首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Luminescence geochronology, especially infrared stimulated luminescence analyses on marsh mud, shows that a relatively deep lake reached its peak (1340 m above sea level) in the Bonneville basin 59,000±5000 yr ago. The age is consistent with nonfinite 14C ages and with amino acid geochronology on ostracodes. The Cutler Dam Alloformation was deposited during this lake cycle, which, like the subsequent Bonneville lake cycle, appears to have reached its maximum highstand following the peak of a global glacial stage (marine oxygen-isotope stage 4) but at a time when other records from North America show evidence for cold climate and expanded glacier ice.  相似文献   

2.
The Magnitude and Proximate Cause of Ice-Sheet Growth Since 35,000 yr B.P.   总被引:1,自引:0,他引:1  
The magnitude of late Wisconsinan (post-35,000 yr B.P.) ice-sheet growth in the Northern Hemisphere is not well known. Ice volume at 35,000 yr B.P. may have been as little as 20% or as much as 70% of the volume present at the last glacial maximum (LGM). A conservative evaluation of glacial–geologic, sea level, and benthic δ18O data indicates that ice volume at 35,000 yr B.P. was approximately 50% of that extant at the LGM (20,000 yr B.P.); that is, it doubled in about 15,000 yr. On the basis of literature for the North Atlantic and a sea-surface temperature (SST) data compilation, it appears that this rapid growth may have been forced by low-to-mid-latitude SST warming in both the Atlantic and Pacific Oceans, with attendant increased moisture transport to high latitudes. The SST ice-sheet growth notion also explains the apparent synchroneity of late Wisconsinan mountain glaciation in both hemispheres.  相似文献   

3.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

4.
Structural and thermochronological studies of the Kampa Dome provide constraints on timing and mechanisms of gneiss dome formation in southern Tibet. The core of Kampa Dome contains the Kampa Granite, a Cambrian orthogneiss that was deformed under high temperature (sub-solidus) conditions during Himalayan orogenesis. The Kampa Granite is intruded by syn-tectonic leucogranite dikes and sills of probable Oligocene to Miocene age. Overlying Paleozoic to Mesozoic metasedimentary rocks decrease in peak metamorphic grade from kyanite + staurolite grade at the base of the sequence to unmetamorphosed at the top. The Kampa Shear Zone traverses the Kampa Granite — metasediment contact and contains evidence for high-temperature to low-temperature ductile deformation and brittle faulting. The shear zone is interpreted to represent an exhumed portion of the South Tibetan Detachment System. Biotite and muscovite 40Ar/39Ar thermochronology from the metasedimentary sequence yields disturbed spectra with 14.22 ± 0.18 to 15.54 ± 0.39 Ma cooling ages and concordant spectra with 14.64 ± 0.15 to 14.68 ± 0.07 Ma cooling ages. Petrographic investigations suggest disturbed samples are associated with excess argon, intracrystalline deformation, mineral and fluid inclusions and/or chloritization that led to variations in argon systematics. We conclude that the entire metasedimentary sequence cooled rapidly through mica closure temperatures at  14.6 Ma. The Kampa Granite yields the youngest biotite 40Ar/39Ar ages of  13.7 Ma immediately below the granite–metasediment contact. We suggest that this age variation reflects either varying mica closure temperatures, re-heating of the Kampa Granite biotites above closure temperatures between 14.6 Ma and 13.7 Ma, or juxtaposition of rocks with different thermal histories. Our data do not corroborate the “inverse” mica cooling gradient observed in adjacent North Himalayan gneiss domes. Instead, we infer that mica cooling occurred in response to exhumation and conduction related to top-to-north normal faulting in the overlying sequence, top-to-south thrusting at depth, and coeval surface denudation.  相似文献   

