首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   

2.
Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal case, in which the total field horizontal stresses increase with the reservoir re-pressurization in a manner opposite to their reduction with the reservoir depletion. However, as the most pessimistic case of assuming the total horizontal stresses staying the same over the CO2 injection, faulting could be reactivated on a fault with the least favorable geometry once the reservoir pressure reaches approximately 7.7 MPa. In addition, the initial CO2 injection could lead to a high risk that a fault with a cohesion of less than 5.1 MPa could be activated due to the significant effect of reduced temperature on the field stresses around the injection site.  相似文献   

3.
The Geomechanics of CO2 Storage in Deep Sedimentary Formations   总被引:1,自引:0,他引:1  
This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. For such large-scale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.  相似文献   

4.
Geological storage of CO2 is considered a solution for reducing the excess CO2 released into the atmosphere. Low permeability caprocks physically trap CO2 injected into underlying porous reservoirs. Injection leads to increasing pore pressure and reduced effective stress, increasing the likelihood of exceeding the capillary entry pressure of the caprocks and of caprock fracturing. Assessing on how the different phases of CO2 flow through caprock matrix and fractures is important for assessing CO2 storage security. Fractures are considered to represent preferential flow paths in the caprock for the escape of CO2. Here we present a new experimental rig which allows 38 mm diameter fractured caprock samples recovered from depths of up to 4 km to be exposed to supercritical CO2 (scCO2) under in situ conditions of pressure, temperature and geochemistry. In contrast to expectations, the results indicate that scCO2 will not flow through tight natural caprock fractures, even with a differential pressure across the fractured sample in excess of 51 MPa. However, below the critical point where CO2 enters its gas phase, the CO2 flows readily through the caprock fractures. This indicates the possibility of a critical threshold of fracture aperture size which controls CO2 flow along the fracture.  相似文献   

5.
In this paper, the two computer codes TOUGH2 and RDCA (for “rock discontinuous cellular automaton”) are integrated for coupled hydromechanical analysis of multiphase fluid flow and discontinuous mechanical behavior in heterogeneous rock. TOUGH2 is a well-established code for geohydrological analysis involving multiphase, multicomponent fluid flow and heat transport; RDCA is a numerical model developed for simulating the nonlinear and discontinuous geomechanical behavior of rock. The RDCA incorporates the discontinuity of a fracture independently of the mesh, such that the fracture can be arbitrarily located within an element, while the fluid pressure calculated by TOUGH2 can be conveniently applied to fracture surfaces. We verify and demonstrate the coupled TOUGH–RDCA simulator by modeling a number of simulation examples related to coupled multiphase flow and geomechanical processes associated with the deep geological storage of carbon dioxide—including modeling of ground surface uplift, stress-dependent permeability, and the coupled multiphase flow and geomechanical behavior of fractures intersecting the caprock.  相似文献   

6.
The objective of this paper was to investigate the THM-coupled responses of the storage formation and caprock, induced by gas production, CO2-EGR (enhanced gas recovery), and CO2-storage. A generic 3D planer model (20,000?×?3,000?×?100?m, consisting of 1,200?m overburden, 100?m caprock, 200?m gas reservoir, and 1,500?m base rock) is adopted for the simulation process using the integrated code TOUGH2/EOS7C-FLAC3D and the multi-purpose simulator OpenGeoSys. Both simulators agree that the CO2-EGR phase under a balanced injection rate (31,500?tons/year) will cause almost no change in the reservoir pressure. The gas recovery rate increases 1.4?% in the 5-year CO2-EGR phase, and a better EGR effect could be achieved by increasing the distance between injection and production wells (e.g., 5.83?% for 5?km distance, instead of 1.2?km in this study). Under the considered conditions there is no evidence of plastic deformation and both reservoir and caprock behave elastically at all operation stages. The stress path could be predicted analytically and the results show that the isotropic and extensional stress regime will switch to the compressional stress regime, when the pore pressure rises to a specific level. Both simulators agree regarding modification of the reservoir stress state. With further CO2-injection tension failure in reservoir could occur, but shear failure will never happen under these conditions. Using TOUGH-FLAC, a scenario case is also analyzed with the assumption that the reservoir is naturally fractured. The specific analysis shows that the maximal storage pressure is 13.6?MPa which is determined by the penetration criterion of the caprock.  相似文献   

