首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
陈国兴  李磊  丁杰发  赵凯 《岩土力学》2020,41(9):3056-3065
地震基岩深度和土体动力本构模型的选取对核岛场地地震效应评价结果的合理性具有重要影响。以拟建某沿海核电厂深度470 m沉积土夹火山岩层场地的3个钻孔剖面为研究对象,采用一维等效线性波传分析(ELA)法、基于Matasovic本构模型和Davidenkov-Chen-Zhao(DCZ)本构模型的一维非线性分析(NLA)法,选取不同剪切波速的5个岩土层作为地震基岩,研究了输入地震动特性、地震基岩深度和土体动力本构模型的选取对巨厚沉积土夹火山岩层场地非线性地震反应特性的影响。结果表明:(1)以浅层硬岩夹层或深部土层作为地震基岩,NLA法计算的5%阻尼比的地表谱加速度SA的短周期部分较之ELA法的计算值大,但两者计算的地表SA谱的长周期部分几乎一致;(2)基于Matasovic模型和DCZ模型的NLA法计算的地表SA谱谱形和峰值加速度随深度的变化趋势基本一致;(3)从NLA法计算的地表峰值加速度和累积绝对速度而言,以剪切波速约2 500 m/s的浅层硬岩夹层作为地震基岩是适宜的。  相似文献   

2.
朱姣  许汉刚  陈国兴 《岩土力学》2018,39(4):1479-1490
合理描述土体动力本构关系对场地设计地震动参数取值的准确性有显著影响。以苏州城区200 m深的钻孔剖面为研究对象,对比分析了一维等效线性波传分析法(ELA法)和基于修正Matasovic本构模型的多自由度集中质量非线性分析法(NLA法)给出的深厚场地地震反应,研究了基岩输入地震动特性和地震基岩面的选取对深厚场地地震反应的影响。结果表明:(1)随基岩地震动强度(PGA)的增大,ELA法给出的地表PGA呈单调递增的特征,而NLA法给出的地表PGA呈先快速增大后缓慢减小或几乎不变的趋势;(2)ELA法和NLA法给出的地表加速度反应谱(Sa谱)在短周期范围内存在明显差异,ELA法对基岩高频地震动具有显著的滤波效应,而NLA法对基岩高频地震动的影响表现为随基岩PGA的增大先放大后减小的特征;(3)随地震基岩面深度的增大,地表Sa谱的谱值呈现出稍许增大的趋势,但对周期T<0.1 s部分,NLA法给出的地表Sa谱的谱值则呈现出稍许减小的现象;(4)中、大震作用下,地表地震动持时不仅与基岩地震动特性有关,还与地震反应分析方法和地震基岩面的选取密切相关,NLA法能更合理地反映基岩地震动强度和上覆土层厚度对地表地震动持时的影响。  相似文献   

3.
远场大地震作用下大尺度深软场地的非线性地震效应分析   总被引:1,自引:0,他引:1  
战吉艳  陈国兴  刘建达  李小军 《岩土力学》2013,34(11):3229-3238
基于ABAQUS软件自行研制的并行计算显式算法集群平台,针对苏州城区典型地层剖面,建立了大尺度深软场地的二维精细化非线性有限元分析模型,对人工地震波和大地震远场地震动作用下深软场地的非线性地震效应进行了比较研究。研究结果表明:(1)与人工地震波作用时深软场地的地表峰值加速度放大效应相比,大地震远场地震波作用时的放大效应尤为显著,由于土介质的横向不均匀性及其非线性,使不同地表的峰值加速度放大效应存在明显的变异性。(2)深软场地对周期小于0.3 s的高频地震波均具有显著的滤波效应;大地震远场地震波作用时,深软场地对周期0.85~1.65 s的长周期地震波的放大效应非常显著,但对2.5~7.0 s的长周期地震波呈现出明显的滤波效应。(3)地震动峰值加速度PGA值沿土层深度和横向的分布形态呈现出明显的高低起伏现象,在不同成因的土层更迭面附近及土介质横向不均匀性显著的区域,地震波的局部聚焦放大和过滤减小现象尤为明显,且大地震远场地震动作用时,20 m以浅土层的PGA值呈现出非常显著的放大效应。(4)地震波的频谱特性、土层的横向不均匀性对深软场地地表加速度反应谱? 谱的谱形有显著影响;给出了描述加速度反应谱沿土层深度变化特征的三维谱形曲线,可以直观地展示出深软场地中细长地下结构地震反应可能存在类共振现象的土层深度。  相似文献   