5.
Moraine chronology is combined with digital topography to model deglacial rates of paleoglacier volumes in both the Huancané Valley on the west side of the Quelccaya Ice Cap and the Upismayo Valley on the northwest side of the Cordillera Vilcanota. The fastest rates of deglaciation (39×10−5 to 114×10−5 km3 yr−1 and 112×10−5 to 247×10−5 km3 yr−1 for each valley, respectively) were calculated for the most recent paleoglaciers, corresponding to the last few centuries. These results are consistent with observations in the Venezuelan Andes showing high rates of deglaciation since the Little Ice Age. These rates also fall within the range of 20th century rates of deglaciation measured on the Quelccaya Ice Cap (29×10−5 to 220×10−5 km3 yr−1, Brecher and Thompson, 1993; Thompson, 2000). These results imply that rates of deglaciation may fluctuate significantly over time and that high rates of deglaciation may not be exclusive to the late 20th century. Equilibrium line altitude (ELA) depressions for the ice volumes of the last glaciation modeled here were computed as 230 m for the Quelccaya Ice Cap and 170 m for the Cordillera Vilcanota. Maximum ELA depressions are lower than previously published: <500 m for the Cordillera Vilcanota and <400 m for the Quelccaya Ice Cap. These lower values could imply a topographic control over paleoglacier extent.  相似文献   

6.
We utilize regional GPS velocities from Luzon, Philippines, with focal mechanism data from the Harvard Centroid Moment Tensor (CMT) Catalog, to constrain tectonic deformation in the complex plate boundary zone between the Philippine Sea Plate and Eurasia (the Sundaland block). Processed satellite imagery and digital elevation models are used with existing gravity anomaly, seismicity, and geologic maps to define a suite of six elastic blocks. Geodetic and focal mechanism data are inverted simultaneously to estimate plate rotations and fault-locking parameters for each of the tectonic blocks and faults comprising Luzon. Major tectonic structures that were found to absorb the plate convergence include the Manila Trench (20–100 mm yr− 1) and East Luzon Trough ( 9–15 mm yr− 1)/Philippine Trench ( 29–34 mm yr− 1), which accommodate eastward and westward subduction beneath Luzon, respectively; the left-lateral strike-slip Philippine Fault ( 20–40 mm yr− 1), and its northward extensions, the Northern Cordillera Fault ( 17–37 mm yr− 1 transtension), and the Digdig Fault ( 17–27 mm yr− 1 transpression). The Macolod Corridor, a zone of active volcanism, crustal thinning, extension, and extensive normal and strike-slip faulting in southwestern Luzon, is associated with left-lateral, transtensional slip of  5–10 mm yr− 1. The Marikina Fault, which separates the Central Luzon block from the Southwestern Luzon block, reveals  10–12 mm yr− 1 of left-lateral transpression. Our analysis suggests that much of the Philippine Fault and associated splays are locked to partly coupled, while the Manila and Philippine trenches appear to be poorly coupled. Luzon is best characterized as a tectonically active plate boundary zone, comprising six mobile elastic tectonic blocks between two active subduction zones. The Philippine Fault and associated intra-arc faults accommodate much of the trench-parallel component of relative plate motion.  相似文献   

7.
The Alaknanda and Bhagirathi Rivers originate in the mountainous regions of the Himalayas (Garhwal) and result in high sediment yields causing flood hazards downstream of the Ganga River and high sediment flux to the Bay of Bengal. The rivers are perennial, since runoff in these rivers is controlled by both precipitation and glacial melt. In the present study, three locations in the upper reaches of the Ganga River were monitored for 1 yr (daily observations of, more than >1000 samples) for suspended sediment concentrations. In addition, more than one hundred samples were collected from various locations of the Alaknanda and Bhagirathi Rivers at different periods to observe spatial and temporal variations in river suspensions. Further, multi-annual data (up to 40 yrs) of water flow and sediment concentrations were used for inferring the variations in water flow and sediment loads on longer time scales. In most previous studies of Himalayan Rivers, there has been a general lack of long term water flow and sediment load data. In the present study, we carried out high frequency sampling, considered long term discharge data and based on these information, discussed the temporal and spatial variations in water discharge and sediment loads in the rivers in the Himalayan region. The results show that, >75% of annual sediment loads are transported during the monsoon season (June through September). The annual physical weathering rates in the Alaknanda and Bhagirathi River basins at Devprayag are estimated to be 863 tons km−2 yr−1 (3.25 mm yr−1) and 907 tons km−2 yr−1 (3.42 mm yr−1) respectively, which are far in excess of the global average of 156 tons km−2 yr−1 (0.58 mm yr−1).  相似文献   

