have used the range of igneous rock types and compositions in the HED suite to test a series of chemical models for solidification processes following peak melting (magma ocean) conditions on Vesta. Fractional crystallization cannot have been a dominant early process in the magma ocean because it leads to excessive Fe‐enrichment in the melt. Models that are dominated by equilibrium crystallization cannot produce orthopyroxene cumulates (diogenites). Our best models invoke 60–70% equilibrium crystallization of a magma ocean followed by continuous extraction of the residual melt into shallow magma chambers. Fractional crystallization in these magma chambers combined with continuous or periodic addition of more melt from the slowly compacting crystal mush (magmatic recharge) can produce all of the igneous HED lithologies (noncumulate and cumulate eucrites, diogenites, dunites, harzburgites, and olivine diogenites). Magmatic recharge can also explain the narrow range in eucrite compositions and the variability of incompatible trace element concentrations in diogenites. We predict an internal structure for Vesta that permits excavation of the HEDs during the formation of the Rheasilvia basin, while remaining consistent with observations from the Dawn mission and most impact models.  相似文献   

6.
Tissint, a new unaltered piece of Martian volcanic materials, is the most silica‐poor and Mg‐Fe‐rich igneous rock among the “depleted” olivine‐phyric shergottites. Fe‐Mg zoning of olivine suggests equilibrium growth (<0.1 °C h?1) in the range of Fo80–56 and olivine overgrowth (Fo55–18) through a process of rapid disequilibrium (~1.0–5.0 °C h?1). The spatially extended (up to 600 μm) flat‐top Fe‐Mg profiles of olivine indicates that the early‐stage cooling rate of Tissint was slower than the other shergottites. The chemically metastable outer rim of olivine (55) consists of oscillatory phosphorus zoning at the impact‐induced melt domains and grew rapidly compared to the early to intermediate‐stage crystallization of the Tissint bulk. High‐Ca pyroxene to low‐Ca pyroxene and high‐Ca pyroxene to plagioclase ratios of Tissint are more comparable to the enriched basaltic and enriched olivine‐phyric shergottites. Dominance of augite over plagioclase induced augite to control the Ca‐buffer in the residual melt suppressing the plagioclase crystallization, which also caused a profound effect on the Al‐content in the late‐crystallized pyroxenes. Mineral chemical stability, phase‐assemblage saturation, and pressure–temperature path of evolution indicates that the parent magma entered the solidus and left the liquidus field at a depth of 40–80 km in the upper mantle. Petrogenesis of Tissint appears to be similar to LAR 06319, an enriched olivine‐phyric shergottite, during the early to intermediate stage of crystallization. A severe shock‐induced deformation resulted in remelting (10–15 vol%), recrystallization (most Fe‐rich phases), and exhumation of Tissint in a time scale of 1–8 yr. Tissint possesses some distinct characteristics, e.g., impact‐induced melting and deformation, forming phosphorus‐rich recrystallization rims of olivine, and shock‐induced melt domains without relative enrichment of LREEs compared to the bulk; and shared characteristics, e.g., modal composition and magmatic evolution with the enriched basaltic shergottites, evidently reflecting unique mantle source in comparison to the clan of the depleted members.  相似文献   

7.
The Tissint Martian meteorite is an unusual depleted olivine‐phyric shergottite, reportedly sourced from a mantle‐derived melt within a deep magma chamber. Here, we report major and trace element data for Tissint olivine and pyroxene, and use these data to provide new insights into the dynamics of the Tissint magma chamber. The presence of irregularly spaced oscillatory phosphorous (P)‐rich bands in olivine, along with geochemical evidence indicative of a closed magmatic system, implies that the olivine grains were subject to solute trapping caused by vigorous crystal convection within the Tissint magma chamber. Calculated equilibration temperatures for the earliest crystallizing (antecrystic) olivine cores suggest a Tissint magma source temperature of 1680 °C, and a local Martian mantle temperature of 1560 °C during the late Amazonian—the latter being consistent with the ambient mantle temperature of Archean Earth.  相似文献   

