首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The IAU Meteor Data Center in Lund has acted as a central depository for meteor orbits obtained by photographic, video and radar techniques. The database of precisely reduced photographic meteors contains data on 4581 meteor orbits obtained by 17 different stations or groups in the period 1936–1996. The orbital and geophysical data are available in two separate files as well as in an alternative file with the merged data. In various studies of meteoroid streams as well as in studies of the sporadic meteor background, it is often necessary to utilize both the orbital and the geophysical data files. Since the database is a compilation of partial, not perfectly compatible catalogues from many observing stations, the merging of parameters from one data set to another may sometimes present problems. The present contribution is a note on some problems encountered in the merging procedure. Moreover, it is evident that the database includes a small amount of erroneous data – either in the observations or in the subsequent data reductions. The latter error is not surprising in view of the lack of modern computers at several stations in the past. A final, corrected version of the IAU MDC Lund photographic meteor orbits (eq. 2000.0) can now be requested through the homepage of the Astronomical Institute, Slovak Academy of Sciences (http://www.astro.sk/~ne/IAUMDC/Ph2003/database.html).  相似文献   

2.
The hyperbolic meteor orbits among the 4,581 photographic and 62,906 radar meteors of the IAU MDC have been analysed using statistical methods. It was shown that the vast majority of hyperbolic orbits has been caused by the dispersion of determined velocities. The large proportion of hyperbolic orbits among the known meteor showers strongly suggests the hyperbolicity of the meteors is not real. The number of apparent hyperbolic orbits increases inversely proportional to the difference between the mean heliocentric velocity of meteor shower and the parabolic velocity limit. The number of hyperbolic meteors in the investigated catalogues does not, in any case, represent the number of interstellar meteors in observational data. The apparent hyperbolicity of these orbits is caused by a high spread in velocity determination, shifting a part of the data through the parabolic limit.  相似文献   

3.
A new 2013 version of the IAU MDC photographic meteor orbits database which is an upgrade of the current 2003 version (Lindblad et al. 2003, EMP 93:249–260) is presented. To the 2003 version additional 292 orbits are added, thus the new version of the database consists of 4,873 meteors with their geophysical and orbital parameters compiled in 41 catalogues. For storing the data, a new format enabling a more simple treatment with the parameters, including the errors of their determination is applied. The data can be downloaded from the IAU MDC web site: http://www.astro.sk/IAUMDC/Ph2013/  相似文献   

4.
The orbital evolution of the two meteorites Příbram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5,000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were five meteors found in the IAU MDC database and six NEAs with currently similar orbits to Příbram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2,000 years.  相似文献   

5.
Hyperbolic meteor orbits from the catalog of 64,650 meteors observed by the multistation video meteor network located in Japan (SonotaCo 2009) have been investigated with the aim of determining the relation between the frequency of hyperbolic and interstellar meteors. The proportion of hyperbolic meteors in the data decreased significantly (from 11.58% to 3.28%) after a selection of quality orbits, which shows its dependence on the quality of observations. Initially, the hyperbolic orbits were searched for meteors unbound due to planetary perturbation. It was determined that 22 meteors from the 7489 hyperbolic orbits in the catalog (and 2 from the selection of the orbits with the highest quality) had had a close encounter with a planet, none of which, however, produced essential changes in their orbits. Similarly, the fraction of hyperbolic orbits in the data, which could be hyperbolic by reason of a meteor's interstellar origin, was determined to be at most 3.9 × 10?2. From the statistical point of view, the vast majority of hyperbolic meteors in the database have definitely been caused by inaccuracy in the velocity determination. This fact does not necessarily assume great measurement errors, since, especially near the parabolic limit, a small error in the value of the heliocentric velocity of a meteor can create an artificial hyperbolic orbit that does not really exist. The results show that the remaining 96% of meteoroids with apparent hyperbolic orbits belong to the solar system meteoroid population. This is also supported by their high abundance (about 50%) among the meteor showers.  相似文献   

