首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Chen Co, situated at 90°33–39E, 28°53–59N with a lake level of 4420 m asl, is an enclosed lake with 148 km2 of catchment area and 40 km2 of lake surface. It is mainly supplied by glacier melt water either from surface inflow or groundwater. Atmospheric precipitation is mainly concentrated in June–September. A 216-cm long lake sediment core was obtained at a site with 8 m of water depth, 800 m from the lakeshore and 1.5% of the bottom slope in this lake. The sediment core was taken by a piston sampler and was sliced with an interval of 1 cm each. 210Pb dating measurement suggested that the average sedimentary rate was 0.16 cm yr–1, which also was confirmed by 137Cs peak occurrence. Magnetic analyses included low-frequency dependent susceptibility (LF), susceptibility of anhysteretic remanent magnetism (ARM), the saturation isothermal remanent magnetism (SIRM), the isothermal remanent magnetism (IRM) reverse and Soft and Hard contents were performed for the sediment core. Results showed that LF was an index for reflecting the environmental conditions, but was not sufficient to reveal details of magnetic features. This had been proved by measurements of IRM Reverse percentage and Soft and Hard magnetic minerals values. The log(SIRM/LF) had much more information to reveal environmental changes. The ARM/LF might be more sensitive to the local environmental conditions because it was well able to indicate the grain-size variations of magnetic particles. In the past ca. 1400 years, the warm stages were ca. 620–740 AD, 1120–1370 AD and since ca. 1900 AD. After an intensively cold stage during ca. 1550–1690 AD, a cold-humid stage from ca. 1690–1900 AD and a warm-dry stage since ca. 1900 AD followed. Among these stages, the warmest one occurred in ca. 1120–1370 AD and the coldest stage was between ca. 1550 and 1690 AD. This result might be compared with many other research results from lake cores, ice cores and the Chinese historical documents.  相似文献   

2.
Results of lithostratigraphic and mineral magnetic analysis of two surficial sediment cores (21 cm and 45 cm in length) collected from the Southern basin of Lake Baikal at a water depth of 1390 m, are presented. The sediments have been measured for a wide range of mineral magnetic parameters in order to assess their value in the identification of turbidite layers. Particle size and geochemical data are also presented and these explain some of the down core variations in magnetic mineralogy. It is suggested that changes in the particle size frequency distributions down core may be related to fossil diatom shells. One of the cores has been dated using 210Pb. The sediment cores were cross-correlated using low frequency magnetic susceptibility (f) and these cores can also be correlated with a nearby core collected earlier in 1992. Changes in the magnetic parameters of lf, IRMs and HIRM210 suggest that there are significant changes in the concentration of ferrimagnetic minerals in the sediment cores, indicating changing sediment sources and/or increasing concentrations of spheroidal carbonaceous particles and the dissolution of minerals through reduction below the oxidised layer within the sediment core.  相似文献   

3.
We propose a model that explains variations in magnetic parameters of lake sediments as a record of Holocene climate change. Our model is based on records from 4 lakes and incorporates the effects of erosion, dust deposition, and the authigenesis and diagenesis of the magnetic component of the sediment. Once checked against high resolution multi proxy climate records, which are currently being established for some of our study sites, it will allow us to use magnetic proxies to establish high-resolution climate reconstructions on a regional scale.Our model utilizes a combination of concentration-dependent parameters (magnetic susceptibility, IRM) and grain-size-dependent parameters (ARM/IRM, hysteresis parameters). Magnetic mineralogy is characterized by a combination of low-temperature measurements and S-ratios, and our magnetic measurements are complemented by XRD, LOI and smearslide analyses.During periods of forest growth within the watershed, deposition of terrigenous material is low and the sediment magnetic properties are characterized by low concentrations of mainly authigenic minerals (low values of IRM, high ratios of ARM/IRM). During the early to mid-Holocene dry period, deposition of terrigenous material increased due to intensified dust deposition and the erosion of lake margins caused by lowered water levels. Concentration of magnetic minerals increases (high IRM, ) and so does the grain-size of the magnetic fraction (low ARM/IRM). During the late-Holocene, sediment magnetic properties depend on the varied position of the site with respect to the prairie–forest ecotone.  相似文献   