4.
苏永奇  马巍  吴志坚  马尔曼 《冰川冻土》2016,38(4):1090-1098
根据青藏工程走廊北麓河及楚玛尔河场地地震危险性分析结果,合成年超越概率为1.97%、1.00%、0.21%、0.10%、0.04%、0.02%的人造基岩地震波作为输入地震动,结合场地钻孔剖面及波速资料,和已有的冻土动力学研究成果,建立一维模型,通过等效线性化方法进行场地地震反应分析计算,研究了青藏工程走廊多年冻土场地地震动加速度峰值特征及影响因素.研究结果表明,北麓河场地与楚玛尔河场地的人造基岩地震波峰值及持时均存在显著差异,北麓河场地峰值大、持时短,以近震影响为主,楚玛尔河场地峰值小、持时长,以中远震影响为主;多年冻土区场地,夏季场地地震动加速度峰值显著大于冬季,活动层融化对场地地震动加速度峰值有明显的放大效应;冬季场地冻结后,场地地震动加速度峰值随冻土波速增大而减小,最大减小幅度为6.1%,随动剪切模量比减小、阻尼比增大而减小,最大减小幅度为8.9%.活动层的融化有利于放大场地地震动加速度峰值,重大冻土工程抗震设防应予以重视.  相似文献   

5.
The paper deals with the effect of the depth to bedrock randomness on the seismic response of an Algiers site in time and frequency domains. Stochastic soil profile seismic analysis is carried out via Monte Carlo simulations coupled to the stiffness matrix method. The soil height is assumed to be a random variable with a log-normal distribution. The stochastic behavior of extreme ground acceleration and its response spectrum, transfer function, fundamental frequency, maximum amplitude, short- and mid-period amplification factors are derived from 1000 samples, as a parametric study is performed accounting for the influence of the coefficient of variation of the depth to bedrock. As the study herein considers a SH wave propagation pattern (SH stands for shear horizontal), the accelerations under study correspond to the E–W and N–S horizontal directions. The seismic acceleration corresponds to the Boumerdes earthquake (Algeria, May 21, 2003, Mw = 6.5). The probability density functions of the output parameters are derived using the maximum entropy principle, and compared to the log-normal distribution.The soil height heterogeneity causes an increase in the fundamental frequency of the soil profile, as well as a wider frequency content, in such a way that a larger number of structures are concerned by the resonance phenomenon.  相似文献   

6.
In the present study seismic wave propagation in heterogeneous media is numerically simulated by using the pseudospectral method with the staggered grid RFFT differentiation in order to clarify the cause for the complicated distribution characteristics of strong ground motion in regions with basin structure. The results show that the maximum amplitudes of simulated ground acceleration waveforms are closely related to the basin structure. Interference of seismic waves in the basin strongly affects the distribution of maximum seismic waveforms, which may result in peak disasters during earthquakes. Peak disasters might be away from basin boundaries or earthquake faults. Seismic energy transmitted into the basin from the bedrock can hardly penetrate the bottom of the basin and then travel back into the bedrock region. The seismic energy is absorbed by basin media, and transferred into the kinematical energy of seismic waves with great amplitude in the basin. Seismic waves between basins may result in seriou  相似文献   

