首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Late Pleistocene paleoclimatic history on northeastern Qinghai–Tibetan Plateau (QTP) has been reconstructed mainly from lake sediments; however, data regarding dry–wet climate changes reported in this region are still not clear and controversial. Based on shoreline features and highstand lacustrine sediments around lakes on the QTP, high lake level histories in this paper were summarized and compared with paleoclimatic records from lake sediments, ice core and glaciation evolution surrounding mountains on the NE QTP during late Pleistocene. The results indicate that periods of high lake level occurred at MIS 5, MIS 3 and early-middle Holocene and most likely corresponding to warm and wet climate periods, while periods of low lake level existed in intervening intervals, corresponding to cold and dry climate periods, which most likely coincide with glacial advances surrounding high mountains. With an exception, no wide glacial advance in study area was found during MIS 3, possibly suggesting that effective moisture is lower than that in the other region of NE QTP in this period.  相似文献   

2.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
To investigate environmental variability during the late Holocene in the western Gulf of Maine, USA, we collected a 142-year-old living bivalve (Arctica islandica) in 2004, and three fossil A. islandica shells of the Medieval Warm Period (MWP) and late MWP / Little Ice Age (LIA) period (corrected 14CAMS = 1030 ± 78 ad; 1320 ± 45 ad; 1357 ± 40 ad) in 1996. We compared the growth record of the modern shell with continuous plankton recorder (CPR) time-series (1961–2003) from the Gulf of Maine. A significant correlation (r 2 = 0.55; p < 0.0001) exists between the standardized annual growth index (SGI) of the modern shell and the relative abundance of zooplankton species Calanus finmarchicus. We therefore propose that SGI data from A. islandica is a valid proxy for paleo-productivity of at least one major zooplankton taxa. SGIs from these shells reveal significant periods of 2–6 years (NAO-like) based on wavelet analysis, multitaper method (MTM) analysis and singular spectrum analysis (SSA) during the late Holocene. Based on established physical oceanographic observation in the Gulf of Maine, we suggest that slope water variability coupled with North Atlantic Oscillation (NAO) dynamics is primarily responsible for the observed SGI variability. Special Issue: AGU OS06 special issue “Ocean’s role in climate change—a paleo perspective”.  相似文献   

4.
During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.  相似文献   

5.
 The accumulation of heavy metals and trace elements has been investigated in a well laminated sequence of Holocene and late Pleistocene lake sediments composed of diatomaceous gyttja, tuff and silt and clay sediments. Varve chronology of the annually deposited gyttja yielded a continuous high-resolution time sequence and allowed the absolute age dating of the sediment. Fluxes of elements remained largely uniform from the late Pleistocene into the Holocene (12 867–2 364 VT years ago; VT: varve time, years before 1950). Higher trace element and heavy metal fluxes occur from 2 322 to 862 VT years ago and reached their maxima in the uppermost sediments (<845 VT years ago). These increasing element fluxes correlate with increasing inputs of clastic material. The changing accumulation rates are the result of elevated soil erosion in the lake catchment caused by human settlement, deforestation and agricultural activities. Thus disturbances of the natural geochemical cycles of the Holzmaar region have occurred since the beginning of the Iron Age and especially since the beginning of the Middle Ages. Received: 29 May 1996 · Accepted: 19 August 1996  相似文献   

6.
Extensive investigations and studies on topography, sedimentary and chronology show new evidence for the formation and evolution of the Ulan Buh desert during early Holocene. Evidence on clay-sand strata and plant roots under interdune lowlands, lake shorelines covered by plenty of Corbicula largillierti and large amounts of dry salt lakes in the central region of the desert prove that many megalakes existed in the hinterland of Ulan Buh desert. Several OSL samples collected from Aeolian sands overlying lacustrine sediments in profiles around Jilantai Salt Lake and interdune lowlands in the southern Ulan Buh desert suggest that the desert began around 7 ka B.P.. The formation of Ulan Buh desert may have resulted from the shrinking of Jilantai megalakes and sands blown from exposed loose sediments. __________ Translated from Journal of Desert Research, 2007, 27(6): 927–931 [译自: 中国沙漠]  相似文献   