4.
We used multiple variables in a sediment core from Lake Peten-Itza, Peten, Guatemala, to infer Holocene climate change and human influence on the regional environment. Multiple proxies including pollen, stable isotope geochemistry, elemental composition, and magnetic susceptibility in samples from the same core allow differentiation of natural versus anthropogenic environmental changes. Core chronology is based on AMS 14C measurement of terrestrial wood and charcoal and thus avoids the vagaries of hard-water-lake error. During the earliest Holocene, prior to 9000 14C yr BP, the coring site was not covered by water and all proxies suggest that climatic conditions were relatively dry. Water covered the coring site by 9000 14C yr BP, coinciding with filling of other lakes in Peten and farther north on the Yucatan Peninsula. During the early Holocene (9000 to 6800 14C yr BP), pollen data suggest moist conditions, but high 18O values are indicative of relatively high E/P. This apparent discrepancy may be due to a greater fractional loss of the lake's water budget to evaporation during the early stages of lake filling. Nonetheless, conditions were moist enough to support semi-deciduous lowland forest. Decrease in 18O values and associated change in ostracod species at 6800 14C yr BP suggest a transition to even moister conditions. Decline in lowland forest taxa beginning 5780 14C yr BP may indicate early human disturbance. By 2800 14C yr BP, Maya impact on the environment is documented by accelerated forest clearance and associated soil erosion. Multiple proxies indicate forest recovery and soil stabilization beginning 1100 to 1000 14C yr BP, following the collapse of Classic Maya civilization.  相似文献   

5.
Measurements of anhysteretic (ARM) and isothermal (IRM) remanences in cores 6 and 8 from Big Moose Lake reveal evidence for changes in magnetic mineralogy and grain size within and between the two cores. It is proposed that changes in the strength and demagnetization characterizations of the IRM reflect the accumulation of atmospherically deposited magnetic minerals resulting from industrial processes. The record of magnetite deposition especially in Core 6 parallels that for coal soot at the site. In both cores, the record of haematite deposition parallels that for several anthropogenic indicators.This is the fourth of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D. F. Charles and D. R. Whitehead are guest editors for this series.  相似文献   

6.
The hitherto longest found lake sediment sequence on Byers Peninsula, Livingston Island, South Shetland Islands, was analysed with respect to lithology, chronology, diatoms, Pediastrum, pollen and spores, mosses, mineralogy, and sediment chemistry. During the ca. 5000 year long development the sediments were influenced by frequent tephra fall-outs. This volcanic impact played a major role in the lake's history during two periods, 4700–4600 and 2800–2500 BP, but was of importance during the lake's entire history with considerable influence on many of the palaeoenvironmentally significant indicators. The large and complex data set was analysed and zonated with different types of multivariate analysis. This resulted in a subdivision of the sequence into 8 time periods and 21 variables. Redundancy analysis (RDA) of this data set, both without and with the tephra periods, and with 4–6 of the variables as explanatory environmental variables, reveal that climatic/environmental signals are detectable. The palaeoclimatic picture that emerged out of the tephra noise suggests that the first 100 years were characterized by mild, humid conditions. This was followed by a less mild and humid climate until ca. 4000 BP when a gradual warming seems to have started, coupled with increased humidity. These mild and humid conditions seem to have reached an optimum slightly after 3000 BP. At ca. 2500 BP a distinct climatic deterioration occurred with colder and drier conditions and long seasons with ice cover. This arid, cold phase probably reached its optimum conditions at ca. 1500 BP, when slightly warmer conditions might have prevailed for a while. Except for the modern sample with rather mild climate, the last 1400 years seem to have been fairly arid and cold, and the effects of the frequent volcanic activity during this period is only vaguely seen in the records.  相似文献   

7.
Southern California faces an imminent freshwater shortage. To better assess the future impact of this water crisis, it is essential that we develop continental archives of past hydrological variability. Using four sediment cores from Lake Elsinore in Southern California, we reconstruct late Holocene (3800 calendar years B.P.) hydrological change using a twentieth-century calibrated, proxy methodology. We compared magnetic susceptibility from Lake Elsinore deep basin sediments, lake level from Lake Elsinore, and regional winter precipitation data over the twentieth century to calibrate the late Holocene lake sediment record. The comparison revealed a strong positive, first-order relationship between the three variables. As a working hypothesis, we suggest that periods of greater precipitation produce higher lake levels. Greater precipitation also increases the supply of detritus (i.e., magnetic-rich minerals) from the lake's surrounding drainage basin into the lake environment. As a result, magnetic susceptibility values increase during periods of high lake level. We apply this modern calibration to late Holocene sediments from the lake's littoral zone. As an independent verification of this hypothesis, we analyzed 18O(calcite), interpreted as a proxy for variations in the precipitation:evaporation ratio, which reflect first order hydrological variability. The results of this verification support our hypothesis that magnetic susceptibility records regional hydrological change as related to precipitation and lake level. Using both proxy data, we analyzed the past 3800 calendar years of hydrological variability. Our analyses indicate a long period of dry, less variable climate between 3800 and 2000 calendar years B.P. followed by a wet, more variable climate to the present. These results suggest that droughts of greater magnitude and duration than those observed in the modern record have occurred in the recent geological past. This conclusion presents insight to the potential impact of future droughts on the over-populated, water-poor region of Southern California.  相似文献   