7.
陈国兴  金丹丹  朱姣  李小军 《岩土力学》2015,36(6):1721-1736
针对基岩明显起伏、土层非均匀分布的典型河口盆地场地,考虑土体非线性特征,采用黏弹性人工边界模拟无限域对地震波动的影响,建立大尺度精细化二维有限元模型,分析了盆地地表地震动幅值、频谱、持时、传递函数特征,探讨了基岩起伏土层的地震动聚集效应及盆地边缘效应。结果表明:(1)盆地近地表土层表现出不同程度的地震动放大效应,且随土层深度增加呈非单调递减特征,基岩突变处地震动聚集效应明显,盆地两侧产生较为显著的边缘效应;场地中、长周期地震动的放大作用显著;(2)多遇地震、偶遇地震和罕遇地震水平时,场地卓越周期依次介于0.35~0.65 s、0.40~0.75 s和0.50~1.05 s之间;给出了盆地地表PGA(地表峰值加速度)、卓越周期均值等值线图及地表加速度反应谱放大因子建议值,地表设计地震动参数amax(地震影响系数)与Tg(特征周期)明显大于现行《建筑抗震设计规范》取值;(3)盆地特殊位置地表地震动持时得到不同幅度增长,且与输入地震动特性相关;(4)该盆地对0.5~2.0 Hz频段基岩地震动的放大效应比较显著,对小于0.2 Hz或大于2.5 Hz的基岩地震动,该盆地地震动放大效应不明显;(5)福州城区及其邻近区域地震动放大效应普遍较大。大尺度二维非线性分析一定程度上能合理反映微地形起伏、土层分布及土体非线性对地震波传播过程的影响。  相似文献   

8.
The shear wave velocity (VS) profile based on the dispersive characteristics of fundamental mode of Rayleigh type surface waves indicate underground stiffness change with depth as well as near surface stiffness. The most important utility of shear wave velocity (VS) is to estimate the liquefaction hazard potential of an area particularly in seismically active region. Rayleigh type surface waves were utilized to estimate the velocity (VS) of shallow subsurface covering a depth range of 30–50 m employing multichannel analysis of surface waves. The liquefaction hazard map predicts an approximate percentage of an area that will have surface manifestation of liquefaction during an earth quake. The surface wave data acquired in an earth quake prone region of Jabalpur (Seismic zone III), India, yields a velocity (VS) range of 200–750 m/s corresponding to the subsurface depth of 30–35 m. The results were analyzed for possible liquefaction hazard in the study area and presented here besides the N values.  相似文献   

9.
A first order seismic microzonation map of Delhi is prepared using five thematic layers viz., Peak Ground Acceleration (PGA) contour, different soil types at 6 m depth, geology, groundwater fluctuation and bedrock depth, integrated on GIS platform. The integration is performed following a pair-wise comparison of Analytical Hierarchy Process (AHP), wherein each thematic map is assigned weight in the 5-1 scale: depending on its contribution towards the seismic hazard. Following the AHP, the weightage assigned to each theme are: PGA (0.333), soil (0.266), geology (0.20), groundwater (0.133) and bedrock depth (0.066). The thematic vector layers are overlaid and integrated using GIS. On the microzonation theme, the Delhi region has been classified into four broad zones of vulnerability to the seismic hazard. They are very high (> 52%), high (38–52%), moderate (23–38%) and less ( < 23%) zones of seismic hazard. The “very high” seismic hazard zone is observed where the maximum PGA varies from 140 to 210 gal for a finite source model of Mw 8.5 in the central seismic gap. A site amplification study from local and regional earthquakes for Delhi region using Delhi Telemetry Network data shows a steeper site response gradient in the eastern side of the Yamuna fluvial deposits at 1.5 Hz. The ‘high’ seismic hazard zone occupies most of the study area where the PGA value ranges from 90 to 140 gal. The ‘moderate’ seismic hazard zone occurs on either side of the Delhi ridge with PGA value varying from 60 to 90 gal. The ‘less’ seismic hazard zone occurs in small patches distributed along the study area with the PGA value less than 60 gal. Site response studies, PGA distribution and destruction pattern of the Chamoli earthquake greatly corroborate the seismic hazard zones estimated through microzonation on GIS platform and also establishes the methodology incorporated in this study.  相似文献   