7.
The 26 December 2004 tsunami covered significant portion of a coastal zone with a blanket of potentially contaminated sediments. In this report are presented results on mercury concentrations in sediments deposited by the tsunami in a coastal zone of Thailand. Since the total mercury concentrations are insufficient to assess mercury mobility and bioavailability in sediment, its fractionation was applied. Sediments were sampled within 50 days after the event and analyzed by sequential extraction method. The procedure of sequential extraction involved five subsequent stages performed with solutions of chloroform, deionized water, 0.5 M HCl, 0.2 M NaOH, and aqua regia. The mean concentration of total mercury in sediments was 119 ± 50 ng g−1 dry mass (range 66–230). The fractionation revealed that mercury is mainly bound to the least bioavailable sulphides 75 ± 6% (range 62–86), organomercury compounds 14 ± 7% (range 4–26), and humic matter 9 ± 7% (range 1–27). The lowest contributions bring fractions of water-soluble mercury 0.8 ± 1.0% (range 0.1–3.6) and acid soluble mercury 0.9 ± 0.5% (range 0.2–2.1). Although, the total mercury content is similar in a reference sample and in the tsunami sediments, the highly toxic organomercury fraction contribution is higher in the latter. The results were compared with chemical and sedimentological properties of the sediments but no significant correlations were obtained between them.  相似文献   

8.
Bolshaya Imandra, the northern sub-basin of Lake Imandra, was investigated by a hydro-acoustic survey followed by sediment coring down to the acoustic basement. The sediment record was analysed by a combined physical, biogeochemical, sedimentological, granulometrical and micropalaeontological approach to reconstruct the regional climatic and environmental history. Chronological control was obtained by 14C dating, 137Cs, and Hg markers as well as pollen stratigraphy and revealed that the sediment succession offers the first continuous record spanning the Lateglacial and Holocene for this lake. Following the deglaciation prior to c. 13 200 cal. a BP, the lake's sub-basin initially was occupied by a glacifluvial river system, before a proglacial lake with glaciolacustrine sedimentation established. Rather mild climate, a sparse vegetation cover and successive retreat of the Scandinavian Ice Sheet (SIS) from the lake catchment characterized the Bølling/Allerød interstadial, lasting until 12 710 cal. a BP. During the subsequent Younger Dryas chronozone, until 11 550 cal. a BP, climate cooling led to a decrease in vegetation cover and a re-advance of the SIS. The SIS disappeared from the catchment at the Holocene transition, but small glaciers persisted in the mountains at the eastern lake shore. During the Early Holocene, until 8400 cal. a BP, sedimentation changed from glaciolacustrine to lacustrine and rising temperatures caused the spread of thermophilous vegetation. The Middle Holocene, until 3700 cal. a BP, comprises the regional Holocene Thermal Maximum (8000–4600 cal. a BP) with relatively stable temperatures, denser vegetation cover and absence of mountain glaciers. Reoccurrence of mountain glaciers during the Late Holocene, until 30 cal. a BP, presumably results from a slight cooling and increased humidity. Since c. 30 cal. a BP Lake Imandra has been strongly influenced by human impact, originating in industrial and mining activities. Our results are in overall agreement with vegetation and climate reconstructions in the Kola region.  相似文献   

9.
The Holocene environmental history of South Georgia is important because of the island's location in the Southern Westerlies in an oceanic zone of the world devoid of high resolution terrestrial records. This is the first attempt to interpret a palaeoenvironmental record from lake sediments in South Georgia. It is based on a wide variety of analyses undertaken on cores from two lakes. Both are in the same, unglaciated, drainage basin, but one is at 80 m above sea-level and near the altitudinal limit for vegetation growth, whereas the other is at 25 m and within the zone of continuous vegetation cover. Results from both lakes indicate shifts of vegetation boundaries, which, together with evidence for changing biotic productivity within the lakes themselves, are interpreted as indicating climatic changes. Radiocarbon dates on the main changes identify a climatic optimum, beginning before 5620 ± 290 14C yr BP, and ending at around 4815 ± 330 14C yr BP, when conditions in the upper part of the catchment were more conducive to plant growth than they are today. The record obtained from the lower lake was shorter, but indicates two periods of harsher climate relative to the present since 4000 yr BP. This interpretation of the lake evidence agrees with other dated evidence of environmental change from peat sections, glacial stratigraphy and geomorphology in South Georgia. Together the work allows an overall reconstruction of environmental change in the Holocene.  相似文献   

