首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimates of the geostrophic drag coefficient and the Rossby similarity functions, A and B obtained from data collected by an instrumented aircraft over the sea are presented. The average value of the geostrophic drag coefficient is 0.027 and is independent of the geostrophic windspeed. The dependence of the similarity functions A and B on boundary-layer parameters is investigated. The function A is found to depend on baroclinicity parameters, while B depends on the parameter u */fh (where u * is the surface friction velocity, f is the Coriolis parameter, and h is the boundary-layer depth). Using the geostrophic drag coefficient found here and the results of surface drag coefficient studies, a relationship between geostrophic windspeed and surface windspeed is obtained which shows good agreement with empirical data.  相似文献   

2.
Data collected during the french VOVES-1977 experiment are used for the determination of the functionsA() andB() of the stability parameter . It is found that, although pertaining to different geographic conditions, they lead to the same kind of dependency ofA andB upon as found previously considered data. The influence of baroclinicity onA andB is also studied and it is found in that, statistically, consideration of this parameter does not lead either to a decrease of the large scatter of experimental points or to a significant improvement of the similarity theory. It is also shown that a satisfactory estimation of the surface geostrophic wind can be made from the network of meteorological stations, to compute such functions.  相似文献   

3.
An operational Planetary Boundary Layer model which employs similarity principles and two-layer patching to provide state-of-the-art parameterization for the PBL flow is used to study the popularly used similarity functions, A and B. The expected trends with stratification are shown. The effects of baroclinicity, secondary flow, humidity, latitude, surface roughness variation and choice of characteristic height scale are discussed.  相似文献   

4.
This paper examines the practical importance of stability, baroclinicity, and acceleration in the bulk ABL similarity formulations, in light of the random errors inherent in field measurements. This is done by propagating the measurement uncertainties through a theoretical model for the bulk ABL similarity functionsA 0 andB 0, under a range of assumed (but always unstable) conditions. It is shown that random measurement errors and acceleration effects may overwhelm most effects of baroclinicity and stability, once conditions are at least slightly unstable. Because of this, it is hard to discern a clear functional dependence ofA 0 andB 0 on degree of instability. Thus, for a given value ofh i/z0, whereh i is the inversion height andz 0 is the surface roughness, the geostrophic drag coefficient, which depends onA 0 andB 0, and weakly onh i/z0, may also be taken to be nearly independent of degree of instability.  相似文献   

5.
Substitution of the geostrophic wind by the actual upper wind in the equations of motion for the boundary layer implies less sensitivity of the mean wind to inertial effects. This is confirmed by observations, although the problem of computing time or spatial derivatives from scattered data reduces the accuracy and the clarity of the results. It is found that acceleration (deceleration) increases (decreases) the cross-isobar angle whereas the geostrophic drag coefficient is a minimum (maximum) for crosswind acceleration (deceleration). On the other hand, cold air advection increases the cross-isobar angle whereas the geostrophic drag coefficient is a maximum when the thermal wind is parallel to the surface wind. The universal functions A m and B m based on vertically averaged winds are also rather insensitive to inertial influences.  相似文献   

6.
The logarithmic + polynomial approximation is suggested for vertical profiles of velocity components in a planetary boundary layer (PBL) at neutral and stable stratification. The resistance law functions A and B are determined on the basis of this approximation, using integral relations derived from the momentum equations, the Monin-Obukhov asymptotic formula for the wind profile in a stably stratified near-surface layer and the known expressions for the PBL depth. This result gives a realistic and convenient method for calculating the surface friction velocity and direction and the total dissipation rate of mean flow kinetic energy in terms of geostrophic velocity, buoyancy flux at the surface, the roughness parameter and the Coriolis parameter. In the course of these derivations a review is given of current views on the main problems of the neutral and stable PBL.  相似文献   

7.
8.
The relationship between satellite-derived low-level cloud motion, surface wind and geostrophic wind vectors is examined using GATE data. In the trades, surface wind speeds can be derived from cloud motion vectors by the linear relation: V = 0.62 V s + 1.9 m s–1 with a mean scatter of ±1.3 m s–1. The correlation coefficient between surface and satellite wind speed is 0.25. Considering baroclinicity, i.e., the influence of the thermal wind, the correlation coefficient does not increase, because of the uncertainty of the thermal wind vectors. The ratios of surface to geostrophic wind speed and surface to satellite wind speed are 0.7 and 0.8, respectively, with a statistical uncertainty of ±0.3. Calculations of the ratio of surface to geostrophic wind speed on the basis of the resistance law yield V/V g = 0.8 ± 0.2, in agreement with experimental results. The mean angle difference between the surface and the satellite wind vectors amounts to - 18 °, taking into account baroclinicity. This value is in good agreement with the mean ageostrophic angle - 25 °.  相似文献   