10.
In the soil slope supported by bolts, longitude waves instead of transverse waves, generated by earthquakes, first reach the slope surface. With the dynamic response of the P (pressure) wave along the anchorage structure, first, a theoretical study was conducted to investigate the propagation characteristics of the interference superposition, generated by the SV (shear-vertical) and the P waves. The SV wave was formed by the wave, originating from the bottom and reflected from the free surface of the slope, whereas the latter was the incident P wave, propagating in the slope. In addition, the structural measures, restraining the seismic wave, and the characteristics of the restraint effect at the free segment of the bolt were investigated. According to the wave-way difference between the incident P wave and the reflected SV wave, the minimum critical slope angle, influenced by the interference at the shallow slope, and the maximum influencing depth of the dynamic response, acting vertically to the slope surface, were obtained. The results indicate that the maximum influencing depth linearly correlated with the slope angle. Furthermore, based on the propagation characteristics of the P wave along the bolt, and the coupled relation between the wave length and the anchorage design parameters, the axial acceleration of the wave propagating along the bolt axis was obtained. Then, the theoretical length of the anti-seismic bolt, subjected to seismic waves, and the compensation force of the anchorage structure were obtained. Finally, a numerical study, based on FlAC3D, properly verified the theoretical conclusions.  相似文献   

11.
针对新型核电工程结构AP1000核岛结构设计地基中的5类非坚硬岩场地,即硬岩场地、软岩场地、上限软-中等土场地、软-中等土场地和软土场地,采用一维土层场地模型开展场地土和计算基底条件对设计地震动影响计算分析。分析中,场地模型的计算基底剪切波速分别取为700、1 100、2 438 m/s,计算基底输入地震动分别选择基于核电建设相关技术文件和规范规定的反应谱RG1.60谱、AP1000谱和HAD101/01谱(5个阻尼比)合成的人工地震动时程。计算分析表明:非坚硬岩场地会导致场地地震动峰值加速度及频谱特性显著变化,场地越软影响程度越显著;除软土场地外,场地对地震动峰值加速度和反应谱的影响均为放大作用,软土场地对地震动较低频段反应谱有放大作用,但对峰值加速度和较高频段反应谱具有强烈的减小作用;对于各类场地,计算基底及其剪切波速的变化均会导致地表地震动峰值及频谱特性明显甚至显著变化,其影响程度与计算基底剪切波速成正比;随着场地由硬变软,计算基底剪切波速的变化对场地地震动的影响程度大为减小,至软土场地几乎不产生影响。考虑到场地类型及计算基底选取对场地地震动的显著影响,我国核电厂建设引用AP1000标准设计时应合理分析场地的适宜性。  相似文献   

12.
以玉树7.1级地震诱发的玉树机场路堆积层滑坡为对象,该滑坡坡度约为10o,长×宽×厚为317 m×482 m×19.8 m,由以碎石土为主的上覆层、卵石土为主的滑动带及基岩3层组成,开展大型振动台模型试验,探究震后边坡再次承受振动荷载的能力以及地震垂直分量对坡体稳定性的贡献,分析其动力响应特征和失稳破坏机制。结果表明,强震作用下堆积层滑坡的永久变形是造成地震地质灾害的重要因素;随着输入地震荷载增大,坡脚率先破碎沉降,坡体中部产生弧形裂隙并产生沉降,坡顶出现贯穿张裂隙和剪切裂隙并向坡腰推进,表现出典型的牵引性滑坡特征;峰值加速度(PGA)、动土压力以及加速度频谱与输入地震波的强度、滑坡高程呈正相关;PGA放大系数呈现出明显的非线性特征,其变化趋势随地震荷载强度增大而减小,地震波垂直分量对滑坡PGA放大系数影响略大于水平分量。  相似文献   

13.
Site characterization and site-specific ground response analyses were conducted at two representative inland areas in Korea. In situ tests included 25 boring investigations, 7 crosshole tests, 18 downhole tests and 41 SASW tests, and in the laboratory, resonant column tests were performed. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined. The fundamental site periods were distributed in the narrow band ranging from 0.1 to 0.4 s. Most sites were designated as site classes C and D based on the mean shear wave velocity of the upper 30 m from the current Korean seismic design guide. Based on the ratio of the acceleration response spectra of ground surface to rock-outcrop, short-period (0.1–0.5 s) site coefficient, Fa ranged from 1.0 to 2.7, and mid-period (0.4–2.0 s) site coefficient, Fv ranged from 1.0 to 1.6, regardless of the input rock outcrop acceleration levels of 0.05 and 0.14 g. The site coefficients specified in the Korean seismic design guide, which is similar to NEHRP provisions and UBC, underestimate the ground motion in the short-period band and overestimate the ground motion in the mid-period band. These differences can be explained by the differences in the depth to bedrock and the soil stiffness profile between Korea and western US. Also, the site coefficients should be re-evaluated accounting for the local geologic conditions on the Korean peninsula.  相似文献   