10.
A 12 000 to 4000 yr BP pollen and tephra-bearing profile from Auckland, New Zealand, provides insights into the vegetation history and evidence for early Holocene volcanic activity in this area centred on the Mount Wellington basaltic volcano. Possibly 500 yr separated initial scoriaceous ash deposition (ca. 9500 yr ago) and subsequent major lava flows (ca. 9000 yr ago) from Mount Wellington. The local vegelation, topography, and drainage patterns were substantially modified during this time, and damming by the lava flows resulted in the formation of Lake Waiatarua in a shallow valley head ca. 9000 yr ago. Diatom evidence indicates that this lake was initially deep (> 5 m) but was shallowing around 4000 yr ago. In contrast to the Mount Wellington eruptions, tephra deposition resulting from distant rhyolitic volcanic activity of the central North Island and Mayor Island has had little effect on the Auckland vegetation during this time interval (12 000–4000 yr ago). Between ca. 12 000 and 10 000 yr ago, conifer-angiosperm forest was the predominant vegetation cover on Auckland Isthmus, but during the early Holocene, forest dominated by Metrosideros expanded, probably on to fresh volcanic surfaces resulting from the Mount Wellington eruptions. At this time, swamp forest communities developed in Waiatarua valley basin, and included species indicative of moist, mild, relatively frost-free climates. Some taxa show histories consistent with other records from the northern New Zealand region, including the rise of Ascarina lucida ca. 11 000 to 9000 yr ago, and its subsequent decline, and the expansion of Agathis australis (kauri) forest communities from ca. 6000 yr ago. Taken together the history of local and regional vegetation points to a mild, moist and weakly seasonal early Holocene climate, which subsequently became drier with greater seasonal temperature extremes.  相似文献   

11.
In this paper, the data on the paleoclimatic and paleoenvironmental changes during the Holocene are presented and a discussion is made on a 225-cm-long sediment core from Ulungur Lake, located in Northwest China. The chronology is constructed from six AMS radiocarbon dates on the bulk organic matter. On the basis of the analysis of ostracod assemblages and the shell stable isotopes, the core is divided into three paleoclimatic and paleoenvironmental evolution stages: 9 985–5 250 cal.aB.P. stage is the wettest phase of the core section. The climate changed from moderate-dry to cool-wet, and then to warm-wet in turn, and the lake level rose accordingly, showing the characteristic of a high lake level. 5 250–1 255 cal.aB.P. stage was the driest phase of the core sediment. The climate turned from the early warm-dry to the late warm-wet and the lake level fell and rose again. Finally, the 1 255 cal.aB.P. stage was the medium stage of the section. The temperature was low and then increased after the 1920s and the climate was dry. The whole climatic and environmental evolution records of Lake Ulungur were not only in agreement with the sporopollen record of the same core but also in agreement with the record of environmental changes of adjacent areas. It responded to regional environmental changes and global abrupt climate events, following the westerly climate change mode on 100-year-scale, primarily with cold-wet and warmdry characteristics. __________ Translated from Quaternary Sciences, 2007, 27(3):382–391 [译自:第四纪研究]  相似文献   

12.
Thermokarst lakes are a widespread feature of the Arctic tundra, in which highly dynamic processes are closely connected with current and past climate changes. We investigated late Quaternary sediment dynamics, basin and shoreline evolution, and environmental interrelations of Lake El'gene‐Kyuele in the NE Siberian Arctic (latitude 71°17′N, longitude 125°34′E). The water‐body displays thaw‐lake characteristics cutting into both Pleistocene Ice Complex and Holocene alas sediments. Our methods are based on grain size distribution, mineralogical composition, TOC/N ratio, stable carbon isotopes and the analysis of plant macrofossils from a 3.5‐m sediment profile at the modern eastern lake shore. Our results show two main sources for sediments in the lake basin: terrigenous diamicton supplied from thermokarst slopes and the lake shore, and lacustrine detritus that has mainly settled in the deep lake basin. The lake and its adjacent thermokarst basin rapidly expanded during the early Holocene. This climatically warmer than today period was characterized by forest or forest tundra vegetation composed of larches, birch trees and shrubs. Woodlands of both the HTM and the Late Pleistocene were affected by fire, which potentially triggered the initiation of thermokarst processes resulting later in lake formation and expansion. The maximum lake depth at the study site and the lowest limnic bioproductivity occurred during the longest time interval of ~7 ka starting in the Holocene Thermal Maximum and lasting throughout the progressively cooler Neoglacial, whereas partial drainage and an extensive shift of the lake shoreline occurred ~0.9 cal. ka BP. Correspondingly, this study discusses different climatic and environmental drivers for the dynamics of a thermokarst basin.  相似文献   