9.
Observations show that the angle between surface wind and isobar increases equatorward in low latitudes while the ratio of surface to geostrophic wind speed decreases. With the use of Southern Hemisphere winter fields of surface pressure and temperature over the oceans, and Rossby number similarity theory (including the effects of baroclinicity) in several different forms, the expected latitudinal variation of the angle and ratio has been computed. A check has also been made of mean ATEX and BOMEX data. It appear that the variations with latitude are probably mainly due to baroclinicity. With this factor taken into account, similarity theory fairly adequately explains the observations.A recently proposed form of similarity theory based on the assumption of very strong momentum mixing in the boundary layer was also tested. It predicts the equatorward increase of the angle, even without baroclinicity. Quantitatively the results of the test are not in good agreement with observation. However, the strong convective mixing assumed in the theory does not generally occur over the oceans, and this test must be regarded as inconclusive.  相似文献   

10.
A two-layer, first-order closure model for the Planetary Boundary Layer (PBL) is developed with the objective of parameterizing the surface stress with respect to the synoptic scale. The model includes stability effects by considering stratification-dependent secondary flow in the outer layer and empirical corrections to the surface layer flow. It shows the compatibility of simple eddy viscosity closure solutions with similarity theory by producing the now well-known Rossby similarity equations. It allows further insight into the Rossby similarity parameters by relating them to a single similarity parameter which is the ratio of the characteristic scales of the PBL and the surface layer.The measured and derived values of the similarity parameters A and B are compared with AIDJEX data and other published values. The variation in these values in stably stratified conditions is predicted and two alternate similarity parameters are calculated, one a constant and the other with a small variation and decreasing influence on the drag coefficient in stable stratification. The result is an empirical resistance law for a geostrophic drag coefficient variation which parameterizes an observed order-of-magnitude change in surface stress with changes in roughness or PBL stratification. This variation is related to similarity parameters characteristic of the region and to measurable changes in the geostrophic departure angle.  相似文献   

11.
Data on the relationship of the surface wind to the geostrophic wind at Porton Down, Salisbury Plain, are presented for various stability conditions and analysed in the light of the Rossbynumber similarity theory. For near-neutral conditions, the geostrophic drag coefficients for geostrophic wind speeds 5 to 15 m s-1 are close to those found by other workers but at higher speeds the values are low. Comparisons of geostrophic and radar wind speeds for ⋍900-m height, suggest that undetectably small mean cyclonic curvatures of the trajectories of the air are responsible for this departure. A value of the geostrophic drag coefficient for the open sea at wind speeds around 8 m s-1 (neutral conditions) is deduced from recent observations of the drag in relation to the surface wind, combined with the ratios of 900-mb radar wind to surface wind obtained from the North Atlantic weather ship data tabulations of Findlater et al. (1966).  相似文献   

12.
An expression is derived for the height of the stationary boundary layer during stable lapse rate conditions. It satisfies the conventional limits for neutral conditions and for large values of stability. Comparison with acoustic sounder observations near the meteorological mast at Cabauw (the Netherlands) shows that the steady-state height is not attained for large stability values. The observations are also used to investigate how the similarity functions A and B in the resistance laws depend on the stability parameters 0 = u */f L and = h/L. The function B shows a clear trend as a function of stability, which can be described in terms of . The dependence of A is masked by scatter in the data points. The general conclusion leads to the concept of a non-steady boundary layer during stable lapse rate conditions.  相似文献   

13.
Data collected during the Indo-Soviet Monsoon-77 expedition are used to determine quadratic expressions for the universal constants A and B, as functions of the stability parameter, . A quadratic expression has also been obtained for u *, in terms of the surface wind u s. It is shown, from the mean values of q and E , that the entire area covered by the expedition could be divided into four regions around the point 13° N, 78° E. The mean thermal characteristic of each region differs. It is shown that the northeastern quadrant is most favourable for the sustenance of a tropical storm once it has formed.  相似文献   