8.
Lithostratigrahic and mineralogic analyses of sediments from hypersaline Bainbridge Crater Lake, Galápagos Islands, provide evidence of past El Niño frequency and intensity. Laminated sediments indicate that at least 435 moderate to very strong El Niño events have occurred since 6100 14C yr BP (7130 cal yr BP), and that frequency and intensity of events increased at about 3000 14C yr BP (3100 cal yr BP). El Niño activity was present between 6100 and 4000 14C yr BP (4600 cal yr BP) but infrequent. The Bainbridge record indicates that there has been considerable millennial-scale variability in El Niño since the mid-Holocene.  相似文献   

9.
Lake Manitoba, the largest lake in the Prairie region of North America, contains a fine-grained sequence of late Pleistocene and Holocene sediment that documents a complex postglacial history. This record indicates that differential isostatic rebound and changing climate have interacted with varying drainage basin size and hydrologic budget to create significant variations in lake level and limnological conditions. During the initial depositional period in the basin, the Lake Agassiz phase (12–9 ka), 18O of ostracodes ranged from –16 to –5 (PDB), implying the lake was variously dominated by cold, dilute glacial meltwater and warm to cold, slightly saline water.Candona subtriangulata, which prefers cold, dilute water, dominates the most negative 18O intervals, when the basin was part of proglacial Lake Agassiz. At times during this early phase, the 18O of the lake abruptly shifted to higher values; euryhaline taxa such asC. rawsoni orLimnocythere ceriotuberosa, and halobiont taxa such asL. staplini orL. sappaensis are dominant in these intervals. This positive covariance of isotope and ostracode records implies that the lake level episodically fell, isolating the Lake Manitoba basin from the main glacial lake.18O values from inorganic endogenic Mg-calcite in the post-Agassiz phase of Lake Manitoba trend from –4 at 8 ka to –11 at 4.5 ka. We interpret that this trend indicates a gradually increasing influence of isotopically low (–20 SMOW) Paleozoic groundwater inflow, although periods of increased evaporation during this time may account for zones of less negative isotopic values. The 18O of this inorganic calcite abruptly shifts to higher values (–6) after 4.5 ka due to the combined effects of increased evaporative enrichment in a closed basin lake and the increased contribution of isotopically high surface water inflow on the hydrologic budget. After 2 ka, the 18O of the Mg-calcite fluctuates between –13 and –7, implying short-term variability in the lake's hydrologic budget, with values indicating the lake varied from outflow-dominated to evaporation-dominated. The 13C values of Mg-calcite remain nearly constant from 8 to 4.5 ka and then trend to higher values upward in the section. This pattern suggests primary productivity in the lake was initially constant but gradually increased after 4.5 ka.This is the sixth in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

10.
Paleolimnological data are presented relating trophic development to sea level variation in Lake Blanca, a small (0.6 km2), coastal fresh waterbody in southern Uruguay. Using a sediment core that extended to 7300 years BP, analyses of grain size, thin sections, organic matter, carbonate, total carbon, nutrients, diatoms and palynomorphs, allowed us to infer changes in trophic state and paleosalinities, which were closely related to Holocene sea level variation. Higher trophic states were observed during regressive events, most probably due to increases in runoff and erosion as regression progressed. Four diatom association zones (DAZ) were identified in the sediment core. The basal core section pre-dated the first Holocene marine transgression, contained no diatoms, chrysophyte cysts or non-siliceous microalgae, and showed C/N ratios values higher than 20. Thus, it is likely that the system exhibited terrestrial characteristics. In the second section (6500–2200 years BP, following the first Holocene transgression), there was dominance of marine/brackish diatom species. The lowest trophic states of the core were observed in this section. The third section (2200–1100 years BP), represented the system as it became separate from the Atlantic Ocean, and showed a dominance of brackish/freshwater species and increases in trophic state were observed. In the last section (after 1100 years BP), the system became fully freshwater as no marine or brackish diatom species were found, but a trend to oligotrophication was observed, probably due to nutrient depletion. However, after 1967 AD, eutrophication intensified because of forestry and soil fertilization in the catchment. Pollen association zones (PAZ) allowed us to identify four sections. Below 250 cm (2200 years BP), the core contained no pollen grains as redox potential and pH values were not conducive for pollen preservation. After 2200 years BP (when the system started to separate from the ocean), xerophilic taxa typical of coastal dunes colonized the catchment. Only after 1100 years BP (after fully freshwater conditions established) pollen grains of trees were observed.  相似文献   