7.
The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO2 in deep brine formations. These comparisons have been discussed in nine areas: injection well integrity; abandoned well problems; buoyancy effects; multiphase flow effects; heterogeneity and flow channeling; multilayer isolation effects; caprock effectiveness and hydromechanics; site characterization and monitoring; effects of CO2 storage on groundwater resources. There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.  相似文献   

8.
Geochemical interactions of brine–rock–gas have a significant impact on the stability and integrity of the caprock for long-term CO2 geological storage. Invasion of CO2 into the caprock from the storage reservoir by (1) molecular diffusion of dissolved CO2, (2) CO2-water two-phase flow after capillary breakthrough, and (3) CO2 flow through existing open fractures may alter the mineralogy, porosity, and mechanical strength of the caprock due to the mineral dissolution or precipitation. This determines the self-enhancement or self-sealing efficiency of the caprock. In this paper, two types of caprock, a clay-rich shale and a mudstone, are considered for the modeling analyses of the self-sealing and self-enhancement phenomena. The clay-rich shale taken from the Jianghan Basin of China is used as the base-case model. The results are compared with a mudstone caprock which is compositionally very different than the clay-rich shale. We focus on mineral alterations induced by the invasion of CO2, feedback on medium properties such as porosity, and the self-sealing efficiency of the caprock. A number of sensitivity simulations are performed using the multiphase reactive transport code TOUGHREACT to identify the major minerals that have an impact on the caprock’s self-sealing efficiency. Our model results indicate that under the same hydrogeological conditions, the mudstone is more suitable to be used as a caprock. The sealing distances are barely different in the two types of caprock, both being about 0.6 m far from the interface between the reservoir and caprock. However, the times of occurrence of sealing are considerably different. For the mudstone model, the self-sealing occurs at the beginning of simulation, while for the clay-rich shale model, the porosity begins to decline only after 100 years. At the bottom of the clay-rich shale column, the porosity declines to 0.034, while that of mudstone declines to 0.02. The sensitive minerals in the clay-rich shale model are calcite, magnesite, and smectite-Ca. Anhydrite and illite provide Ca2+ and Mg2+ to the sensitive minerals for their precipitation. The mudstone model simulation is divided into three stages. There are different governing minerals in different stages, and the effect of the reservoir formation water on the alteration of sensitive minerals is significant.  相似文献   

9.
According to poroelastic theory and also field observations, an increase in reservoir pore pressures can result in a decrease in horizontal stresses in the seal layers. This reduction is in favor of hydrofracture initiation and reactivation of weak planes and has to be studied in caprock integrity analyses. In this paper, a field scale reservoir–geomechanical (GEM-FLAC3D) model is developed for the Phase IB area of the Weyburn (Canada) CCS project that is located in Williston sedimentary basin. A one-way coupling has been conducted between the two codes for the period of CO2 injection in Phase IB area from 2000 to 2010. Therefore, the reservoir pore pressures at selected timesteps are unidirectionally fed to the FLAC3D. In order to study the likelihood of tensile and shear failure in the seal layer on top as a result of stress transfer due to poroelastic effects, two margin ratios are defined for tensile and shear failure and their variations are studied above the reservoir upon changes in pore pressures within the reservoir. The results show that overall; the likelihood of shear failure has been about 25% greater than that of tensile failure in Weyburn. However, between 2008 and 2009, the pressures were high enough to trigger both tensile and shear mechanisms above the reservoir. A discussion is also presented on relevance of this study for interpretation of microseismic data with regard to failure margin ratios, magnitudes and distribution of events recorded in each year.  相似文献   

10.
Composite Portland cement–basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2–saturated groundwater at 50 °C and 10 MPa for 3 months under static conditions, while one cement–basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM–EDS data collected along the cement–basalt interface after 3-month reaction with CO2–saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement–basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.  相似文献   