13.
A vibrocore from the sea floor of the southern North Sea provides a ~1,500-year record of early Holocene vegetation history and mire development in a landscape now 33 m below sea-level. Pollen, plant macrofossil and geochemical analyses of an AMS 14C dated sand–peat–marine mud sequence document the paludification on Pleistocene sands ~10,700 cal BP, the subsequent development of eutraphentic carr vegetation and the gradual inundation by the transgressing sea ~9,350 cal BP. PinusCorylus woodland prevailed on terrestrial grounds after hazel had immigrated ~10,700 cal BP. Salix dominated the carr vegetation throughout 1,300 years of peat formation, because Alnus did not spread in the Borkum Riffgrund area until 9,300 BP. Brackish reed vegetation with Phragmites established after inundation and siliciclastic marine sediments were being deposited. This article also examines the detection and suitability of key horizons indicative of marine influence. XRF-Scanning provides the most detailed results in the briefest possible time to pinpoint spectra best suitable for AMS 14C dating of classical key horizons such as start of peat formation and transgressive contact. The combined application of botanical and geochemical methods allows determining new key horizons indicative of marine influence, namely the earliest marine inundation and the onset of sea-level influence on coastal ground water level.  相似文献   

14.
Rapid climate change at millennial and centennial scales is one of the most important aspects in paleoclimate study. It has been found that rapid climate change at millennial and centennial scales is a global phenomenon during both the glacial age and the Holocene with amplitudes typical of geological or astronomical time-scales. Simulations of glacial and Holocene climate changes have demonstrated the response of the climate system to the changes of earth orbital parameter and the importance of variations in feedbacks of ocean, vegetation, icecap and greenhouse gases. Modeling experiments suggest that the Atlantic thermohaline circulation was sensitive to the freshwater input into the North Atlantic and was closely related to the rapid climate changes during the last glacial age and the Holocene. Adopting the Earth-system models of intermediate complexity (EMICs), CLIMBER-2, the response of East Asian climate change to Dansgaard/Oeschger and Heinrich events during the typical last glacial period (60 ka B.P.-20 ka B.P.) and impacts of ice on the Tibetan plateau on Holocene climate change were stimulated, studied and revealed. Further progress of paleoclimate modeling depends on developing finer-grid models and reconstructing more reliable boundary conditions. More attention should be paid on the study of mechanisms of abrupt climatic changes as well as regional climate changes in the background of global climate change. __________ Translated from Advances in Earth Science, 2007, 22(10): 1054–1065 [译自: 地球科学进展]  相似文献   

15.
In arid regions, because of spatial variability, using single climate records is difficult to reconstruct the past climate change for the drainage basins. Holocene environmental records were collected from the upper, middle and lower regions of the Shiyang River drainage basin in the marginal area of the Asian monsoon (northwest China). The main objective of this paper was to compare the records from the terminal lake and the middle and upper reaches of the basin to study the basin-wide environmental changes. During the early Holocene the vegetation was sparse, and the effective moisture was relatively low in the basin. The Holocene Climatic Optimum started between 7.0 and 8.0 cal ka BP, during which the lake level reached the highest level in the terminal lake; the vegetation density and the effective moisture reached the highest level during the Holocene in the drainage basin. From 4.7 cal ka BP the terminal lake began to shrink, while the vegetation density decreased dramatically. In the middle and upper regions of the drainage, the effective moisture began to decrease since 3.5 cal ka BP, and the arid tendency was earlier in the terminal lake than it was in the middle and upper regions of the drainage basin. During the early Holocene the relatively arid environment was affected by the gradually intensifying East Asian monsoon and the dry westerly winds. The mid-Holocene Optimum benefited from the intensive East Asian monsoon and the humid westerly winds. Then, the East Asian monsoon retreated since the late-Holocene. In the basin the arid tendency may be related to the retracting of the East Asian monsoon. However, the intensifying acidification after 1.5 cal ka BP may be correlated to the increasing dryness of the westerly winds.  相似文献   