8.
Approximately 70 km of new decimeter-resolution seismic reflection profile data from Owasco Lake, New York define a middle Holocene (4600 14C yr B.P.) erosion surface in the north end of the lake at water depths as great as 26 m. Beneath the lake, post-glacial sediments are up to 9 m thick and represent about 10% of the total sediment fill. Early to middle Holocene sediments, 6 m thick, contain biogenic gas at the south end of the basin and a large (4 km×300 m×15 m) subaqueous slide deposit along the east-central portion of the lake. Late Holocene sediments are thinner or absent, particularly at the north end of the lake. The middle Holocene erosion surface may have been produced by a drop in lake level. Alternatively, it may represent a change in climate during the transition between the relatively warm Holocene hypsithermal and cool neoglacial. At this time (4600 14C yr B.P.) circulation in Owasco Lake appears to have evolved from sluggish to active. The increased circulation, which persists today, probably resulted from atmospheric cold fronts with strong southwesterly winds that piled up water at the north end of the lake. The increased water circulation may have been ultimately driven by decreasing insolation, which produced an increased pole-to-equator thermal gradient and, thus, stronger global winds that began at the transition between the hypsithermal and neoglacial.  相似文献   

9.
The release of irradiation-produced noble gas isotopes (38ArCl, 80KrBr, 128XeI and 39ArK) during in vacuo crushing scapolite has been investigated and is compared to quartz. Three thousand crushing strokes released 98% of fluid inclusion-hosted noble gas from quartz. In comparison, 3000 crushing strokes released only 4% of the lattice-hosted 38ArCl from a scapolite gem. In vacuo crushing released lattice Ar preferentially relative to lattice Kr or Xe and prolonged crushing released 88% of the lattice-hosted noble gas in 96,000 crushing strokes. We suggest fast diffusion pathways generated by crushing are an important noble gas release mechanism and we demonstrate two applications of prolonged in vacuo crushing on irradiated scapolite.Firstly, scapolite molar Br/Cl and I/Cl values are shown to vary over a similar range as crustal fluids. The Cl-rich scapolite gem from Hunza, Pakistan has Br/Cl of 0.5–0.6 × 10−3 and I/Cl values of 0.3–2 × 10−6, that are similar to fluids that have dissolved evaporites. In contrast, three out of four skarn-related scapolites from the Canadian Grenville Province have molar Br/Cl values of 1.5–2.4 × 10−3, and I/Cl values of 11–24 × 10−6, that are broadly consistent with skarn formation by magmatic fluids. The fourth Grenvillian scapolite, with only 0.02 wt% Cl, has an exceptionally elevated molar Br/Cl value of up to 54 × 10−3 and I/Cl of 284 × 10−6. It is unclear if these values reflect the composition of fluids formed during metamorphism or preferential incorporation of Br and I in Cl-poor meionitic scapolite.Secondly, the Grenvillian scapolites give plateau ages of between 830 Ma and 400 Ma. The oldest ages post-date regional skarn formation by 200 Myr, but are similar to feldspar cooling ages in the Province. The age variation in these samples is attributed to a combination of factors including variable thermal history and the presence of mineral sub-grains in some of the samples. These sub-grains control the release of 39ArK, 38ArCl and 40Ar* during in vacuo crushing as well as the samples 40Ar* retentivity in nature. Scapolite is suggested as a possible analogue for K-feldspar in thermochronologic studies.  相似文献   

10.
The great Indian Ocean earthquake of December 26, 2004 caused significant vertical changes in its rupture zone. About 800 km of the rupture is along the Andaman and Nicobar Islands, which forms the outer arc ridge of the subduction zone. Coseismic deformation along the exposed land could be observed as uplift/subsidence. Here we analyze the morphological features along the coast of the Andaman and Nicobar Islands, in an effort to reconstruct the past tectonics, taking cues from the coseismic effects. We obtained radiocarbon dates from coastal terraces of the island belt and used them to compute uplift rates, which vary from 1.33 mm yr− 1 in the Little Andaman to 2.80 mm yr− 1 in South Andaman and 2.45 mm yr− 1 in the North Andaman. Our radiocarbon dates converge on  600 yr and  1000 yr old coastal uplifts, which we attribute to the level changes due to two major previous subduction earthquakes in the region.  相似文献   