11.
We present a contribution on the risk of hydraulic fracturing in CO2 geological storage using an analytical model of hydraulic fracturing in weak formations. The work is based on a Mohr–Coulomb dislocation model that is extended to account for material with fracture toughness. The complete slip process that is distributed around the crack tip is replaced by superdislocations that are placed in the effective centers. The analytical model enables the identification of a dominant parameter, which defines the regimes of brittle to ductile propagation and the limit at which a mode‐1 fracture cannot advance. We examine also how the corrosive effect of CO2 on rock strength may affect hydraulic fracture propagation. We found that a hydraulically induced vertical fracture from CO2 injection is more likely to propagate horizontally than vertically, remaining contained in the storage zone. The horizontal fracture propagation will have a positive effect on the injectivity and storage capacity of the formation. The containment in the vertical direction will mitigate the risk of fracturing and migration of CO2 to upper layers and back to the atmosphere. Although the corrosive effect of CO2 is expected to decrease the rock toughness and the resistance to fracturing, the overall decrease of rock strength promotes ductile behavior with the energy dissipated in plastic deformation and hence mitigates the mode‐1 fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the first published 3D geomechanical modelling study of the CO2CRC Otway Project, located in the state of Victoria, Australia. The results of this work contribute to one of the main objectives of the CO2CRC, which is to demonstrate the feasibility of CO2 storage in a depleted gas reservoir. With this aim in mind, a one-way coupled flow and geomechanics model is presented, with the capability of predicting changes to the in situ stress field caused by changes in reservoir pressure owing to CO2 production and injection. A parametric study investigating the pore pressures required to reactivate key, reservoir-bounding faults has been conducted, and the results from the numerical simulation and analytical analysis are compared. The numerical simulation indicates that the critical pore fluid pressure to cause fault reactivation is 1.15 times the original pressure as opposed to 1.5 times for the comparable analytical model. Possible reasons for the differences between the numerical and analytical models can be ascribed to the higher degree of complexity incorporated in the numerical model. Heterogeneity in terms of lateral variations of hydrological and mechanical parameters, effect of topography, presence of faults and interaction between cells are considered to be the main sources for the different estimation of critical pore pressure. The numerical model, which incorporates this greater complexity, is able then to better describe the state of stress that acts in the subsurface compared with a simple 1D analytical model. Moreover, the reactivation pressures depend mainly on the state of stress described; therefore we suggest that numerical models be performed when possible.  相似文献   

13.
The CO2 migrated from deeper to shallower layers may change its phase state from supercritical state to gaseous state (called phase transition). This phase transition makes both viscosity and density of CO2 experience a sharp variation, which may induce the CO2 further penetration into shallow layers. This is a critical and dangerous situation for the security of CO2 geological storage. However, the assessment of caprock sealing efficiency with a fully coupled multi-physical model is still missing on this phase transition effect. This study extends our previous fully coupled multi-physical model to include this phase transition effect. The dramatic changes of CO2 viscosity and density are incorporated into the model. The impacts of temperature and pressure on caprock sealing efficiency (expressed by CO2 penetration depth) are then numerically investigated for a caprock layer at the depth of 800 m. The changes of CO2 physical properties with gas partial pressure and formation temperature in the phase transition zone are explored. It is observed that phase transition revises the linear relationship of CO2 penetration depth and time square root as well as penetration depth. The real physical properties of CO2 in the phase transition zone are critical to the safety of CO2 sequestration. Pressure and temperature have different impact mechanisms on the security of CO2 geological storage.  相似文献   

14.
Very limited investigations have been done on the numerical simulation of carbon dioxide (CO2) migration in sandstone aquifers taking consideration of the interactions between fluid flow and rock stress. Based on the poroelasticity theory and multiphase flow theory, this study establishes a mathematical model to describe CO2 migration, coupling the flow and stress fields. Both finite difference method (FDM) and finite element method (FEM) were used to discretize the mathematical model and generate a numerical model. A case study was carried out using the numerical model on the Jiangling sandstone aquifer in the Jianghan basin, China. The rock mechanics parameters of reservoir and overlying strata of Jiangling depression were obtained by triaxial tests. A two-dimensional model was then built to simulate carbon dioxide migration in the sandstone aquifer. The numerical simulation analyzes the carbon dioxide migration distribution rule with and without considering capillary pressure. Time-dependent migration of CO2 in the sandstone aquifer was analyzed, and the result from the coupled model was compared with that from a traditional non-coupled model. The calculation result indicates a good consistency between the coupled model and the non-coupled model. At the injection point, the CO2 saturation given by the coupled model is 15.39 % higher than that given by the non-coupled model; while the pore pressure given by the coupled model is 4.8 % lower than that given by the non-coupled model. Therefore, it is necessary to consider the coupling of flow and stress fields while simulating CO2 migration for CO2 disposal in sandstone aquifers. The result from the coupled model was also sensitized to several parameters including reservoir permeability, porosity, and CO2 injection rate. Sensitivity analyses show that CO2 saturation is increased non-linearly with CO2 injection rate and decreased non-linearly with reservoir porosity. Pore pressure is decreased non-linearly with reservoir porosity and permeability, and increased non-linearly with CO2 injection rate. When the capillary pressure was considered, the computed gas saturation of carbon dioxide was increased by 10.75 % and the pore pressure was reduced by 0.615 %.  相似文献   