16.
The ancient Zhuyeze Lake lies in the east Hexi corridor of Northwest China and it is the interacting belt of the East Asian summer monsoon and the westerly line. The research on paleoclimate of the lake facilitates the understanding of the processes and mechanism of climate change in Northwest China since the Last Deglaciation. Related researches of this area started in the 1960s, and the research on environment changes has become the “hotspot” during the last 10 years. This paper focuses on four sections (Qingtuhu Section, Xiqu Section, Shakengjing Section, Jiutuoliang Section) in ancient Zhuyeze Lake. Much work was done in spot investigation, section strata comparison, geophysical analyses, geochemical analyses and dependable 14C dating in order to retrieve the dry-wet history of climate changes in ancient Zhuyeze Lake since the Last Deglaciation. The main conclusions are as follows: (1) the highest terminal lake level was 1313–1315 m. In Holocene, the highest lake level was 1308–1309 m occurring between 6700–5800 a B.P.. (2) After geophysical and geochemical analyses, high-resolution records of the climate change since the Last Deglaciation were revealed as follows: cold and dry during 15800–13000 a B.P.; cool and wet during 13000–9500 a B.P.; warm and dry during 9500–6700 a B.P.; warm and wet during 6700–4300 a B.P.; cool and wet during 4300–2700 a B.P.; and at last dry during 2700-0 a B.P.. __________ Translated from Journal of Arid Land Resources and Environment, 2007, 21(12): 161–169 [译自: 干旱区资源与环境]  相似文献   

17.
The concentrations of polar organic compounds including n-alkanoic acids, n-alkanols, steroids and triterpenoids were determined in extracts of shallow sediments from the Mesopotamian marshlands of Iraq. The sediments were collected by a stainless steel sediment corer, extracted with a dichloromethane and methanol mixture (3:1 v:v) by ultrasonic agitation and then analyzed by gas chromatography–mass spectrometric (GC–MS). The analysis results showed that the n-alkanoic acids ranged from C8 to C20 with concentrations of 7.8 ± 1.2 μg/g sample, whereas the concentrations of n-alkanols, which ranged from C12 to C39 were from 28.6 ± 4.3 to 121.7 ± 18.3 μg/g sample. The steroids and triterpenoids included stenols, stanols, stenones, stanones, tetrahymanol, tetrahymanone and extended ββ-hopanes. The total concentrations of steroids and triterpenoids ranged from 26.8 ± 4.1 to 174.6 ± 26.2 μg/g and from 0.74 ± 0.11 to 11.2 ± 1.7 μg/g sample, respectively. The major sources of these lipids were from natural vegetation, microbial (plankton) residues and bacteria in the sediments, with some contribution from anthropogenic sources (livestock, sewage and petroleum). Further studies of these wetlands are needed to characterize the input rate, transformation and diagenesis of the organic matter and to assess its various sources.  相似文献   

18.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Jiang, S., Liu, X., Sun, J., Yuan, L., Sun, L. & Wang, Y. 2011: A multi‐proxy sediment record of late Holocene and recent climate change from a lake near Ny‐Ålesund, Svalbard. Boreas, Vol. 40, pp. 468–480. 10.1111/j.1502‐3885.2010.00198.x. ISSN 0300‐9483 The Arctic constitutes a unique and important environment with a significant role in the dynamics and evolution of the earth system. Arctic lake sediments, which accumulate slowly over time, contain abundant information about the biological communities that lived within the water body, as well as in the surrounding catchment. In this study, we collected a sediment core from Ny‐Ålesund, Svalbard, performed multi‐proxy analyses on sediment pigments, mineral magnetic susceptibility, various sediment quality (i. e. organic matter content, CaCO3 content, carbon and nitrogen isotope), and diatom composition, and reconstructed the history of ecosystem responses to environmental variations, especially regarding aquatic productivity and lake catchment surface processes. Ny‐Ålesund has undergone distinct ecological and climatic changes. During the Little Ice Age, the cold climate was unfavourable for the growth of lake algae, and therefore the lake primary productivity declined. After about AD 1890 and during the 20th century, the warming climate and reduced ice cover led to rapid lithological change and growth of lake algae, enhanced lake primary productivity, and increased input of nutrients derived from increased chemical weathering into the lake. The lake ecosystem on Ny‐Ålesund has had rapid responses to climatic and environmental changes in the Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号