11.
Investigation of the Pleistocene sequence of the Gediz River, Western Turkey, has revealed a record of Early Pleistocene river terraces. Eleven terraces spanning the interval from 1.67 to 1.245 million years ago (MIS 59–37) are preserved beneath basaltic lava flows. The high number of terraces over this short time period reflects high-frequency sedimentation/incision cycles preserved due to the fortuitous combination of relatively high uplift rates (0.16 mm yr−1) and progressive southwards valley migration. Comparison of this record with ODP967 from the Eastern Mediterranean Basin suggests a link between the production of terraces and obliquity-driven 41,000 year climate cycles in the Early Pleistocene.  相似文献   

12.
Deformation experiments have been carried out to investigate the effect of dynamic recrystallisation on crystallographic preferred orientation (CPO) development. Cylindrical samples of natural single crystals of quartz were axially deformed together with 1 vol.% of added water and 20 mg of Mn2O3 powder in a Griggs solid medium deformation apparatus in different crystallographic orientations with compression direction: (i) parallel to <c>, (ii) at 45° to <c> and 45° to <a> and (iii) parallel to <a>. The experiments were performed at a temperature of 800 °C, a confining pressure of 1.2 GPa, a strain rate of  10− 6 s− 1, to bulk finite strains of  14–36%. The deformed samples were analysed in detail using optical microscopy, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Two different microstructural domains were distinguished in the deformed samples: (i) domains with undulatory extinction and deformation lamellae, and (ii) domains with new recrystallised grains. Within the domains of undulatory extinction, crystal-plastic deformation caused gradual rotations of the crystal lattice up to  30° away from the host orientation. New recrystallised grains show a strong CPO with c-axis maxima at  45° to the compression direction. This is the case in all experiments, irrespective of the initial crystallographic orientation. The results show that c-axes are not continuously rotated towards the new maxima. The new grains thus developed through a mechanism different from subgrain rotation recrystallisation. New grains have a subeuhedral shape and numerous microcavities, voids, fluid channels and fluid inclusions at their grain boundaries. No host control is recorded in misorientation axes across their large angle grain boundaries. New grains might have been created by nucleation from solution in the μm-scale voids and microfractures. The CPO most likely developed due to preferred growth of the freshly precipitated grains with orientations suitable for intracrystalline deformation at the imposed experimental conditions.  相似文献   

13.
Tunnel excavation at Äspö Island, Sweden, has caused severe groundwater disturbance, gradually extending deeper into the tunnel as present-day Baltic seawater intrudes through fractures connecting to the surface. However, the paleo-hydrogeochemical conditions have remained in the deep highly saline waters that have avoided mixing. A correlation has been observed between dissolved 4He concentration and Cl ion concentration, measured every two years from 1995 to 2001 at Äspö. Groundwater mixing conditions can be examined by the correlations between 1/Cl, 36Cl/Cl, and 3H concentrations. Subsurface production is responsible for the majority of the 36Cl and excess dissolved 4He of interstitial groundwater in fractures. The secular equilibrium ratio of 36Cl/Cl in rock was theoretically estimated to be (5.05 ± 0.82) × 10−14 based on the neutron flux intensity, a value comparable to the measured 36Cl/Cl ratio in rock and groundwater. The degassing crustal 4He flux was estimated to be 2.9 × 10−8  1.3 × 10−6 (ccSTP/cm2a) using the HTO diffusion coefficient for the Äspö diorite. The 4He accumulation rate ranges from 6.8 × 10−10 (for the in situ accumulation rate) to 7.0 × 10−9 (ccSTP/(gwater · a) considering both 4He in situ production and the degassing flux, assuming 4He is accumulated constantly in groundwater. By comparing the subsurface 36Cl increase with 4He concentrations in groundwater, the 4He accumulation rate was determined from data for groundwater arriving at the secular equilibrium of 36Cl/Cl. The 4He accumulation rate was found to be (1.83 ± 0.72) × 10−8 ccSTP/(gwater · a) without determining the magnitude of degassing 4He flux.  相似文献   