11.
This study is focused on the endorheic Uyni-Coipasa Basin located in the southern Bolivian Altiplano. Stratigraphical and fossil diatom studies based on a detailed radiocarbon chrnology revealed six phases in water-level changes and paleosalinity variations. At 15,430±80 yr B.P., lacustrine conditions settled in the southern Bolivian Altiplano. A saline lake, characterized by benthic meso-metasaline species, reached +4 m altitude above the present bottom of the basin. After 15,430±80 yr B.P., the level rapidly rose to +27 m, as suggested by a tychoplanktonic mesosaline flora. Between 14,500 years and 13,000 years, finely lanminated sediments at +32 m contained successively a dominance of epiphytic mesosaline to hypersaline species and tychoplanktonic oligosaline diatoms, indicating weak fluctuations in water-level and salinity. At 13,000 years, strong changes in the diatom flora occurred; epiphytic oligo-hypersaline diatoms were replaced by planktonic meso-polysaline species. They indicate a deep salt lake (the lake reached +100 m). After 12,000 years, the lake level abruptly dropped, as suggested by fluviatile sediments with a benthic mesopolysaline diatom flora. The main lake was replaced by shallow saline ponds. A wet pulse occurred at 11,400 years, characterized by low water level (+7 m) and high salinity. This lacustrine phase remained until 10,400 yr B.P. These data indicate changes in Precipitation minus Evaporation (P-E). Our regional interpretations are based on a comparison with teh available data on the northern (Lake Titicaca) and southern (Lipez are) Bolivian Altiplano and on the northern Chilean Altiplano (Atacama Desert).  相似文献   

12.
A continuous record of lacustrine sedimentation capturing the entire full-glacial period was obtained from Arolik Lake in the Ahklun Mountains, southwestern Alaska. Fluctuations in magnetic susceptibility (MS), grain size, organic-matter (OM) content, C/N ratios, 13C, and biogenic silica (BSi) record marked environmental changes within the lake and its watershed during the last 33 cal ka. Age control is provided by 31 14C ages on plant macrofossils in four cores between 5.2 and 8.6 m long. Major stratigraphic units are traceable throughout the lake subbottom in acoustical profiles, and provisional ages are derived for six prominent tephra beds, which are correlated among the cores. During the interstadial interval between 33 and 30 cal ka, OM and BSi contents are relatively high with values similar to those of the Pleistocene–Holocene transition, suggesting a similar level of aquatic productivity. During the glacial interval that followed (30–15 cal ka), OM and BSi decrease in parallel with declining summer insolation. OM and BSi values remain relatively uniform compared with the higher variability before and after this interval, and they show no major shifts that might correlate with climate fluctuations evidenced by the local moraine record, nor with other global climate changes. The glacial interval includes a clay-rich unit with a depauperate diatom assemblage that records the meltwater spillover of an ice-dammed lake. The meltwater pulse, and therefore the maximum extent of ice attained by a major outlet glacier of the Ahklun Mountain ice cap, lasted from 24 to 22 cal ka. The Pleistocene–Holocene transition (15–11 cal ka) exhibits the most prominent shifts in OM and BSi, but rapid and dramatic fluctuations in OM and BSi continue throughout the Holocene, indicating pronounced paleoenvrionmental changes.  相似文献   

13.
Paleolimnological techniques were used to assess human impacts onLake Blanca, a small (0.6 km2), coastal fresh waterbodyin southern Uruguay, which is the drinking water source for 100,000 localresidents. We retrieved a core that extends to about 1100 14Cyr BP. 210Pb ages, organic mater, CO3, totalcarbon, nutrients, fossil pigments and diatoms allowed us to establishlimnological conditions before and after cultural impacts. Soil removal(1880–1960) and intensive cattle and sheep grazing (1943–1966) ledto gully formation in the catchment. This watershed erosion resulted inincreased sedimentation rates. The aquatic system appeared to be mesotrophicwith dominance of epibenthic diatoms until 1966, at which timeeutrophication intensified with forestry activities. Increases in nutrients, aswell as blooms of planktonic diatoms, were observed. During the last decade,tourist/urban development as well as high drinking water demand caused areduction in lake area. Subsequent marked increases in rainfall led to furtherphytoplankton blooms and macrophyte proliferation.  相似文献   

