首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Groundwater samples collected from both open and bore wells in an area of about 270 km2 from Madras City, India, have been analyzed for major ions (HCO3, Cl, Si, Na, Ca, and Mg) and trace elements (As, Se, B, V, Cr, Fe, Co, Pb, Cu, Zn, Cd, Mn, Ni, Mo, and Ba). The study reveals that the quality of potable water has deteriorated to a large extent. Seawater intrusion into the aquifer has been observed in nearly 50 percent of the study area. The toxic elements (As and Se) have already exceeded the maximum permissible limits of drinking water in almost the entire city. A positive correlation of As and Se with other toxic metals such as V, Cr, Fe, B, etc., indicates that all these elements are anthropogenic in origin. Applying multivariate analysis, the source for trace elements in groundwater has been grouped into two major factors: pollution and mobilization factors. The groundwater in the study area is largely contaminated by organic effluents and reflects the intensity of pollution caused by the overlying soil sediment and rapid infiltration of the pollutants.  相似文献   

2.
The present study was carried out in parts of Hindon-Yamuna interfluve region to evaluate the concentration of trace elements (Al, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Cd, B and Pb) in groundwater. Pre-monsoon groundwater samples were collected in 2007 from 22 locations distributed throughout the study area, and were analyzed using Inductive Coupled Plasma Mass-Spectrophotometer (ICPMS). Trace element analyses show high concentration levels for Al and Cr in almost all groundwater samples. Relatively high values are also reported for Pb, Se, Fe and Mn (as per B.I.S (1991) standard for drinking water) in few samples. These high concentrations of metal ions in groundwater were probably due to discharge of untreated effluents from Textile, dyeing and other industries. As far as Al is concerned, its source is rather enigmatic.  相似文献   

3.
吉林白山地区原煤微量元素地球化学特征   总被引:2,自引:1,他引:1  
对吉林白山地区煤矿主采煤层中的As、B、Ba、Cd、Cu、Hg、Pb、Se、Sr等微量元素进行了分析,结果表明:太原组与山西组由于成煤环境不同,微量元素组成及其质量分数存在一定的差异,太原组原煤中As、B、Hg、Pb、Se、Zn的质量分数明显高于山西组,山西组原煤中Ba、Cr、Cu、Mn、V的质量分数明显高于太原组。白山地区原煤中As、B、Hg、Pb、Se的质量分数明显高于地壳元素平均值,呈富集状态;Co、Cd与地壳平均值接近,其他元素均亏损。与全国煤中微量元素的质量分数平均值相比,As、Ba、Co、Cr、Cu、Hg、Ni、Pb、Se、V、Zn的质量分数高于全国平均值。B、Mn、Sr质量分数低于全国平均值。微量元素赋存状态及相关分析表明,Fe与亲硫有害元素As、Cu、Hg、Pb、Se具有显著相关关系,说明煤中黄铁矿及其他硫化物是许多有害微量元素的重要载体。   相似文献   

4.
Concentrations of trace elements and heavy metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sr, V and Zn) in the Danjiangkou Reservoir, the water source area of the Middle Route of China’s interbasin South to North Water Transfer Project, were analyzed using an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and compared with the national and international standards for drinking water. The results indicated that concentrations of As, Pb, Sb and Se in the Reservoir exceeded the standards and they would pose health risk for residents in the region and the water receiving areas of the interbasin water transfer project. Spatial and temporal variability of the trace elements and heavy metals in the Reservoir implies their mixed sources of natural processing and anthropogenic activities in the upper drainage of the Reservoir. The research results would help develop water resource management and conservation strategy for the interbasin water transfer project.  相似文献   

