首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea(SCS) and successfully obtained visible gas hydrate samples. Five of the thirteen drilling sites were cored for further research. In this work, Site GMGS2-08 is selected for the stable isotopic analysis of foraminifera present in the boreholes in order to reveal the carbon isotopic characteristics of the foraminifera and their response to methane release in the gas hydrate geological system. Our results show that the methane content at Site GMGS2-08 is extremely high, with headspace methane concentrations up to 39300 μmol L~(-1). The hydrocarbon δ~(13)C values, ranging from-69.4‰ to-72.3‰ PDB, distinctly indicate biogenic generation. Based on the δD analytical results(~(-1)83‰ to~(-1)85‰ SMOW), headspace methane is further discriminated to be microbial gas, derived from CO_2 reduction. By isotopic measurement, five light δ~(13)C events are found in the boreholes from Site GMGS2-08, with foraminiferal δ~(13)C values being apparently lower than the normal variation range found in the glacial-interglacial cycles of the SCS. The δ~(13)C values of benthic Uvigerina peregrina are extremely depleted(as low as~(-1)5.85‰ PDB), while those of planktonic Globigerinoides ruber reach-5.68‰ PDB. Scanning electron micrograph(SEM) studies show that foraminiferal tests have experienced post-depositional alteration, infilled with authigenic carbonate, and the diagenetic mineralization is unlikely to be related to the burial depths. The correlation calculation suggests that the anaerobic oxidation of organic matter has only weak influences on the δ~(13)C composition of benthic foraminifera. This means that the anomalous δ~(13)C depletions are predominantly attributed to the overprinting of secondary carbonates derived from the anaerobic oxidation of methane(AOM). Furthermore, the negative δ~(13)C anomalies, coupled with the positive δ18O anomalies observed at Site GMGS2-08, are most likely the critical pieces of evidence for gas hydrate dissociation in the geological history of the study area.  相似文献   

2.
The light hydrocarbon composition of 209 natural gas samples and individual light hydrocarbon carbon isotopes of 53 natural gas samples from typical humic-sourced gas and sapropelic-sourced gas in the four basins of China have been determined and analyzed. Some identification parameters for humic-sourced gas and sapropelic-sourced gas are proposed or corrected. The differences of compound-specific δ 13C value of individual light hydrocarbon between humic-sourced gas and sapropelic-sourced gas have been founded. The humic-sourced gas has the distribution of δ 13Cbenzene> ?24‰, δ 13Ctoluene >?23‰, δ 13Ccyclohexane > ?24‰ and δ 13Cmethyl cyclohexane> ?24‰, while the sapropelic-sourced gas has the distribution of δ 13Cbenzene <?24‰, δ 13Ctoluene< ?24‰, δ 13Ccyclohexane< ?24‰ and δ 13Cmethyl cyclohexane< ?24‰. Among the components of C7 light hydrocarbon compound, such as normal heptane (nC7), methyl cyclohexane (MCH) and dimethyl cyclopentane (ΣDMCP), etc, relative contents of nC7 and MCH are influenced mainly by the source organic matter type of natural gas. Therefore, it is suggested that the gas with relative content of nC7 of more than 30% and relative content of MCH of less than 70% is sapropelic-sourced gas, while gas with relative content of nC7 of less than 35% and relative content of MCH of more than 50% is humic-sourced gas. Among components of C5–7 aliphatics, the gas with relative content of C5–7 normal alkane of more than 30% is sapropelic-sourced gas, while the gas with relative content of C5–7 normal alkane of less than 30% is humic-sourced gas. These paremeters have been suggested to identify humic-sourced gas and sapropelic-sourced gas.  相似文献   

3.
Abundant natural gas inclusions were found in calcite veins filled in fractures of Central Fault Belt across the centre of Ordos Basin. Time of the calcite veins and characteristics of natural gas fluid inclusion were investigated by means of dating of thermolum luminescence (TL) and analyzing stable isotope of fluid inclusion. Results show that natural gas inclusion formed at 130–140°C with salinity of 5.5 wt%–6.0 wt% NaCl. It indicates that natural gas inclusion is a kind of thermal hydrocarbon fluid formed within the basin. Method of opening inclusion by heating was used to analyze composition of fluid inclusion online, of which the maximal hydrocarbon gas content of fluid inclusion contained in veins is 2.4219 m3/t rock and the maximal C1/ΣC i ratio is 91%. Laser Raman spectroscopy (LRS) was used to analyze chemistry of individual fluid inclusion in which the maximal hydrocarbon gas content is 91.6% compared with little inorganic composition. Isotope analysis results of calcite veins show that they were deposited in fresh water, in which the δ 13CPDB of calcite veins is from ?5.75‰ to 15.23‰ and δ 18OSMOW of calcite veins is from 21.33‰ to 21.67‰. Isotope results show that δ 13C1 PDB of natural gas fluid inclusion is from ?21.36‰ to ?29.06‰ and δDSMOW of that is from ?70.89‰ to ?111.03‰. It indicates that the gas of fluid inclusion formed from coal source rocks and it is the same as that of natural gas of Mizhi gas reservoir. Results of TL dating show that time of calcite vein is (32.4±3.42)×104 a, which is thought to be formation time of gas inclusion. It indicated that natural gas inclusion contained in calcite veins recorded natural gas leakage from Mizhi gas reservoir through the Central Fault Belt due to Himalayan tectonic movement.  相似文献   