14.
Any earthquake event is associated with a rupture mechanism at the source, propagation of seismic waves through underlying rock and finally these waves travel through the soil layers to the particular site of interest. The bedrock motion is significantly modified at the ground surface due to the presence of local soil layers above the bedrock beneath the site of interest. The estimation of the amplifications in ground response due to the local soil sites is a complex problem to the designers and the problem is more important for mega cities like Mumbai in India, where huge population may get affected due to devastations of earthquake. In the present study, the effect of local soil sites in modifying ground response is studied by performing one dimensional equivalent-linear ground response analysis for some of the typical Mumbai soil sites. Field borelog data of some typical sites in Mumbai city viz. Mangalwadi site, Walkeswar site, BJ Marg near Pandhari Chawl site are considered in this study. The ground responses are observed for range of input motions and the results are presented in terms of surface acceleration time history, ratio of shear stress to vertical effective stress versus time, acceleration response spectrum, Fourier amplitude ratio versus frequency etc. The typical amplifications of ground accelerations considering four strong ground motions with wide variation of low to high MHA, frequency contents and durations are obtained. Results show that MHA, bracketed duration, frequency content have significant effects on the amplification of seismic accelerations for typical 2001 Bhuj motion. The peak ground acceleration amplification factors are found to be about 2.50 for Mangalwadi site, 2.60 for Walkeswar site and 3.45 for BJ Marg site using 2001 Bhuj input motion. The response spectrum along various soil layers are obtained which will be useful for designers for earthquake resistant design of geotechnical structures in Mumbai for similar sites in the absence of site specific data.  相似文献   

15.
为研究近断层脉冲地震动中竖向加速度对砂土场地液化的影响,基于有限元平台OpenSees开发的边界面塑性本构模型,建立了动单剪单元试验模型和饱和砂土三维有限元模型。选取台湾Chi-Chi地震中10条具有速度脉冲特性的地震波,对比分析了水平双向脉冲波与三向脉冲波作用下土柱竖向位移、循环应力比、孔压比及等效循环周数的差异性,继而明确了脉冲地震动中竖向加速度对砂土液化的影响规律。研究表明,三向脉冲地震波中竖向加速度分量对场地永久位移值影响较小,但使永久位移的发展持时明显增大;土柱循环应力比受竖向地震动影响较小,因此分析脉冲地震动对场地剪切特性的影响时,可将三向脉冲地震动简化为水平双向地震动;考虑竖向地震动的三向脉冲地震波引起的孔压比变化幅度较大,孔压消散时间较长;三向脉冲地震波对应的等效循环周数较大,地震动发展持时长,可认为竖向加速度对场地液化有促进作用。  相似文献   

16.
场地土对基岩峰值加速度放大效应分析   总被引:1,自引:2,他引:1  
通过实际土层地震反应结果的统计分析和强震加速度观测结果的对比, 讨论了不同场地条件对基岩峰值加速度的放大效应及其特点。该分析可为地震动参数区划图编制和地震安全性评价中场地效应的估计、由基岩地震动估算场地地面地震动提供参考。  相似文献   