5.
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions.  相似文献   

6.
Concentrations of seventeen hazardous trace elements including As, Pb, Hg, Se, Cd, Cr, Co, Mo, Mn, Ni, U, V, Th, Be, Sb, Br and Zn in the No.ll coal seam, Antaibao surface mine, Shanxi Province were determined using Instrumental Neutron Activation Analysis (INAA), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Cold-Vapor Atomic Absorption Spectrometry (CV-AAS) and Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Comparisons with average concentrations of trace elements in Chinese coal show that the concentrations of Hg and Cd in the No. 11 coal seam, Antaibao surface mine are much higher. They may be harmful to the environment in the process of utilization. The variations of the trace elements contents and pyritic suffur in vertical section indicated that: (a) the concentrations of As, Pb, Mn, and pyritic sulfur decrease from roof to floor; (b) the concentrations of Cr, Zn and Mo are higher in roof, floor and lower in coal seam; (c) the concentration of Br, Sb, and Hg are higher in coal seam and lower in roof and floor; (d) the concentrations of Mo, V, Th and AI vary consistently with the ash yield. Cluster analysis of trace elements, pyritic sulfur, ash yield and major elements, such as AI, Fe, P, Ca shows that: (a) pyritic sulfur, Fe, As, Mn, Ni, Be are closely associated and reflect the influence of pyrite; (b) Mo, Se, Pb, Cr, Th, Co, Ca and A! are related to clay mineral, which is the main source of ash; (c) U, Zn, V, Na, P maybe controlled by phosphate or halite; (d) Hg, Br, Sb and Cd may be mainly organic-associated elements which fall outside the three main groups. The concentration distribution characteristics of trace elements in coal seam and the cluster analysis of major and trace elements showed that the contents of trace elements in the No. 11 coal seam, Antaibao surface mine, are mainly controlled by detrital input and migration from roof and floor.  相似文献   

7.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

8.
陕西渭北聚煤区原煤的微量元素组成特征   总被引:4,自引:0,他引:4  
对陕西省渭北主要煤田主采煤层中的As、Pb、Hg、Cd、Se、Cu、Sr、Ba、B等微量元素的分析结果表明:渭北原煤中Hg、Se、As、Pb、B含量明显高于地壳平均值,呈富集状态;Co、Cd与地壳平均值接近,Cu、Zn、Sr、Ba等元素均亏损。太原组和山西组由于成煤环境不同,煤质和原煤的微量元素组成特征存在一定的差异。太原组煤的友分和硫分均较山西组煤高,原煤中As、Hg、Se、Pb、Zn、B的合量明显高于山西组原煤,而山西组原煤中V、Cr、Cu、Mn、Ba的含量别明显高于大原组原煤。统计分析表明,As、Hg、Se、Pb、Cu等亲硫元素与铁呈显著的正相关关系,它们的赋存形式可能与煤中黄铁矿有关。  相似文献   

9.
The present paper deals with major and trace elements geochemistry of the groundwater from Nalgonda district, Telangana. The study area is very important in terms of anthropogenic activity like rapid industrial, urban development, pesticides, pharmaceutical, granite polishing and agro based industries. Inductively coupled plasma mass spectrometer (ICPMS) was employed to determine the concentration of trace elements in collected groundwater samples (bore well). These probe elements were further categorized as toxic elements (Pb, As, Cd, and V), alkaline earths (Sr and Ba), alkali metals (Li, Rb), transition metals (Cr, Mo and Ni), metallic elements (Cu, Fe, Zn, Al, Co), and other non-metallic elements (Se and Si). The groundwater quality was examined in perspective of Indian as well as World Health Organization drinking water standards. Based on the analytical results, groundwater in the study area is found to be slightly alkaline in nature and very hard, the average abundance of the major cations and anions is in the order of Ca+<Na+<Mg+<K+ and Cl-<HCO3 ?<CO3 ?<SO4 ?<NO3 ?<F respectively. The dominant hydro chemical facies of groundwater is Na+ - HCO 3 – Cl and Na+ - Cl – HCO 3 types.The results of trace elements shows that concentration of Pb, As, Cd, V in collected samples exceeding the desirable limits, and in the case of alkaline, alkali, transition, non-metallic elements, seventy per cent of the samples crossed the desirable limits, but all metallic elements viz. Cu, Fe, Zn, Al, Co is within the limits as per Indian as well as World Health Organizations drinking water standards. Factor analysis results shows that seven factors emerged as a significant contributor to the groundwater contamination is about 65.32 per cent. The spatial variation maps decipher trace elemental concentrations both geogenic and anthropogenic origin, by three zones i.e. ‘low’, ‘moderate’ and ‘high’ of the study area based on environment using Arc-GIS. High concentrations of trace elements are indicative of phenomenal rise in chemical composition and likely to have its origin from silicate weathering reactions and dissolution/precipitation processes supported by rainfall and anthropogenic activities, indiscriminate use of fertilizers/pesticides, and disposal of waste and sewage, release of reactive pollutants into the atmosphere by industries. Hence, this work is of immense societal benefit in terms of prevailing human health hazards in the study area with a direct relevance to such industrially populated regions elsewhere.  相似文献   