4.
According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression, accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness (C1/C1–4) at the middle and northern parts of the depression and low one towards east and west sides and southern part. The carbon isotopes of methane and its homologues are relatively enriched in 13C, and the distributive range of δ 13C1, δ 13C2 and δ 13C3 is ?32‰–?36‰, ?22‰–?24‰ and ?20‰–?22‰, respectively. In general, the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers. The δ 13 \(C_{CO_2 } \) value is less than ?10‰ in the Kuqa depression, indicating its organogenic origin. The distributive range of 3He/4He ratio is within n × 10?8 and a decrease in 3He/4He ratio from north to south in the depression is observed. Based on the geochemical parameters of natural gas above, natural gas in the Kuqa depression is of characteristics of coal-type gas origin. The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type, multistages accumulation of natural gas under high-temperature and over-pressure conditions, and sufficiency and diffusion of natural gas.  相似文献   

5.
Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than ?44‰, ?29‰ and ?26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \(C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than ?10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

6.
The Xushen gas field, located in the north of Songliao Basin, is a potential giant gas area for China in the future. Its proved reserves have exceeded 1000×108 m3 by the end of 2005. But, the origin of natural gases from the deep strata is still in debating. Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin. According to pyrolysis experiments for these rocks in the semi-confined system, gas production and geochemistry of alkane gases are discussed in this paper. The Carboniferous-Permian epimetamorphic rocks were heated from 300°C to 550°C, with temperature interval of 50°C. The gas production was quantified and measured for chemical and carbon isotopic compositions. Results show that δ 13C1 is less than ?20‰, carbon isotope trend of alkane gas is δ 13C1<δ 13C2<δ 13C3 or δ 13C1<δ 13C2>δ 13C3, these features suggest that the gas would be coal-type gas at high-over maturity, not be inorganic gas with reversal trend of gaseous alkanes (δ 13C1>δ 13C2>δ 13C3). These characteristics of carbon isotopes are similar with the natural gas from the basin basement, but disagree with gas from the Xingcheng reservoir. Thus, the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes. The gas generation intensity for epimetamorphic rocks is 3.0×108–23.8×108 m3/km2, corresponding to R o from 2.0% to 3.5% for organic matter.  相似文献   

7.
Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world’s highest mountain ranges. However, on the Tibetan Plateau (TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region’s paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally, it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes (i.e., δDwax values, and abundance-weighted average δD values of C29 and C31) in surface soils, as well as the δD values of soil water (δDsw) samples (totaling 22) from Mount Longmen (LM), on the eastern TP (altitude ~0.8–4.0 km above sea level (asl), a region climatically affected by the East Asian Monsoon (EAM). We compared our results with published data from Mount Gongga (GG). In addition, 47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records (from May to October, 2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δDwax values showed regional differences and responded strongly to altitude, varying from?160‰ to?219‰, with an altitudinal lapse rate (ALR) of?18‰ km?1 (R 2=0.83; p<0.0001; n=29). These δDwax values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δDwax values between the LM and GG transects. We found that, as a general rule, ε wax/rw, ε wax/p and ε wax/sw values (i.e., the isotopic fractionation of δDwax corresponding to δDrw, δDp and δDsw) increased with increasing altitude along both the LM and GG transects (up to 34‰and 50‰, respectively). Basing its research on a comparative study of δDwax, δDp, δDrw(δDspringw) and δDsw, this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity (RH), evapotranspiration (ET), vegetation cover, latitude, topography and/or other factors on ε wax/p values. Clearly, if ε wax-p values at higher altitudes are calculated using smaller ε wax-p values from lower altitudes, the calculated paleowaterδDp values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.  相似文献   