17.
《Engineering Geology》2006,82(4):446-469
Site characterization and site-specific ground response analyses were conducted at two representative inland areas in Korea. In situ tests included 25 boring investigations, 7 crosshole tests, 18 downhole tests and 41 SASW tests, and in the laboratory, resonant column tests were performed. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined. The fundamental site periods were distributed in the narrow band ranging from 0.1 to 0.4 s. Most sites were designated as site classes C and D based on the mean shear wave velocity of the upper 30 m from the current Korean seismic design guide. Based on the ratio of the acceleration response spectra of ground surface to rock-outcrop, short-period (0.1–0.5 s) site coefficient, Fa ranged from 1.0 to 2.7, and mid-period (0.4–2.0 s) site coefficient, Fv ranged from 1.0 to 1.6, regardless of the input rock outcrop acceleration levels of 0.05 and 0.14 g. The site coefficients specified in the Korean seismic design guide, which is similar to NEHRP provisions and UBC, underestimate the ground motion in the short-period band and overestimate the ground motion in the mid-period band. These differences can be explained by the differences in the depth to bedrock and the soil stiffness profile between Korea and western US. Also, the site coefficients should be re-evaluated accounting for the local geologic conditions on the Korean peninsula.  相似文献   

18.
First arrival times from P-wave refraction and reflection seismic surveys along Bear Creek Valley on the Oak Ridge Reservation, Tennessee, were inverted to produce refraction tomographic velocity images showing seismic velocity variations within thinly mantled karstic bedrock to a depth of approximately 20 m. Inverted velocities are consistent with two distinct bedrock groups: the Nolichucky Shale (2,730–5,150 m/s) and Maynardville Limestone (3,940–7,575 m/s). Low-velocity zones (2,700–4,000 m/s) in the tomographic images correspond to previously inferred cross-valley strike-slip faults; in places, these faults create permeability barriers that offset or block groundwater flowing along Bear Creek Valley. These faults may also force groundwater contaminants, such as dense non-aqueous phase liquids, to migrate laterally or downward, spreading contamination throughout the groundwater system. Other, previously unmapped cross-valley faults may also be visible in the tomographic images. Borehole logs suggest the low-velocity values are caused by low rigidity fractured and vuggy rock, water zones, cavities and collapse features. Surface streams, including Bear Creek, tend to lie directly above these low-velocity zones, suggesting fault and fracture control of surface drainage, in addition to the subsurface flow system. In some cases, fault zones are also associated with bedrock depressions and thicker accumulations of unconsolidated sediment.  相似文献   

19.
Delhi, the capital of India, has experienced mild seismic shaking during several earthquakes in the past. The large variations of depth to bedrock and ground water table coupled with different soil types at different locations of Delhi necessitate a seismic microzonation study. Dynamic soil properties such as shear wave velocity, modulus reduction and damping characteristics of local soils are the basic and essential input parameters for conducting even a preliminary ground response analysis which is an essential input in microzonation studies. Shear wave velocity is not measured routinely due to its high cost and lack of the required expertise. Several researchers in the past developed correlations between shear wave velocity (V s ) and routinely measured N values. In the present study, shear wave velocity profiles measured in the field at more than 80 borehole locations to a depth of about 20 to 32m using Spectral Analysis of Surface Waves (SASW) are presented and correlations between shear wave velocity and N values are also presented for use by engineers and designers. Results of strain and stress controlled cyclic triaxial tests on remoulded samples of sand-silt mixtures in the high strain range are used for generating the modulus reduction and damping curves and are compared with the well-known curves in the literature. The results presented in this article can be used for microzonation studies as well as site specific ground response analyses at Delhi.  相似文献   

20.
刘扬  王明洋  李杰 《岩土力学》2014,35(4):1056-1062
盾构隧道衬砌由于各种类型接头的存在而与整体式衬砌的力学特性存在较大差异。将盾构隧道衬砌结构看作由弹塑性铰链连接的刚性管片组成,考虑围岩介质的黏弹性,提出了爆炸地震波作用下盾构隧道动力分析的简化计算方法。采用该方法对南京地铁盾构段典型横断面进行了动力分析,研究了爆炸地震波入射角度、围岩介质特性及管片厚度对结构受力与变形的影响规律。分析结果表明:波入射角度对盾构隧道有很大影响,斜入射时结构的动力响应要大于垂直入射时结构的动力响应;围岩介质等级越高,围岩对隧道结构的约束越强,隧道的抗爆性能越好;管片厚度的增大会增大结构的内力,合理设置管片厚度有利于提高盾构隧道抗爆性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号