10.
Concentrations of some heavy metals and trace elements such as Cr,Ga,Ni,Zn,Mo,Cu, Pb,Yb,Y,Nb,Ti,Sr,Ba,Mn,Sc,Co,V,Zr,Fe,Al,W,Se,Bi,Sb,As,Cd in recent mollusk shells and factors affecting their distribution and deposits collected from various depths in the southern and southwestern parts of the Marmara Sea are investigated.The distribution of the elements in the shells is categorized into four groups.Of these,concentrations of 12 elements(As,Bi,Cd,Co,Ga,Mo,Nb, Sb,Se,Sc,W and Yb)are below zero [(0.053-0.79)×10~(-6)];concentrations of seven elements(Cr,Ni, Pb,V,Y,Zr and Cu)are(1.0-6.0)×10~(-6);concentrations of four elements(Ti,Mn,Ba and Zn)are 10- 20×10~(-6);and concentrations of five elements(Si,Al,Fe,Mg and Sr)are(47.44-268.11)×10~(-6).The taxonomic characteristics of the 29 elements were studied separately in mollusk shells such as Chamalea gallina(Linné),Pitar-rudis(Poll),Nassarius reticulatus(Linné),Venerupis senescens (Coocconi),Mytilus galloprovincialis(Lamarck),Mytilaster lineatus(Gemelin in Linné)and Chlamys glabra.It was found that,in mollusk taxonomy,the elements have unique values.In other words, element concentrations in various mollusk shells depend mainly on the taxonomic characteristics of mollusks.In various bionomic environments different element distributions of the same species are attributed to the different geochemical characters of the each environment.Data obtained in this study indicate that the organisms are the most active and deterministic factors of the environment.  相似文献   

11.
文章在前人对岛弧环境斑岩型矿床绿泥石主微量元素找矿指示研究的基础上,以陆内环境的长江中下游成矿带中的沙溪斑岩型铜金矿床为对象,利用LA-ICP-MS技术对沙溪斑岩型铜金矿床中绿泥石进行了主微量元素研究。结果显示,绿泥石中Ti、Ba、Co、K、Pb、Sr、Fe、V/Ni靠近矿化中心的位置含量高,Mn、Mg元素远离矿化中心的位置含量高。沙溪斑岩型铜金矿床中绿泥石元素含量分布主要受温度、被交代矿物、流体pH值和氧化还原环境、围岩性质影响。受交代矿物的影响,绿泥石中的有些元素(Si、Na、Mg、K、Al)的含量高低不能直接对矿化中心进行指示,但沙溪斑岩型铜金矿床绿泥石部分元素(Ti、Ba、Co、Pb、Sr、Fe)和元素比值(V/Ni)具有指示矿化中心的作用。  相似文献   

12.
A combination of major and trace elements have been used to characterize surface- and groundwater in El Minia district, Egypt. Surface water versus groundwater chemistry data enabled geographical zonation and chemical types to be differentiated. The main target of this research is to investigate the groundwater quality and hydrochemical evaluation. The situation is further complicated by contamination with lithogenic and anthropogenic (agricultural and sewage wastewaters) sources and low plan exploitation techniques. The investigated Pleistocene aquifer is composed of sand and gravel of different sizes, with some clay intercalation. The semi-confined condition was around the River Nile shifted to unconfine outside the floodplain. The groundwater flow generally from south to north and locally diverts towards the western part from the River Nile. Fifty-six, 11, five, and two water samples were collected from the Pleistocene aquifer, River Nile, Ibrahimia canal, and Al Moheet drain, respectively. The collected water samples were analyzed for major and trace elements. The toxic metal concentrations of Al Moheet drain are higher than those in the River Nile and the Ibrahimia canal. Cr, Hg, As, and Cd concentrations in the River Nile and Ibrahimia canal are fluctuated above and below the WHO drinking standards. Se concentration in River Nile and Ibrahimia canal is below WHO drinking and irrigation guidelines. Total dissolved solid content in groundwater is generally low, but it is increased due to the western part of the study area. The geographic position of the River Nile, Ibrahimia canal, and Al Moheet drain impact on the groundwater quality. The PHREEQC confirm the high mixing proportions from the River Nile into the groundwater and decline away from it. In addition to the thicknesses of the Pleistocene, aquifer and aquitard layer enhance the River Nile and agricultural wastewaters intrusion into the aquifer system. The toxic metal concentrations (Pb, Cd, Cr, PO4, Se, Mn, As, Hg, Ni, Al, Fe, and SIO2) in groundwater were increased mainly in the northwestern and southeastern part (far from the River Nile). It is attributed to anthropogenic, high vulnerability rate (unconfined), and partially to lithogenic. In most localities, the groundwater are unsuitable for drinking and irrigation purposes with respect to Se concentration, while they are unsuitable for dinking according Mn, As, and Hg contents. There are some Cd and Pb anomalies concentrations, which cause severe restriction if used in irrigation. The results suggested that significant changes are urgently needed in water use strategy to achieve sustainable development.  相似文献   