8.
Knowledge of Martian igneous and mantle compositions is crucial for understanding Mars' mantle evolution, including early differentiation, mantle convection, and the chemical alteration at the surface. Primitive magmas provide the most direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The new Martian meteorite Northwest Africa (NWA) 6234 is an olivine‐phyric shergottite. Its most magnesian olivine cores (Fo78) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that it represents a melt composition. Thermochemical calculations show that NWA 6234 not only represents a melt composition but is a primitive melt derived from an approximately Fo80 mantle. Thus, NWA 6234 is similar to NWA 5789 and Y 980459 in the sense that all three are olivine‐phyric shergottites and represent primitive magma compositions. However, NWA 6234 is of special significance because it represents the first olivine‐phyric shergottite from a primitive ferroan magma. On the basis of Al/Ti ratio of pyroxenes in NWA 6234, the minor components in olivine and merrillite, and phosphorus zoning of olivine, we infer that the rock crystallized completely at pressures consistent with conditions in Mars' upper crust. The textural intergrowths of the two phosphates (merrillite and apatite) indicate that at a very last stage of crystallization, merrillite reacted with an OH‐Cl‐F‐rich melt to form apatite. As this meteorite crystallized completely at depth and never erupted, it is likely that its apatite compositions represent snapshots of the volatile ratios of the source region without being affected by degassing processes, which contain high OH‐F content.  相似文献   

9.
Abstract— Major element and sulfur concentrations have been determined in experimentally heated olivine‐hosted melt inclusions from a suite of Apollo 12 picritic basalts (samples 12009, 12075, 12020, 12018, 12040, 12035). These lunar basalts are likely to be genetically related by olivine accumulation (Walker et al. 1976a, b). Our results show that major element compositions of melt inclusions from samples 12009, 12075, and 12020 follow model crystallization trends from a parental liquid similar in composition to whole rock sample 12009, thereby partially confirming the olivine accumulation hypothesis. In contrast, the compositions of melt inclusions from samples 12018, 12040, and 12035 fall away from model crystallization trends, suggesting that these samples crystallized from melts compositionally distinct from the 12009 parent liquid and therefore may not be strictly cogenetic with other members of the Apollo 12 picritic basalt suite. Sulfur concentrations in melt inclusions hosted in early crystallized olivine (Fo75) are consistent with a primary magmatic composition of 1050 ppm S, or about a factor of 2 greater than whole rock compositions with 400–600 ppm S. The Apollo 12 picritic basalt parental magma apparently experienced outgassing and loss of S during transport and eruption on the lunar surface. Even with the higher estimates of primary magmatic sulfur concentrations provided by the melt inclusions, the Apollo 12 picritic basalt magmas would have been undersaturated in sulfide in their mantle source regions and capable of transporting chalcophile elements from the lunar mantle to the surface. Therefore, the measured low concentration of chalcophile elements (e.g., Cu, Au, PGEs) in these lavas must be a primary feature of the lunar mantle and is not related to residual sulfide remaining in the mantle during melting. We estimate the sulfur concentration of the Apollo 12 mare basalt source regions to be ~75 ppm, which is significantly lower than that of the terrestrial mantle.  相似文献   