15.
Deep saline aquifers still remain a significant option for the disposal of large amounts of CO2 from the atmosphere as a means of mitigating global climate change. The small scale Carbon Capture and Sequestration demonstration project in Ordos Basin, China, operated by the Shenhua Group, is the only one of its kind in Asia, to put the multilayer injection technology into practice. This paper aims at studying the influence of temperature, injection rate and horizontal boundary effects on CO2 plume transport in saline formation layers at different depths and thicknesses, focusing on the variations in CO2 gas saturation and mass fraction of dissolved CO2 in the formation of brine in the plume’s radial three-dimensional field around the injection point, and interlayer communication between the aquifer and its confining beds of relatively lower permeability. The study uses the ECO2N module of TOUGH2 to simulate flow and pressure configurations in response to small-scale CO2 injection into multilayer saline aquifers. The modelling domain involves a complex multilayer reservoir–caprock system, comprising of a sequence of sandstone aquifers and sealing units of mudstone and siltstone layers extending from the Permian Shanxi to the Upper Triassic Liujiagou formation systems in the Ordos Basin. Simulation results indicate that CO2 injected for storage into deep saline aquifers cause a significant pressure perturbation in the geological system that may require a long duration in the post-injection period to establish new pressure equilibrium. The multilayer simultaneous injection scheme exhibits mutual interference with the intervening sealing layers, especially when the injection layers are very close to each other and the corresponding sealing layers are thin. The study further reveals that injection rate and temperature are the most significant factors for determining the lateral and vertical extent that the CO2 plume reaches and which phase and amount will exist at a particular time during and after the injection. In general, a large number of factors may influence the CO2–water fluid flow system considering the complexity in the real geologic sequence and structural configurations. Therefore, optimization of a CO2 injection scheme still requires pursuance of further studies.  相似文献   

16.
Sedimentary porous rocks can be used for long-term subsurface containment of CO2. Before injecting CO2 to sedimentary reservoirs, it is necessary to perform stability analysis of the reservoir and to estimate the maximum sustainable pore fluid pressures. In order to avoid the reservoir damage during the CO2 injection, the effective stresses in the reservoir should be evaluated. In this paper, numerical modeling techniques are used for the evaluation of stresses and deformations in a naturally fractured carbonate sedimentary reservoir. The developed numerical modeling scheme couples the behavior of the CO2 injection and the change in the geomechanical behavior of the sedimentary carbonate reservoir for a case study from Saudi Arabia. The present investigation extends the previous studies by considering the sorption-based deformation during the injection of the compressed CO2 fluid into the Arab-D naturally fractured carbonate reservoir. The change in permeability during the injection of CO2 is evaluated. The adopted CO2 injection scenario was shown to be within the safe maximum occupancy, and that the increase in the pore pressure does not result in the reservoir failure.  相似文献   

17.
Closely spaced, sub-parallel fracture networks contained within localized tabular zones that are fracture corridors may compromise top seal integrity and form pathways for vertical fluid flow between reservoirs at different stratigraphic levels. This geometry is exemplified by fracture corridors found in outcrops of the Jurassic Entrada Formation in Utah (USA). These fracture corridors exhibit discolored (bleached) zones, interpreted as evidence of ancient fracture-enhanced circulation of reducing fluids within an exhumed siliciclastic reservoir-cap rock succession. Extensive structural and stratigraphic mapping and logging provided fracture data for analysis with respect to their occurrence and relationships to larger faults and folds. Three types of fracture corridors, representing end-members of a continuum of possibly interrelated structures were identified: 1) fault damage zone including segment relays; 2) fault-tip process zone; and 3) fold-related crestal-zone fracture corridors. The three types exhibit intrinsic orientations and patterns, which in sum define a local- to regional network of inferred vertical and lateral, high-permeability conduits. The results from our analysis may provide improved basis for the evaluation of trap integrity and flow paths across the reservoir-cap rock interface, applicable to both CO2 storage operations and the hydrocarbon industry.  相似文献   