13.
This study presents the concentrations and modes of occurrence of trace elements in 81 coal samples from the Çan basin of northwestern Turkey. The concentration of trace elements in coal were determined by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Additionally, traditional coal parameters were studied by proximate, ultimate, X-ray diffraction, and petrographic analyses. Twenty trace elements, including As, B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se Sn, Th, Tl, U, V, and Zn, receive much attention due to their related environmental and human health concerns. The Çan coals investigated in this study are lignite to sub-bituminous coal, with a broad range of ash yields and sulphur contents. The trace element concentrations show variety within the coal seams in the basin, and the affinities vary among locations. The concentrations of B, Ba, Be, Cd, Cu, Co, F, Hg, Mo, Ni, Pb, Sb, Se, Sn, Tl, and Zn in Çan coals are within the Swaine's worldwide concentration range, with the exception of As, Th, U, and V. On the other hand, compared with world coals, the Çan basin coals have higher contents of As, B, Cu, Co, Mo, Pb, Th, U, V, and Zn. Based on statistical analyses, most of the trace elements, except for U, show an affinity to ash yield. Elements including As, Cd, Hg, Se, Cu, Mo, Ni, and Zn, show a possible association with pyrite; however, the elements Se, B, and Mo can be have both organic and inorganic associations.  相似文献   

14.
Microscopic morphology and elemental composition of atmospheric particulate matter (PM) in 13 different size fractions from 0.01 to 10 μm were studied using a Field Emission Scanning Electron Microscope with Energy-Dispersive Spectrometer (FESEM–EDX). The relative mass fractions exhibited a bimodal distribution with a major mode in the fine range (0.18–1 μm) and a minor mode in the coarse range (>1 μm), suggesting that the major pollution of PM is fine particles in this area of Urumqi atmosphere. The PM could be classified as follows: aluminosilicate/silica mineral, Si–Al rich fly ash, Fe oxide particle, Ti dominant particle, sulfate/carbonate crystal, carbonaceous aerosols (including soot, organic carbon, tar ball and irregularly shaped carbon). The soot and organic carbon with anthropogenic sources are dominant types in fine range samples (<1 μm). The natural source minerals and secondary synthesized sulfate/carbonate crystals were accumulated in the coarse range (>1 μm). Elemental composition of various types of particles (0.056–5.6 μm) was also analyzed by EDX. C, S, O, N, Si, Al, Fe, Ca, Na, K, Mg, Cl, F, Hg were detected in most samples. Si, Al and Ca accumulated in coarse fractions, while S and Hg mainly accumulated in fine fractions. Concentrations of 15 metallic elements in size range from 0.1 μm to 5.6 μm were divided into three groups based on their possible sources. (1) The crustal elements (Al, Mg, Fe, Mn and V), mainly present in coarse particles (>1 μm); and (2) the anthropogenic source elements (Ca, Ni, As, Cu, Pb, Cd and Hg). The concentrations of Ca and Ni increased with increasing particle size, while As, Cu, Pb, Cd and Hg showed opposite trends. As, Cu, Pb, Cd and Hg accumulated mainly in fine fraction (<1 μm). (3) The multi sources elements (Cr, Co and Se) possibly come from both natural and anthropogenic sources. High levels of heavy metals, especially Hg in nanosize particles, may pose great risk to human health.  相似文献   