14.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

15.
The Gaoligong and Chongshan shear systems (GLSS and CSSS) in western Yunnan, China, have similar tectonic significance to the Ailaoshan–Red River shear system (ASRRSS) during the Cenozoic tectonic development of the southeastern Tibetan syntaxis. To better understand their kinematics and the Cenozoic tectonic evolution of SE Asia, this paper presents new kinematic and 40Ar/39Ar geochronological data for these shear systems. All the structural and microstructural evidence indicate that the GLSS is a dextral strike-slip shear system while the CSSS is a sinistral strike-slip shear system, and both were developed under amphibolite- to greenschist-grade conditions. The 40Ar/39Ar dating of synkinematic minerals revealed that the strike-slip shearing on the GLSS and CSSS at least began at  32 Ma, possibly coeval with the onset of other major shear systems in SE Asia. The late-stage shearing on the GLSS and CSSS is dated at  27–29 Ma by the biotite 40Ar/39Ar ages, consistent with that of the Wang Chao shear zone (WCSZ), but  10 Ma earlier than that of the ASRRSS. The dextral Gaoligong shear zone within the GLSS may have separated the India plate from the Indochina Block during early Oligocene. Combined with other data in western Yunnan, we propose that the Baoshan/Southern Indochina Block escaped faster southeastward along the CSSS to the east and the GLSS to the west than the Northern Indochina Block along the ASRRSS, accompanying with the obliquely northward motion of the India plate during early Oligocene (28–36 Ma). During 28–17 Ma, the Northern Indochina Block was rotationally extruded along the ASRRSS relative to the South China Block as a result of continuously impinging of the India plate.  相似文献   

16.
Glide systems of hematite single crystals in deformation experiments   总被引:1,自引:0,他引:1  
The critical resolved shear stresses (CRSSs) of hematite crystals were determined in compression tests for r-twinning, c-twinning and {a}<m>-slip in the temperature range 25 °C to 400 °C, at 400 MPa confining pressure, and a strain rate of 10− 5 s− 1 by Hennig-Michaeli, Ch., Siemes, H., 1982. Experimental deformation of hematile crstals betwen 25 °C and 400 °C at 400 MPa confining pressure. In: Schreyer, W. (Ed.) High Pressure Research in Geoscience, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p. 133–150. In the present contribution newly performed experiments on hematite single crystals at temperatures up to 800 °C at strain rates of 10− 5 s− 1 and 300 MPa confining pressure extends the knowledge about the CRSS of twin and slip modes. Optical observations, neutron diffraction goniometry, SEM forescatter electron images and electron backscatter diffraction are applied in order to identify the glide modes. Both twinning systems and {a}<m>-slip were confirmed by these methods. Besides the known glide systems the existence of the (c)<a>-slip system could be stated. Mechanical data establish that the CRSS of r-twinning decreases from 140 MPa at 25 °C to  5 MPa at 800 °C and for {a}<m>-slip from > 560 MPa at 25 °C to  40 MPa at 700 °C. At room temperature the CRSS for c-twinning is around 90 MPa and at 600 °C  60 MPa. The data indicate that the CRSSs above 200 °C seem to be between the values for r-twinning and {a}<m>-slip. For (c)<a>-slip only the CRSS at 600 °C could be evaluated to  60 MPa. Exact values are difficult to determine because other glide systems are always simultaneously activated.  相似文献   

17.
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced  600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at  730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and  730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   