18.
The storage potential of subsurface geological systems makes them viable candidates for long-term disposal of significant quantities of CO2. The geo-mechanical responses of these systems as a result of injection processes as well as the protracted storage of CO2 are aspects that require sufficient understanding. A hypothetical model has been developed that conceptualises a typical well-reservoir system comprising an injection well where the fluid (CO2) is introduced and a production/abandoned well sited at a distant location. This was accomplished by adopting a numerical methodology (discrete element method), specifically designed to investigate the geo-mechanical phenomena whereby the various processes are monitored at the inter-particle scale. Fracturing events were simulated. In addition, the influence of certain operating variables such as injection flow rate and fluid pressure was studied with particular interest in the nature of occurring fractures and trend of propagation, the pattern and magnitude of pressure build-up at the well vicinity, pressure distribution between well regions and pore velocity distribution between well regions. Modelling results generally show an initiation of fracturing caused by tensile failure of the rock material at the region of fluid injection; however, fracturing caused by shear failure becomes more dominant at the later stage of injection. Furthermore, isolated fracturing events were observed to occur at the production/abandoned wells that were not propagated from the injection point. This highlights the potential of CO2 introduced through an injection well, which could be used to enhance oil/gas recovery at a distant production well. The rate and magnitude of fracture development are directly influenced by the fluid injection rate. Likewise, the magnitude of pressure build-up is greatly affected by the fluid injection rate and the distance from the point of injection. The DEM modelling technique illustrated provides an effective procedure that allows for more specific investigations of geo-mechanical mechanisms occurring at subsurface systems. The application of this methodology to the injection and storage of CO2 facilitates the understanding of the fracturing phenomenon as well as the various factors governing the process.  相似文献   

19.
Numerical models are essential tools in fully understanding the fate of injected CO2 for commercial-scale sequestration projects and should be included in the life cycle of a project. Common practice involves modeling the behavior of CO2 during and after injection using site-specific reservoir and caprock properties. Little has been done to systematically evaluate and compare the effects of a broad but realistic range of reservoir and caprock properties on potential CO2 leakage through caprocks. This effort requires sampling the physically measurable range of caprock and reservoir properties, and performing numerical simulations of CO2 migration and leakage. In this study, factors affecting CO2 leakage through intact caprocks are identified. Their physical ranges are determined from the literature from various field sites. A quasi-Monte Carlo sampling approach is used such that the full range of caprock and reservoir properties can be evaluated without bias and redundant simulations. For each set of sampled properties, the migration of injected CO2 is simulated for up to 200 years using the water–salt–CO2 operational mode of the STOMP simulator. Preliminary results show that critical factors determining CO2 leakage rate through caprocks are, in decreasing order of significance, the caprock thickness, caprock permeability, reservoir permeability, caprock porosity, and reservoir porosity. This study provides a function for prediction of potential CO2 leakage risk due to permeation of intact caprock and identifies a range of acceptable seal thicknesses and permeability for sequestration projects. The study includes an evaluation of the dependence of CO2 injectivity on reservoir properties.  相似文献   

20.
We propose a simple pressure test that can be used in the field to determine the effective permeability of existing wellbores. Such tests are motivated by the need to understand and quantify leakage risks associated with geological storage of CO2 in mature sedimentary basins. If CO2 is injected into a deep geological formation, and the resulting CO2 plume encounters a wellbore, leakage may occur through various pathways in the “disturbed zone” surrounding the well casing. The effective permeability of this composite zone, on the outside of the well casing, is an important parameter for models of leakage. However, the data that exist on this key parameter do not exist in the open literature, and therefore specific field tests need to be done in order to reduce the uncertainty inherent in the leakage estimates. The test designed and analyzed herein is designed to measure effective wellbore permeability within a low-permeability caprock, bounded above and below by permeable reservoirs, by pressurizing the reservoir below and measuring the response in the reservoir above. Alternatively, a modified test can be performed within the caprock without directly contacting the reservoirs above and below. We use numerical simulation to relate pressure response to effective well permeability and then evaluate the range of detection of the effective permeability based on instrument measurement error and limits on fracture pressure. These results can guide field experiments associated with site characterization and leakage analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号