15.
在吉林东部花岗岩区地下水化学成分和化学类型研究的基础上,以Na作为参比元素,确定了花岗岩风化过程中22种主量元素和微量元素的相对活动顺序。花岗岩区地下水的地球化学类型属低矿化度(变化范围为69.51×10-6~386.49×10-6,平均值为199.48×10-6)的HCO3-Ca和HCO3-Na-Ca型。花岗岩风化过程中元素的活动性顺序(RM)从大到小依次为:B、Ca、Mo、Zn、Sr、Na、Mg、Cr、Cu、Ni、K、Co、Li、V、As、Ba、Si、Y、Fe、Ti、Al、Mn。风化产物中的粘土矿物主要为高岭土、蒙脱石,反映出本区花岗岩的风化淋滤程度较弱的特点。  相似文献   

16.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

17.
Selenium and heavy metals content in some Mediterranean soils   总被引:1,自引:0,他引:1  
The study of metal contents in industrial, agricultural or/and polluted soils compared with natural or unpolluted soils is currently necessary to obtain reference values and to assess soil contamination. Nonetheless, very few works published appear in international journals on elements like Se, Li and Sr in Spanish soils. This study determines the total levels of Se, Li, Sr, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, Fe, Mn and Ba in 14 natural (unpolluted) soils (Gypsisols, Leptosols, Arenosols and Acrisols), 14 agricultural soils (Anthrosols, Fluvisols and Luvisols), and 4 industrial–urban affected-surface soil horizons (Anthrosols and Fluvisols) of Eastern Spain. The geochemical baseline concentrations (GBC) and reference values (RV) have been established, and the relationships among elements and also between soil properties and elemental concentrations have been analysed. The RV obtained in this study were (mg kg−1): Se 2.68, Li 115, Sr 298, Cd 0.97, Co 35, Cr 217, Cu 46, Ni 50, Pb 137, V 120, Zn 246, Fe 124,472, Mn 2691, and Ba 743. The RV for Se and Li were used as a preliminary approach to assess soil contamination in Spanish soils. The results confirm human impact on Sr, As, Cd, Cr, Cu, Ni, Pb and Zn soil concentrations, but evidence no deviation from natural Se, Li, Co, V, Fe, Mn and Ba concentrations. The results obtained from the statistical analysis reveal significant correlations between some elements and clay and soil organic matter (SOM) contents, indicating that metal concentrations are controlled by soil composition. One particularly interesting finding is the high correlation coefficients obtained between SOM and Se, Cd, Cr, V, Fe, and Mn, and between clay and Cd, Zn, V, Fe and Mn. Once again, these facts confirm the role of SOM and clay minerals in soil functions and that soil is an ecosystem element responsible for maintaining environmental quality.  相似文献   

18.
Size fractionation of ~40 major and trace elements (TE) in peat soil solutions from the Tverskaya region (Russia) has been studied using frontal filtration and ultrafiltration through a progressively decreasing pore size (5, 2.5, 0.22 μm, 100, 10, 5, and 1 kD) and in situ dialysis through 6–8 and 1 kD membranes with subsequent analysis by ICP-MS. In (ultra) filter-passed permeates and dialysates of soil solutions, Fe, Al, and organic carbon (OC) are well correlated, indicating the presence of mixed organo-mineral colloids. All major anions and silica are present in “dissolved” forms passed through 1 kD membrane. According to their behavior during filtration and dialysis and association with mineral or organic components, three groups of elements can be distinguished: (i) species that are weakly affected by size separation operations and largely (>50–80%) present in the form of dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, As, Mn) with some proportion of small (1–10 kD) organic complexes (Ca, Mg, Sr, Ba), (ii) biologically essential elements (Co, Ni, Zn, Cu, Cd) mainly present in the fraction smaller than 1 kD and known to form strong organic complexes with fulvic acids, and, (iii) elements strongly associated with aluminum, iron and OC in all ultrafiltrates and dialysates with 30–50% being concentrated in large (>10 kD) colloids (Ga, Y, REEs, Pb, Cd, V, Nb, Sn, Ti, Zr, Hf, Th, U). For most trace metals, the proportion in the colloidal fraction correlates with their first hydrolysis constant. This implies a strong control of negatively charged oxygen donors present in inorganic/organic colloids on TE distribution between aqueous solution and colloid particles. It is suggested that these colloids are formed during plant uptake of Al, Fe, and TE from mineral matrix of deep soil horizons and their subsequent release in surface horizons after litter degradation and oxygenation on redox or acid/base fronts. Dissolved organic matter stabilizes Al/Fe colloids and thus enhances trace elements transport in soil solutions.  相似文献   