6.
We tested four criteria used for discrimination between asteroidal and cometary type of orbits: Whipple criterion K, Kresak criterion Pe, Tisserand invariant T and aphelion distance Q. To estimate their reliability, all criteria were applied to classify the 2225 orbits of NEAs and 582 orbits of comets, for several epochs spanning the time interval of 40 thousands years. The Q-criterion produced the smallest number of exceptions and has shown the best stability. The biggest number of exceptions and the biggest variations are obtained for the K-criterion. We applied the Q-criterion to classify meteor orbits from the IAU Meteor Data Center and the video meteor orbits available on the Web sites. Among the sporadic radar orbits, as well as among the mean orbits of meteor streams a strong preponderance of asteroid-type orbits was observed. In case of the photographic and video meteors a weak preponderance of cometary and asteroidal orbits was found, respectively.  相似文献   

7.
A new meteroid stream—October Ursa Majorids—was announced by Japanese observers on Oct. 14–16, 2006 (Uehara et al. 2006). Its weak manifestation was detected among coincidental major meteor showers (N/S Taurids, Orionids), as its meteors radiated from a higher placed radiant on the northern sky. We have tried to find out previous displays of the stream throughout available meteor orbits databases, and among ancient celestial phenomena records. Although we got no obvious identification, there are some indications that it could be a meteor shower of cometary origin with weak/irregular activity, mostly overlayed by regular coincidental meteor showers. With a procedure based on D-criterion (Southworth and Hawkins 1963) we found a few records in IAU MDC database of meteor photographic orbits which fulfill common similarity limits, for October Ursae Majorids. However, their real association cannot be established, yet. With respect to the mean orbit of this stream, we suggest for its parent body a long-period comet.  相似文献   

8.
We present a method to calculate the radiation pressure force to gravity ratio on meteoroids from their atmospheric flight. Radiation pressure corrections to meteor orbits are negligible for fireballs; of the order of or less than the measurement errors (≈ 1%) for photographic meteors; of the order of and in some cases substantially larger than the measurement errors (≈ 10%) for radar meteors.  相似文献   

9.
We deal with theoretical meteoroid streams the parent bodies of which are two Halley-type comets in orbits situated at a relatively large distance from the orbit of Earth: 126P/1996 P1 and 161P/2004 V2. For two perihelion passages of each comet in the far past, we model the theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of theoretical particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of theoretical particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about −23°) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ∼53 km s−1. A significant fraction of particles assumed to be released from comet 126P also cross the Earth’s orbit and, eventually, could be observed as meteors. However, their radiant area is largely dispersed (declination of radiants spans from about +60° to the south pole) and, therefore, mixed with the sporadic meteor background. An identification with real meteors is practically impossible.  相似文献   

10.
We present a method to calculate the radiation pressure force to gravity ratio on meteoroids from their atmospheric flight. Radiation pressure corrections to meteor orbits are negligible for fireballs; of the order of or less than the measurement errors ( 1%) for photographic meteors; of the order of and in some cases substantially larger than the measurement errors ( 10%) for radar meteors.  相似文献   

11.
Optical observations remain the most widely used method for studying meteors, even though they are limited by daylight and weather conditions. Visual observations have been used throughout history. They lack the precision of other methods, since they rely on the judgment of observers for trajectory information. However, since no special equipment is required, visual observations are widespread, and can give valuable information on the activity profile of showers. Photographic observations are much more precise. Rotating shutters allow velocities to be determined, and networks of cameras permit the height and trajectory of a meteor to be calculated. Except for the Super-Schmidt observations at Harvard, most photographic observations record only meteors brighter than 0 magnitude. Video observations, using image intensifiers, can record much fainter meteors down to +7 magnitude. Processing is becoming very automated, so that large quantities of data can be reduced relatively easily. Most video cameras have much lower precision than photographic cameras, but new technologies are changing this. Spectral observations of meteors, using video or photographic techniques, can be used to investigate the chemistry of meteoroids, while telescopic observations allow measurements to be extended to much fainter meteors (+10 or fainter).  相似文献   