14.
With the purpose of studying the vegetation and climatic changes in the last millenia of the Coastal Plain of Rio Grande do Sul, Brazil, a palynological study was made of the sediments of the northern part of Lagoa dos Patos lagoon. Twenty-four samples from a 2.26 m core taken at a depth of 7.70 m (30° 50 50 S and 50° 59 05 W) were collected.The analyses revealed marine transgression at 5170±120 years B.P., giving rise to local vegetation consisting chiefly of xerophytes and halophytes. Vegetation characteristic of a humid environment was present along adjacent portions of the Coastal Plain at this time. Transgression increased at about 4080±110 years B.P., when the greatest level of tidewater was reached. This coincided with the beginning of forest vegetation development along the inner portions of the Coastal Plain. These data suggest that marine transgression may have been a consequence of higher temperatures and more humidity. After 4000 years B.P., regression occurred, resulting in fresh waters characteristics in the northern portion of the lagoon. The development of forest vegetation began at this time.This is the fourth in a series of papers published in this issue on Paleolimnology in Southern South America. Dr. C. A. Fernández served as guest editor for these papers.  相似文献   

15.
The return of hundreds to millions of adult sockeye salmon (Oncorhynchus nerka), which have returned from the ocean to their natal nursery lake environment to spawn, can result in significant nutrient loading. By analyzing sedimentary diatom assemblages from nursery lakes, we demonstrated that a salmon-derived nutrient signal could be traced over time and be used to infer past sockeye salmon population dynamics. We conducted a 2,200 year paleolimnological study of two Alaskan sockeye salmon nursery lakes, Karluk and Frazer lakes. The two lakes are very similar, except that sockeye salmon were only introduced into Frazer Lake in 1951 (first spawners returned in 1956). In both lakes we found a strong correspondence between diatom assemblages and the number of adult salmon spawners recorded in the historical data (40 and 70 years for Frazer and Karluk lakes, respectively). Given this robust relationship, we then used our analyses of diatoms from Karluk Lake over the past 2,200 years to gain insight into salmon-derived nutrient loading changes (which are directly related to the number of sockeye salmon spawners). The diatom record from Karluk Lake recorded dramatic species changes on both decadal and century timescales, and was strongly correlated with an independent indicator of sockeye salmon abundances, 15N. Together, these data suggest pronounced variability in sockeye salmon abundances at Karluk Lake over the past 2,200 years. The direct impacts of regional environmental variability were not likely responsible for the patterns apparent in Karluk Lake, as the diatom and 15N profiles from Frazer Lake were relatively stable prior to the introduction of sockeye salmon. Application of total phosphorus transfer functions to the Karluk and Frazer lakes' diatom records revealed that sockeye salmon carcasses substantially increased the trophic status in these lakes, which has important implications for the health of juvenile salmon that rear in nursery lakes. Overall, this paper illustrates the potential use of diatoms in reconstructing past sockeye salmon population dynamics, which in turn can lead to a greater understanding of the mechanisms influencing abundances of sockeye salmon.  相似文献   

16.
During the last retreat of the Laurentide Ice Sheet in North America, many proglacial lakes formed as continental drainage was impounded against the southern and western ice margin. Lake Agassiz was the largest of these lakes. The bathymetry of Lake Agassiz at the Herman and Upper Campbell beach levels – formed at about 11.5–11.0 ka and 9.9–9.5 ka, respectively – was computer modelled in this study by first collecting data for the isostatically-deformed paleowater planes of the two lake levels (derived from isobase lines constructed from beach elevations), and then subtracting these from the modern topography of the former lake floor. Pixels with dimensions of 1/30 × 1/30 of a degree were used in the model. Using these data, the area and volume of the lake were also calculated: at the Herman level these were 152 500 km2 and 13 100 km3 respectively; at the Upper Campbell level these were 350 400 km2 and 38 700 km3. Contour maps showing the paleobathymetry of both periods in the lake's history were also constructed. Determining the paleobathymetry and volume of Lake Agassiz is an important step in understanding the impact that the lake had on its surrounding environment and on the rivers, lakes, and oceans into which it flowed.  相似文献   