10.
Abstract– The nakhlites, a subgroup of eight clinopyroxenites thought to come from a single geological unit at the Martian surface, show melt inclusions in augite and olivine. In contrast to olivine‐hosted melt inclusions, augite‐hosted melt inclusions are not surrounded by fractures, and are thus considered preferential candidates for reconstructing parent liquid compositions. Furthermore, two types of augite‐hosted melt inclusion have been defined and characterized in four different nakhlites (Northwest Africa [NWA] 817, Nakhla, Governador Valadares, and NWA 998): Type‐I isolated inclusions in augite cores that contain euhedral to subhedral augite, Ti‐magnetite, and pigeonite plus silica‐rich glass and a gas bubble; Type‐II microinclusions that form trails crosscutting host augite crystals. Fast‐heating experiments were performed on selected pristine primary augite‐hosted melt inclusions from these four samples. Of these, only data from Nakhla were considered robust for reconstruction of a nakhlite parental magma composition (NPM). Based upon careful petrographic selection and consideration of iron‐magnesium ratios, our data are used to propose an NPM, which is basaltic (49.1 wt% SiO2), of high Ca/Al (1.95), and K2O‐poor (0.32 wt%). Thermodynamic modeling at an oxygen fugacity one log unit below the QFM buffer using the MELTS and PETROLOG programs implies that Mg‐rich olivine was not a liquidus phase for this composition. Our analysis is used to suggest that olivine megacrysts found in the nakhlites are unlikely to have coprecipitated with augite, and thus may have been introduced during or subsequent to accumulation in the magma chamber, possibly from more evolved portions of the same chamber.  相似文献   

11.
Abstract– We studied three large (2–4 mm diameter) igneous‐textured inclusions in the Buzzard Coulee (H4) chondrite using microanalytical techniques (OLM, SEM, EMPA, SIMS) to better elucidate the origins of igneous inclusions in ordinary chondrites. The inclusions are clasts that come in two varieties (1) white inclusions Bz‐1 and Bz‐2 represent a nearly holocrystalline assemblage of low‐Ca and high‐Ca pyroxene (63–66 area%) and cristobalite (33–36%) and (2) tan inclusion Bz‐3 is glass‐rich (approximately 60%) with low‐Ca and high‐Ca pyroxene phenocrysts. The bulk compositions of the inclusions determined by modal reconstruction are all SiO2‐rich (approximately 67 wt% for Bz‐1 and Bz‐2, approximately 62% for Bz‐3), but Bz‐3 is enriched in incompatible elements (e.g., REE approximately 4–5 × CI abundances), whereas Bz‐2 and Bz‐1 are depleted in those elements that are most incompatible in pyroxene (e.g., La‐Ho approximately 0.15–0.4 × CI abundances). These bulk compositions do not resemble what one would expect for partial or complete shock melting of a chondritic precursor, and show no evidence for overall volatility control. We infer that the inclusions originated through igneous differentiation and FeO reduction, with Bz‐3 forming as an “andesitic” partial melt (approximately 30–40% partial melting of an H chondrite precursor), and Bz‐1 and Bz‐2 forming as pyroxene‐cristobalite cumulates from an Si‐rich melt. We suggest that both types of melts experienced a period of transit through a cold, low‐pressure space environment in which cooling, FeO reduction, and interaction with a vapor occurred. Melts may have been lofted into space by excavation or splashing during collisions, or by pyroclastic volcanism. Our results indicate intriguing similarities between the inclusions in Buzzard Coulee and the silicates in some iron (IIE‐type) and stony iron (IVA‐type) meteorites, suggesting a genetic relationship.  相似文献   

12.
Knowledge of Martian igneous basaltic compositions is crucial for constraining mantle evolution, including early differentiation and mantle convection. Primitive magmas provide direct information about their mantle source regions, but most Martian meteorites either contain cumulate olivine or crystallized from fractionated melts. The recently discovered Martian meteorite Northwest Africa (NWA) 5789 is an olivine‐phyric shergottite. NWA 5789 has special significance among the Martian meteorites because it appears to represent one of the most magnesian Martian magmas known, other than Yamato (Y) 980459. Its most magnesian olivine cores (Fo85) are in Mg‐Fe equilibrium with a magma of the bulk rock composition, suggesting that the bulk represents a magma composition. Based on the Al/Ti ratio of its pyroxenes, we infer that the rock began to crystallize at a high pressure consistent with conditions in Mars’ lower crust/upper mantle. It continued and completed its crystallization closer to the surface, where cooling was rapid and produced a mesostasis of radiating sprays of plagioclase and pyroxene. The mineralogy, petrology, mineral chemistry, and bulk rock composition of NWA 5789 are very similar to those of Y‐980459. The similarities between the two meteorites suggest that NWA 5789 (like Y‐980459) represents a primitive, mantle‐derived magma composition. They also suggest the possibility that NWA 5789 and Y‐980459 formed in the same lava flow. However, based on the mineralogy and texture of its mesostasis, NWA 5789 must have cooled more slowly than Y‐980459. NWA 5789 will help elucidate the igneous geology and geochemistry of Mars.  相似文献   