12.
Recently, television observations of meteors have steadily replaced photographic observations. Television recording with short exposures is a close analog of a photographic survey with a rotary shutter in the form of a system of set time marks on the meteor track. Each meteoric event is a series of recordings of separate phases of the motion of a meteor. This allows for the use of the geometric method for the determination of the motion parameters of meteors. In this work, a critique is given regarding the concept proposed by K.P. Stanyukovich in 1932–1939, and a mathematical justification of the geometric method of the analysis of the television images of meteors is given.  相似文献   

13.
Abstract— Precise atmospheric trajectories including dynamic and photometric data on thirteen of the brightest Leonid fireballs have been determined from the double‐station photographic observations of Leonid meteors during the ground‐based expedition to China in 1998 November. the expedition was organized as a collaboration between the dutch and chinese academy of sciences and was supported by the leonid multi‐instrument aircraft campaign (mac) program (jenniskens and butow, 1999). All data presented here were taken at Xinglong Observatory and at a remote station, Lin Ting Kou near Beijing, on the night of 1998 November 16/17. At the Xinglong station, photographic cameras were accompanied by an all‐sky television camera equipped with an image intensifier and 15 mm fish‐eye objective in order to obtain precise timings for all observed meteors up to magnitude +2. Whereas beginning heights of photographed meteors are all lower than 130 km, those observed by the all‐sky television system are at ~160 km, and for three brightest events, even > 180 km. Such high beginnings for meteors have never before been observed. We also obtained a precise dynamic single‐body solution for the Leonid meteor 98003, including the ablation coefficient, which is an important material and structural quantity (0.16 s2 km?2). From this and from known photometry, we derived a density of this meteoroid of 0.7 g/cm3. Also, all PE coefficients indicate that these Leonid meteors belonged to the fireball group IIIB, which is typical for the most fragile and weak interplanetary bodies. From a photometric study of the meteor lightcurves, we found two typical shapes of light curves for these Leonid meteors.  相似文献   

14.
Zdenek Sekanina 《Icarus》1976,27(2):265-321
With the use of the most powerful stream-search technique in existence, we have detected 275 streams in the synoptic-year (December 2, 1968–December 14, 1969) sample of 19 698 radio meteors, most of which were not reported before. About 16% of all meteors in the sample belong to these streams. We have confirmed the existence of two-thirds of the 83 streams detected by us previously in the 1961–65 sample of radio meteors. Some of the new streams have most uncommon orbits. A new, rich stream with a revolution period of about 30yr has been discovered. Streams of low inclination are often detected at both nodes. A computer technique, developed for determining the two parameters of the D-distribution of meteor orbits in a stream, has been applied to the 275 streams. A number of known comet-meteor associations have been confirmed, and a few new possible associations established. The previously detected orbital similarity between the minor planet Adonis and a few radio streams (including a major, broad stream) has been reinforced, but we have so far failed to prove the evolutionary relationship more quantitatively. Several possible associations with other Earth-crossing asteroids, with the meteorite P?íbram, and with a few fireballs are suggested. The mean space density in streams is shown to be much below the sporadic density, but the central density may significantly exceed the sporadic density. The derived absolute stream-density values are in an order-of-magnitude agreement with space densities estimated from the cometary production rates of solid material of a comparable particle size. Plots on a height-velocity diagram of both the individual radio meteors and the radio streams fail to exhibit the discrete-level structure known to exist for photographic meteors.  相似文献   

15.
We have carried out multi-station TV observations since 1994 in order to determine the orbit of the Arietid daytime meteor stream. In 1999, one possible Arietid meteor was recorded by our simultaneous observations and its orbit was determined. In 2003, two Arietid meteors were observed from two stations of our observing site, those orbits were determined precisely, the orbital elements were in good agreement with each other. This is the first time that determination of the precise orbit of the Arietids has been made from optical observations. The orbit of these Arietid meteors, and comparison with the orbit obtained from radar observations are discussed.  相似文献   