18.
The Palaeoproterozoic Svecofennian crust in southern and central Fennoscandia was established about 1.8 Ga ago after a prolonged history of accretion and intrusion. During late stages of the Svecofennian orogeny, deformation was partitioned into several crustal-scale shear zones in present-day Finland, Sweden and Estonia. One such major ductile deformation zone, ‘the South Finland shear zone’ (SFSZ) extends for almost 200 km through the Åland archipelago in southwestern Finland, and further along the southern and southwestern coast of Finland. This more than a kilometer wide transpressional zone appears to have been repeatedly reactivated. The deformation started with a period of regional, ductile dextral shearing of igneous rocks, producing striped granodioritic and tonalitic gneisses. The ductile phases are locally overprinted and followed by ductile to semi-ductile deformation evidenced by mylonite zones of variable width. The last stage of tectonic activity along the shear zone is recorded by pseudotachylites. Within this study, we dated zircons (SIMS U–Pb) and titanites (ID-TIMS U–Pb) from eight rock samples, and two pseudotachylite whole-rock samples (40Ar/39Ar) in order to reconstruct the deformation and (re)activation history of the shear zone.The results suggest that the medium-grained gneisses underwent three distinct deformation phases separated by time intervals without regional deformation. The ductile deformation within the study area initiated at 1.85 Ga. A second, more intensive deformation phase existed around 1.83 Ga, by which the shear zone was already well developed. Finally, the last ductile event is recorded by 1.79 Ga metamorphic titanites in relatively granoblastic granitoid gneisses that nevertheless already display protomylonitic textures, suggesting the initiation of large-scale mylonitisation around or soon after this time. The age of a pseudotachylite sample and, hence, the brittle deformation is bracketed between 1.78 and 1.58 Ga based on the age of pegmatites cut by pseudotachylites as well as 40Ar/39Ar minimum ages for the pseudotachylite, respectively. The data imply that the rocks within the study area entered the ductile–brittle transition zone due to rapid cooling and exhumation of the crust after 1.79 Ga.  相似文献   

19.
Numerical modelling, incorporating coupling between surface processes and induced flow in the lower continental crust, is used to address the Quaternary evolution of the Gulf of Corinth region in central Greece. The post-Early Pleistocene marine depocentre beneath this Gulf overlies the northern margin of an older (Early Pleistocene and earlier) lacustrine basin, the Proto Gulf of Corinth Basin or PGCB. In the late Early Pleistocene, relief in this region was minimal but, subsequently, dramatic relief has developed, involving the creation of  900 m of bathymetry within the Gulf and the uplift by many hundreds of metres of the part of the PGCB, south of the modern Gulf, which forms the Gulf's main sediment supply. It is assumed that, as a result of climate change around 0.9 Ma, erosion of this sediment source region and re-deposition of this material within the Gulf began, both processes occurring at spatial average rates of  0.2 mm a− 1. Modelling of the resulting isostatic response indicates that the local effective viscosity of the lower crust is  4 × 1019 Pa s, indicating a Moho temperature of  560 °C. It predicts that the  10 mm a− 1 of extension across this  70 km wide model region, at an extensional strain rate of  0.15 Ma− 1, is partitioned with  3 mm a− 1 across the sediment source,  2 mm a− 1 across the depocentre, and  5 mm a− 1 across the ‘hinge zone’ in between, the latter value being an estimate of the extension rate on normal faults forming the major topographic escarpment at the southern margin of the Gulf. This modelling confirms the view, suggested previously, that coupling between this depocentre and sediment source by lower-crustal flow can explain the dramatic development in local relief since the late Early Pleistocene. The effective viscosity of the lower crust in this region is not particularly low; the strong coupling interpreted between the sediment source and depocentre results instead from their close proximity. In detail, the effective viscosity of the lower crust is expected to decrease northward across this model region, due to the northward increase in exposure of the base of the continental lithosphere to the asthenosphere; in the south the two are separated by the subducting Hellenic slab. The isostatic consequences of such a lateral variation in viscosity provide a natural explanation for why, since  0.9 Ma, the modern Gulf has developed asymmetrically over the northern part of the PGCB, leaving the rest of the PGCB to act as its sediment source.  相似文献   

20.
Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (60 wt%) and quartz polymorphs (35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10−16 to 10−17 mol s−1 kg tuff−1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10−15 to 10−16 mol s−1 kg tuff−1 for percolation fluxes of 15 mm a−1 and 1 mm a−1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a−1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (50 mg L−1) may inhibit feldspar dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号