13.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

14.
Abstract– Two suites of lunar impact melt samples have been measured in NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. Suite 1 comprises seven Apollo 17 crystalline impact melt breccias and seven quenched glass equivalents. Suite 2 is made up of 15 additional impact melt samples (from Apollo 12, 15, 16, and 17) which exhibit a range of textures and compositions related to cooling conditions and glass abundance. A few of these samples have cooled slowly and fully crystallized, and thus have the same spectral properties as igneous rocks of similar texture and composition; they cannot be uniquely distinguished without geologic context. However, most of the impact melts and melt breccias contain either quantities of quenched glass and/or have developed microcrystalline nonequilibrium textures with well‐defined, diagnostic spectral properties. The microcrystalline textures are associated with a distinctive 600 nm absorption feature, apparently due to submicroscopic ilmenite inclusions in a transparent host (typically fine‐grained plagioclase). The reflectance properties of these lunar sample suites contribute to and constrain the identification and characterization of impact melts in remote sensing data.  相似文献   

15.
Abstract— Microbeam studies of Martian meteorites Dar al Gani (DaG) 476 and Allan Hills (ALH) 77005 have been conducted to identify potential causes of disequilibrium exhibited in their Sm‐Nd isotopic systematics. Olivine and maskelynite mineral fractions on the DaG 476 isochron are displaced relative to their positions as dictated by measured mineral compositions. The olivine mineral fractions from ALH 77005 not only have a relatively low Sm/Nd ratio, but appear to contain an unradiogenic component that shifts the olivine mineral fraction off the isochron defined by the pyroxene and maskelynite mineral fractions. Trace components such as melt inclusions, impact melt, high‐Si mesostasis, and altered olivine were analyzed using scanning electron microscopy, quantitative electron microscopy, and secondary ion mass spectrometry to determine their potential for disturbing the isotopic systematics of the mineral fractions, assuming that the mineral fractions were not completely pure. Mixing models indicate that the presence of melt inclusions in the DaG 476 olivine mineral fraction lowered its Sm/Nd ratio. The maskelynite mineral fraction contains a related but more evolved mesostasis component that raised the Sm/Nd ratio of the fraction. The position of two olivine mineral fractions below the ALH 77005 isochron is interpreted to reflect small additions of impact melt with a light rare earth element enriched pattern and a non‐indigenous, unradiogenic Nd component. Furthermore, the presence of rare earth elements in olivine and maskelynite from both igneous and non‐igneous components such as melt inclusions, mesostasis, and impact melt is observed on a fine (<30 μm) scale. Despite the addition of this material, the Sm‐Nd ages are not affected. This study demonstrates that detailed mineral separation procedures as employed by modern geochronology laboratories permit reliable ages to be derived from shocked and altered samples.  相似文献   