16.
This paper describes the progress on the Virtual Meteor Observatory (VMO), a database which is being developed at ESA/RSSD to store video meteor observations and their derived orbits. The VMO was triggered by a discussion which took place at the first Meteor Orbit Determination (MOD) workshop in Roden, The Netherlands, in September 2006. Representatives of 15 groups working on the determination of meteor orbits and working with the resulting orbits discussed the design and implementation of a database which would combine different meteor orbit datasets. From this the concept of the VMO was born, which will, in the long run, allow accessing meteor observations via the internet. In the beginning, it will focus on meteor orbit data obtained with video systems. This paper presents the architectural design of the database as it has been defined in the meantime.  相似文献   

17.
We have carried out double-station TV meteor observations between 1990 and 1994. The orbits of 326 meteors have been determined from doubly observed meteors, and radiant distributions are studied. The mean magnitude of the observed meteors was as faint as +4.7, since I.I. (Image Intensifier) and Video cameras were used. Radiants were widely distributed over the celestial sphere. The velocity distribution showed some similarity with the distribution predicted by the theoretical radiant distribution from comets rather than that from asteroids. In all 13 showers including both major and minor meteor showers were detected from radiant distributions of the observed meteors; from the orbital elements and meteor velocities as well as from the radiant directions.  相似文献   

18.
We present detailed data on 8 bright meteors recorded simultaneously by different observational techniques. All meteors were recorded by all-sky cameras at the Czech stations of the European Fireball Network and by image intensified TV cameras placed at Ondrejov and Kunzak observatories. As well as direct photographic and LLLTV recordings, most of meteors were recorded also by the spectral TV camera and some also by photographic spectral cameras. For 6 cases, lightcurves from radiometers with very high time resolution (1200 s−1) are also available. From all these detections we found a significant difference between TV and photographic beginning heights. TV beginnings are in average about 40 km higher than the photographic ones. We found that meteor brightness is up to 2 magnitudes higher in the photographic system than in the TV system. This difference for high velocity meteors is mainly caused by the presence of strong Ca+ lines in the blue part of the spectrum, where the image intensifier is only marginally sensitive. At heights above 110 km, the Na line is usually brighter than the Mg line, while at lower heights both lines have comparable brightness. In one of two captured spectra of short duration luminous trains, a small initial brightening of the Mg and Na lines caused by recombination processes was observed.  相似文献   

19.
Efforts to link minor meteor showers to their parent bodies have been hampered both by the lack of high-accuracy orbits for weak showers and the incompleteness of our sample of potential parent bodies. The Canadian Meteor Orbital Radar (CMOR) has accumulated over one million meteor orbits. From this large data set, the existence of weak showers and the accuracy of the mean orbits of these showers can be improved. The ever-growing catalogue of near-Earth asteroids (NEAs) provides the complimentary data set for the linking procedure. By combining a detailed examination of the background of sporadic meteors near the orbit in question (which the radar data makes possible) and by computing the statistical significance of any shower association (which the improved NEA sample allows) any proposed shower–parent link can be tested much more thoroughly than in the past. Additional evidence for the links is provided by a single-station meteor radar at the CMOR site which can be used to dispel confusion between very weak showers and statistical fluctuations in the sporadic background. The use of these techniques and data sets in concert will allow us to confidently link some weak streams to their parent bodies on a statistical basis, while at the same time showing that previously identified minor showers have little or no activity and that some previously suggested linkages may simply be chance alignments.  相似文献   

20.
The recent development and data collection results of the Astrobiology Instrumentation for Meteor Imaging and Tracking (AIM-IT) system, has demonstrated an ability to point narrow field-of-view instruments at transient events such as meteors. AIM-IT uses the principle of tracking moving objects via a paired set of relay mirrors along with an integrated hardware/software solution, to acquire and track meteors in real-time. Development of the instrument has progressed from a prototype rocker-box system through more recent use of a fast response mirror system during several meteor shower campaigns. Several narrow field of view instruments have been deployed using AIM-IT including high spatial resolution video, high frame rate video, and meteor spectrographic equipment. Analysis of the imagery shows evidence for meteor fragmentation in as many as 20% of the meteors tracked thus far. The success of the AIM-IT technology in tracking meteors during their luminous flight provides a new tool in enhancing the capabilities and data volume that can be obtained with existing narrow field of view instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号