17.
Yuanyang Lake (24°35N, 121°24E), located at an altitude of 1,670 m within a nature preserve in northern Taiwan, is an acidic lake. Remains of diatoms and pollen from a 3.72-m sediment core were used to elucidate the relationships between the vegetation of the watershed and the paleolimnological environment. Past pH, saprobity level, and total P of the lake were inferred from the diatom assemblages and were analyzed with respect to changes in the terrestrial vegetation. The inferred pH values fluctuated only slightly, whereas the inferred saprobity level increased markedly towards the sediment surface. In the topmost sediment, a slight drop in the inferred pH was associated with a lowering in the saprobity index. This was interpreted as a possible result of recent anthropogenic acidification and changes in productivity related to changes in acidity. Based on pollen analyses, we conclude that Chamaecyparis persisted over at least the last four thousand years in the watershed. The vegetation in the watershed changed little during this period of time, which is consistent with the constancy of inferred pH values. A positive correlation between the inferred pH and 13C values of the sediments was found.  相似文献   

18.
A series (N = 12) of short (< 1 m) sediment cores were collected from meromictic Green Lake in Fayetteville, New York to investigate potential anthropogenic impacts on the watershed during historic time and environmental change over the past ~ 2,500 years. Stratigraphic data document an abrupt basinwide change during the early 1800's A.D. from brown laminated sediments to grey varved sediments separated by a transition zone rich in aquatic moss. Deforestation of the region by European settlers during the early 1800's A.D. resulted in a flux of nutrients and increased biological productivity followed by a 7fold increase in sediment accumulation rates. Elemental geochemical data document the anthropogenic loading of lead to the to the lake basin via atmospheric fallout. Stable oxygen isotope (18O calcite) data also provide evidence for an abrupt shift in the isotopic composition of lake water ~ 150–200 years ago. This isotopic shift could have been a local phenomenon related to an increased supply of summer enriched precipitation following removal of forest vegetation, or it might have reflected broader scale climatic changes. We hypothesize that the 18O calcite shift was the result of the polar front jet stream migrating from a more southerly prehistoric position to a contracted, northerly configuration ~ 150–200 years ago. Such a shift could have been natural, associated with the end of the Little Ice Age or it may have been anthropogenically forced.  相似文献   

19.
A new diatom series with 1–6 year resolution from Lake Victoria, East Africa, shows that lake level minima occurred ca. 820–760, 680–660, 640–620, 370–340, and 220–150 calendar years BP. Inferred lake levels were exceptionally high during most of the Little Ice Age (ca. 600–200 calendar years BP). Synchrony between East African high lake levels and prolonged sunspot minima during much of the last millenium may reflect solar variabilitys effects on tropical rainfall, but those relationships reversed sign ca. 200 years ago. Historical records also show that Victoria lake levels rose during every peak of the ca. 11-year sunspot cycle since the late 19th century. These findings suggest that, if these apparent tropical sun–climate associations during the last millenium were real, then they were subject to abrupt sign reversals.Electronic Supplementary Material to this article is available at .  相似文献   

20.
We investigated paleolimnological records from a series of river deltas around the northeastern rim of Lake Tanganyika, East Africa (Tanzania and Burundi) in order to understand the history of anthropogenic activity in the lakes catchment over the last several centuries, and to determine the impact of these activities on the biodiversity of littoral and sublittoral lake communities. Sediment pollution caused by increased rates of soil erosion in deforested watersheds has caused significant changes in aquatic communities along much of the lakes shoreline. We analyzed the effects of sediment discharge on biodiversity around six deltas or delta complexes on the east coast of Lake Tanganyika: the Lubulungu River delta, Kabesi River delta, Nyasanga/Kahama River deltas, and Mwamgongo River delta in Tanzania; and the Nyamuseni River delta and Karonge/Kirasa River deltas in Burundi. Collectively, these deltas and their associated rivers were chosen to represent a spectrum of drainage-basin sizes and disturbance levels. By comparing deltas that are similar in watershed attributes (other than disturbance levels), our goal was to explore a series of historical experiments at the watershed scale, with which we could more clearly evaluate hypotheses of land use or other effects on nearshore ecosystems. Here we discuss these deltas, their geologic and physiographic characteristics, and the field procedures used for coring and sampling the deltas, and various indicators of anthropogenic impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号