16.
Oxygen, magnesium, and silicon isotopic abundances in Vigarano 1623-5 were studied using secondary ion mass spectrometry to investigate correlations between isotopic and petrologic properties of this unique forsterite-bearing FUN inclusion. Vigarano 1623-5 displays large, correlated mass-dependent fractionation effects, tightly linked to mineralogy within distinct petrologic units of the inclusion. The pyroxene-rich and melilite-rich interior parts of the inclusion display highly mass-fractionated isotopic compositions of oxygen, magnesium, and silicon, consistent with Rayleigh distillation during evaporation of a melt with initial oxygen composition close to a solar composition. However, the chemical composition, enriched in magnesium and silicon, suggests a precursor already fractionated by prior melt evaporation. A discontinuous igneous rim was produced by a flash-melting event followed by isotopic exchange in the rim melilite with planetary-like oxygen, mechanical fragmentation, and reassembly with an accretionary rim of heterogeneous materials. Al-rich minerals in 1623-5 show evidence for having crystallized with live 26Al but at less than the “canonical” level of most CV calcium-aluminum-rich inclusions. However, well-defined 26Al-26Mg isochrons are not found and temporal implications are ambiguous.  相似文献   

17.
New petrography, mineral chemistry, and whole rock major, minor, and trace element abundance data are reported for 29 dominantly unbrecciated basaltic (noncumulate) eucrites and one cumulate eucrite. Among unbrecciated samples, several exhibit shock darkening and impact melt veins, with incomplete preservation of primary textures. There is extensive thermal metamorphism of some eucrites, consistent with prior work. A “pristinity filter” of textural information, siderophile element abundances, and Ni/Co ratios of bulk rocks is used to address whether eucrite samples preserve endogenous refractory geochemical signatures of their asteroid parent body (i.e., Vesta), or could have experienced exogenous impact contamination. Based on these criteria, Cumulus Hills 04049, Elephant Moraine 90020, Grosvenor Range 95533, Pecora Escarpment 91245, and possibly Queen Alexander Range 97053 and Northwest Africa 1923 are pristine eucrites. Eucrite major element compositions and refractory incompatible trace element abundances are minimally affected by metamorphism or impact contamination. Eucrite petrogenesis examined through the lens of these elements is consistent with partial melting of a silicate mantle that experienced prior metal–silicate equilibrium, rather than as melts associated with cumulate diogenites. In the absence of the requirement of a large-scale magma ocean to explain eucrite petrogenesis, the interior structure of Vesta could be more heterogeneous than for larger planetary bodies.  相似文献   

18.
Petrology of Martian meteorite Northwest Africa 998   总被引:1,自引:0,他引:1  
Abstract— Nakhlite Northwest Africa (NWA) 998 is an augite-rich cumulate igneous rock with mineral compositions and oxygen isotopic composition consistent with an origin on Mars. This 456-gram, partially fusion-crusted meteorite consists of (by volume) ∼75% augite (core composition Wo39En39Fs22), ∼9% olivine (Fo35), ∼7% plagioclase (Ab61An35) as anhedra among augite and olivine, ∼3.5% low-calcium pyroxenes (pigeonite and orthopyroxene) replacing or forming overgrowths on olivine and augite, ∼1% titanomagnetite, and other phases including potassium feldspar, apatite, pyrrhotite, chalcopyrite, ilmenite, and fine-grained mesostasis material. Minor secondary alteration materials include “iddingsite” associated with olivine (probably Martian), calcite crack fillings, and iron oxide/hydroxide staining (both probably terrestrial). Shock effects are limited to minor cataclasis and twinning in augite. In comparison to other nakhlites, NWA 998 contains more low-calcium pyroxenes and its plagioclase crystals are blockier. The large size of the intercumulus feldspars and the chemical homogeneity of the olivine imply relatively slow cooling and chemical equilibration in the late- and post-igneous history of this specimen, and mineral thermometers give subsolidus temperatures near 730 °C. Oxidation state was near that of the QFM buffer, from about QFM-2 in earliest crystallization to near QFM in late crystallization, and to about QFM + 1.5 in some magmatic inclusions. The replacement or overgrowth of olivine by pigeonite and orthopyroxene (with or without titanomagnetite), and the marginal replacement of augite by pigeonite, are interpreted to result from late-stage reactions with residual melts (consistent with experimental phase equilibrium relationships). Apatite is concentrated in planar zones separating apatite-free domains, which suggests that residual magma (rich in P and REE) was concentrated in planar (fracture?) zones and possibly migrated through them. Loss of late magma through these zones is consistent with the low bulk REE content of NWA 998 compared with the calculated REE content of its parent magma.  相似文献   