14.
A new quasi-analytical mixed-layer model is formulated describing the evolution of the convective atmospheric boundary layer (ABL) during cold-air outbreaks (CAO) over polar oceans downstream of the marginal sea-ice zones. The new model is superior to previous ones since it predicts not only temperature and mixed-layer height but also the height-averaged horizontal wind components. Results of the mixed-layer model are compared with dropsonde and aircraft observations carried out during several CAOs over the Fram Strait and also with results of a 3D non-hydrostatic (NH3D) model. It is shown that the mixed-layer model reproduces well the observed ABL height, temperature, low-level baroclinicity and its influence on the ABL wind speed. The mixed-layer model underestimates the observed ABL temperature only by about 10 %, most likely due to the neglect of condensation and subsidence. The comparison of the mixed-layer and NH3D model results shows good agreement with respect to wind speed including the formation of wind-speed maxima close to the ice edge. It is concluded that baroclinicity within the ABL governs the structure of the wind field while the baroclinicity above the ABL is important in reproducing the wind speed. It is shown that the baroclinicity in the ABL is strongest close to the ice edge and slowly decays further downwind. Analytical solutions demonstrate that the \(\mathrm{e}\)-folding distance of this decay is the same as for the decay of the difference between the surface temperature of open water and of the mixed-layer temperature. This distance characterizing cold-air mass transformation ranges from 450 to 850 km for high-latitude CAOs.  相似文献   

15.
应用印痕函数研究测风塔资料代表性   总被引:3,自引:0,他引:3       下载免费PDF全文
影响测风塔代表性的因素很多,为了合理地确定测风塔观测结果能够代表的区域范围,需要通过适当的方法综合考虑这些因素。湍流通量代表性研究中常用的印痕函数是风速、稳定度、下垫面粗糙度等的函数,可以定量地刻画单点观测结果的代表性。利用印痕函数方法对中国风能资源观测网中来自不同下垫面的44个测风塔2010年的观测结果进行了测风塔资料的代表性分析。首先,根据两层(10、70 m)的风速和温度计算稳定度参数Lp并确定中性层结,粗糙度的计算选取了中性层结条件下满足对数风廓线的资料。然后,利用中性层结下70 m高度主导风向和风向频率较大方位的资料分析了两种印痕函数方法(Schuepp和Hsieh方法)的适用性及代表性范围与粗糙度的关系。两种方法得到的印痕函数对应距离(即代表性范围)比较接近。但是,在复杂山地Schuepp方法已不适用。当粗糙度小于10 m时,粗糙度与印痕函数对应距离的关系可用对数-线性函数描述。根据经验推荐了利用印痕函数积分90%对应的距离以及下垫面显著变化位置来确定测风塔代表范围。但是,印痕函数积分阈值仍需要通过示踪实验或数值模拟检验。  相似文献   

16.
Zusammenfassung In der vorliegenden Arbeit wird das Strömungsfeld im Bereich der Alpen untersucht. Für einen Vergleich der Windhäufigkeiten zwischen zwei Stationen stellte sich eine Darstellung der Häufigkeiten der Windrichtungen in Matrixform als sehr brauchbar heraus. Man kann aus einer solchen Windmatrix bei einer festgehaltenen Windrichtung in der StationA sofort die Häufigkeiten der gleichzeitigen Windrichtungen in der StationB ablesen. Die Häufigkeitsverteilungen der Windrichtungen an den einzelnen StationenA undB ergeben sich aus der Summe der Spalten bzw. der Zeilen der Windmatrix. Mittels einer solchen Windmatrix ist man auch in der Lage, für das betreffende StationspaarAB charakteristische Kenngrößen anzugeben, die das gleichzeitige Auftreten von Windrichtungen (Spur der Matrix), die Drehung des Windes und dergleichen mehr beschreiben.
Summary In the present paper the authors investigate the stream field over the Alpine region. For the comparison of the wind frequencies observed at two stations the representation of the frequencies of wind direction in matrix notation proved to be very useful. From such a matrix one can immediately read off the frequencies of the simultaneous wind directions at the stationB, when the direction at the stationA is held fast. The frequency distributions of the wind directions at the single stationsA andB result as the sums of the columns and of the rows of the wind matrix. The matrix allows to specify index numbers (e. g. the trace of the matrix) which characterize the simultaneous wind conditions at a pair of stations,AB, the change of direction from one station to the other and so on.