19.
广西红水河中下游马山地区地下水重金属含量及分布特征   总被引:2,自引:2,他引:0  
为了解红水河中下游马山地区地下水重金属含量及分布特征,以西南岩溶地下水污染调查评价中广西红水河中下游马山地区地下水数据为基础,对该地区27件样品的重金属含量特征、重金属间相关关系、重金属与其它化学组分的相关性以及地下水重金属分布特征进行了研究。结果表明:研究区地下水中重金属含量整体偏低,平均质量浓度顺序为Fe>(Al)>Zn>Mn>Pb>Se>As>Cd,重金属平均质量浓度均小于中国生活饮用水标准值,且绝大部分重金属含量远远低于该标准值。Mn与Fe、As、Al存在显著或极显著的正相关关系,Zn与Pb、Cd存在明显的相关性,Se与其它7种重金属的相关性均不明显,可能是由于Se与其它重金属的来源差异较大所致。地下水的酸碱性对重金属的富集影响较小,但地下水中主化学成分HCO3-和Ca2+对重金属的富集有较大影响,TDS对绝大部分重金属的影响较小,对As和Cd具有一定的影响。地下水中Mn、Zn、As、Pb、Cd、Se、Al、Fe质量浓度在空间上表现出一定的地区分布特点,整体上重金属高浓度点主要集中在马山县城周围以及古寨、乔利街乡镇周围。   相似文献   

20.
The chemical status of major and trace elements (TE) in various boreal small rivers and watershed has been investigated along a 1500-km transect of NW Russia. Samples were filtered in the field through a progressively decreasing pore size (5, 0.8 and 0.22 μm; 100, 10, and 1 kD) using a frontal filtration technique. All major and trace elements and organic carbon (OC) were measured in filtrates and ultrafiltrates. Most rivers exhibit high concentration of dissolved iron (0.2–4 mg/l), OC (10–30 mg/l) and significant amounts of trace elements usually considered as immobile in weathering processes (Ti, Zr, Th, Al, Ga, Y, REE, V, Pb). In (ultra)filtrates, Fe and OC are poorly correlated: iron concentration gradually decreases upon filtration from 5 μm to 1 kD whereas the major part of OC is concentrated in the <1–10 kD fraction. This reveals the presence of two pools of colloids composed of organic-rich and Fe-rich particles. According to their behavior during filtration and association with these two types of colloids, three groups of elements can be distinguished: (i) species that are not affected by ultrafiltration and are present in the form of true dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, Si, B, As, Sb, Mo) or weak organic complexes (Ca, Mg, Sr, Ba), (ii) elements present in the fraction smaller than 1–10 kD prone to form inorganic or organic complexes (Mn, Co, Ni, Zn, Cu, Cd, and, for some rivers, Pb, Cr, Y, HREE, U), and (iii) elements strongly associated with colloidal iron in all ultrafiltrates (P, Al, Ga, REE, Pb, V, Cr, W, Ti, Ge, Zr, Th, U). Based on size fractionation results and taking into account the nominal pore size for membranes, an estimation of the effective surface area of Fe colloids was performed. Although the total amount of available surface sites on iron colloids (i.e., 1–10 μM) is enough to accommodate the nanomolar concentrations of dissolved trace elements, very poor correlation between TE and surface sites concentrations was observed in filtrates and ultrafiltrates. This strongly suggests a preferential transport of TE as coprecipitates with iron oxy(hydr)oxides. These colloids can be formed on redox boundaries by precipitation of Fe(III) from inflowing Fe(II)/TE-rich anoxic ground waters when they meet well-oxygenated surface waters. Dissolved organic matter stabilizes these colloids and prevents their aggregation and coagulation. Estuarine behavior of several trace elements was studied for two small iron- and organic-rich rivers. While Si, Sr, Ba, Rb, and Cs show a clear conservative behavior during mixing of freshwaters with the White sea, Al, Pb and REE are scavenged with iron during coagulation of Fe hydroxide colloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号