19.
Treysa and Delegate have compositions closely similar to those of IIIAB irons but plot above the IIIAB field on Ir‐Au diagrams; for this reason they are designated anomalous members of IIIAB. All refractory siderophiles share this anomaly. Wasson ( 1999 ) interpreted the large spread on IIIAB Ir‐Au diagrams to result from melt‐trapping and generated solid and liquid fractional crystallization tracks; almost all IIIAB irons fall between the tracks. In contrast, Treysa, Delegate, and three other irons (the Treysa quintet) plot beyond the liquid track. Ideal fractional crystallization cannot account for compositions that plot outside the region between the tracks. Possible explanations for the anomalous compositions of the Treysa quintet are that (1) these meteorites did not form in the IIIAB magma or (2) they formed by the mixing of early crystallized solids with a late liquid. The weight of the evidence including cosmic‐ray ages favor the second explanation. Although this explanation can account for positions plotting above the liquid track, it requires special circumstances. The infalling blocks must be assimilated and the resulting melt must crystallize quickly into pockets small enough (<1 m) to allow igneous gradients to be leveled by subsequent diffusion. The Treysa quintet shares the region beyond the liquid track with most main‐group pallasites (PMG), which may have also originated in the IIIAB body. It appears that Treysa, its relatives, and the PMG were formed in one or more impact events that mixed olivine and solid metal formed near the core‐mantle boundary with nearby magma. It is then necessary to cool the melt rapidly; the best way to achieve rapid cooling is by heat exchange with cooler solids. That the Treysa quintet and the PMG can be explained by the same processes operating on late IIIAB magma supports the conclusion that PMG formed on the IIIAB parent asteroid.  相似文献   

20.
Abstract— Aubritic oldhamite (CaS) has been the subject of intense study recently because it is the major rare-earth-element (REE) carrier in aubrites, has a variety of REE patterns comparable to those in unequilibrated enstatite chondrites and has an extraordinarily high melting point as a pure substance (2525 °C). These latter two facts have caused some authors to assert that much of the aubritic oldhamite is an unmelted nebular relict, rather than of igneous origin. We have conducted REE partitioning experiments between oldhamite and silicate melt using an aubritic bulk composition at 1200 °C and 1300 °C and subsolidus annealing experiments. All experiments produced crystalline oldhamite, with a range of compositions, glass and Fe metal, as well as enstatite, SiO2, diopside and troilite in some charges. Rare-earth-element partitioning is strongly dependent on oldhamite composition and temperature. Subsolidus annealing results in larger partition coefficients for some oldhamite grains, particularly those in contact with troilite. All experimental oldhamite/silicate melt partition coefficients are <20 and the vast majority are <5, which is similar to those reported in the literature and is two orders of magnitude less than those inferred for natural aubritic oldhamite. These partition coefficients preclude a simple igneous model, since REE abundances in aubritic oldhamite are greater than would be predicted on the basis of the experimental partition coefficients. Our experimental partition coefficients are consistent with a relict nebular origin for aubritic oldhamite, although experimental evidence that suggests melting of oldhamite at temperatures lower than that reached on the aubrite parent body are clearly inconsistent with the nebular model. Our experiments are consistent also with a complex igneous history. Oldhamite REE patterns may reflect a complex process of partial melting, melt removal, fractional crystallization and subsolidus annealing and exsolution. These mechanisms (primarily fractional crystallization and subsolidus annealing) can produce a wide range of REE patterns in aubritic oldhamite, as well as elevated (100–1000 × CI) REE abundances observed in aubritic oldhamite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号