Résumé Dans le présent travail, on étudie le champ des courants dans la région des Alpes. Pour comparer la fréquence du vent à 2 stations, il est apparu que la représentation de la fréquence des directions du vent sous forme de matrice était parfaitement utilisable. Il est possible de tirer immédiatement d'une telle matrice la direction du vent dans une stationB en partant de la direction du vent observée au même moment en une stationA. La répartition des fréquences de la direction du vent aux stationsA etB résulte de la somme des colonnes, respectivement des lignes de la matrice. Une telle matrice permet également de tirer des grandeurs caractéristiques de la paire des stationsA etB. Ces grandeurs expliquent mieux l'apparition simultanée des mêmes directions (trace de la matrice), les rotations du vent d'une station par rapport à l'autre, etc.


Diese Arbeit stellt den Beitrag FRP Alpenwetter Nr. 9/67 eines vom Österreichischen Forschungsrat subventionierten Forschungsvorhabens dar.  相似文献   

17.
Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Høvsøre (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50–80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200–300 m and considering only wind speeds above 3 m s?1 at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.  相似文献   

18.
The structure of the Planetary Boundary Layer in the stationary case is investigated. The dynamic equations are written in an universal form deduced from Rossby Similarity. Then the system is closed using two semi-empirical formulations for the turbulent fluxes (Prandtl's formulation and the turbulent energy scheme) with a mixing-length chosen to be compatible with Rossby Similarity. For each formulation the system is solved using a new numerical procedure to compute universal profiles of wind and also the Similarity functions A and B in terms of stability. These profiles and functions are then compared to experimental data and good agreement is obtained. Investigating simpler formulations, it appears that good results are obtained with a simple two-layer model, patching a diabatic Ekman spiral with surface-layer profiles. Its formulation is analytical and it can incorporate constant baroclinicity.  相似文献   

19.
Determination Of The Surface Drag Coefficient   总被引:1,自引:0,他引:1  
This study examines the dependence of the surface drag coefficienton stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches.The roughness length corresponding to the usual Monin–Obukhovstability functions decreases with increasing wind speed. This dependence on wind speed cannot be eliminated by adjusting the stability functions. If physical, the decrease of the roughness length with increasing wind speed might be due to the decreasing role of viscous effectsand streamlining of the vegetation, although these effects cannot be isolated from existing atmospheric data.For weak winds, both the mean flow and the stress vector often meander significantly in response to mesoscale motions. The relationship between meandering of the stress and wind vectors is examined. For weak winds, the drag coefficient can be sensitive to the method of calculation, partly due to meandering of the stress vector.  相似文献   

20.
Functional forms of the universal similarity functions A, B (for wind components parallel and normal to the surface stress), and C (for potential temperature difference) are determined based on the generalized theory of the resistance laws for the Planetary Boundary Layer (PBL). The similarity-profile functions for the surface layer are matched with the velocity and temperature-defect profiles that are assumed to have shapes modified by certain powers of nondimensional height z/h, where h is the PBL height. The powers of the outer-layer profile functions are determined, so that the functions become negligible in the surface layer. To close the temperature defect law, an assumption that the temperature gradient across the top of the PBL is continuous with the stratification of the overlying atmosphere is used. The result of this assumption is that nondimensional momentum and temperature profiles in the PBL can be described in terms of four basic ratios: (1) roughness ratio = /h (2) scale-height ratio =|f|h/u*, (3) ambient stratification parameter =h/*, and (4) stability parameter =h/L, where L is the Monin-Obukhov length, z0 is the surface roughness, is the upper-air stratification, u * is the friction velocity, and * is the temperature scale at the surface. For stable conditions, the scale-height ratio can be related to the atmospheric stability and the upperair stratification, and the generalized similarity and Rossby number similarity theories become identical. Under appropriate boundary conditions, function A is explicitly dependent on the stability parameter , while B is a function of scale-height ratio , which in turn depends on the stability. Function C is shown to be dependent on the stability and the upper-air stratification, due to the closure assumption used for the temperature profile.The suggested functional forms are compared with other empirical approximations by several authors. The general framework used to determine the functional forms needs to be tested against good boundary-layer measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号