8.
Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and enclosure homogenization temperatures to study the precipitation mechanism, pore fluid evolution, and distribution of different types of carbonate cement in reservoir sand in the study area. Crystalline calcite has relatively heavy carbon and oxygen isotope ratios(δ13C = 2.14‰, δ18O = -5.77‰), and was precipitated early. It was precipitated directly from supersaturated alkaline fluid under normal temperature and pressure conditions. At the time of precipitation, the fluid oxygen isotope ratio was very light, mainly showing the characteristics of a mixed meteoric water-seawater fluid(δ18O = -3‰), which shows that the fluid during precipitation was influenced by both meteoric water and seawater. The calcite cement that fills in the secondary pores has relatively lighter carbon and oxygen isotope ratios(δ13C = -2.36‰, δ18O = -15.68‰). This cement was precipitated late, mainly during the Middle and Late Jurassic. An important material source for this carbonate cement was the feldspar corrosion process that involved organic matter. The Ca2+, Fe3+ and Mg2+ ions released by the clay mineral transformation process were also important source materials. Because of water-rock interactions during the burial process, the oxygen isotope ratio of the fluid significantly increased during precipitation, by about 3‰. The dolomite cements in calcarenaceous sandstone that was precipitated during the Middle Jurassic have heavier carbon and oxygen isotope ratios, which are similar to those of carbonate debris in the sandstone(δ13C = 1.93‰, δ18O = -6.11‰), demonstrating that the two are from the same source that had a heavier oxygen isotope ratio(δ18O of about 2.2‰). The differences in fluid oxygen isotope ratios during cement precipitation reflect the influences of different water-rock interaction systems or different water-rock interaction strengths. This is the main reason why the sandstone containing many rigid particles(lithic quartz sandstone) has a relatively negative carbon isotope ratio and why the precipitation fluid in calcarenaceous sandstone has a relatively heavier oxygen isotope ratio.  相似文献   

9.
The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.  相似文献   

10.
The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas reservoir in the Miocene Huangliu Formation is up to 54.6 MPa(pressure coefficient=1.91) and the temperature is as high as 143°C(geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type II2-III kerogens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C1 ranging from -30.76‰ to -37.52‰ and δ13C2 ranging from -25.02‰ to -25.62‰. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to undercompaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that(1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas;(2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and(3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration.  相似文献   

11.
The compound-specific stable carbon isotope compositions(δ~(13)C) of leaf wax n-alkanes from two short sediment cores recovered off the Pearl River estuary(PRE) were analyzed to check for their capability of indicating decadal scale catchment environmental change. Sedimentary long-chain n-alkanes exhibited an odd-over-even predominance, with a maximum at n-C_(29) or n-C_(31), indicating their leaf wax origin was from vascular plants. The δ~(13)C values of C_(29) and C_(31) n-alkane in all the sediment samples were in the range of -28.8‰ to -31.2‰, consistent with the C_3 plant-dominated vegetation in the Pearl River catchments. The time series of δ~(13)C records from the two cores were comparable and displayed a decreasing trend from the early 20 th century to the end of the 1970s, followed by a reversal in that change leading to continued increase for ca. 15 years. After being corrected for the effect of atmospheric CO_2 rise and δ~(13)C_(atm) decline, the δ~(13)C_(29) records largely retained their raw changing pattern; the post-1980 increase being more conspicuous. The slightly decreasing trend in corrected δ~(13)C records before around 1980 may have been caused by an increase in precipitation, whereas the subsequent increase of δ~(13)C is likely associated with the observed dry climate and/or intensive anthropogenic deforestation. Our results thus demonstrate that leaf wax n-alkanes buried in the sediments off the PRE may well reflect change in the regional climate and/or human activity in the river catchments over the past century.  相似文献   

12.
Non-dispersive infrared(NDIR) and cavity ring-down spectroscopy(CRDS) CO_2 analyzers use 12CO_2 isotopologue absorption lines and are insensitive to all or part of other CO_2-related isotopologues. This may produce biases in CO_2 mole fraction measurements of a sample if its carbon isotopic composition deviates from that of the standard gases being used. To evaluate and compare the effects of carbon isotopic composition on NDIR and CRDS CO_2 analyzers, we prepared three test sample air cylinders with varying carbon isotopic abundances and calibrated them against five standard cylinders with ambient carbon isotopic composition using CRDS and NDIR systems. We found that the CO_2 mole fractions of the sample cylinders measured by G1301(CRDS) were in good agreement with those measured by Lo Flo(NDIR). The CO_2 values measured by both instruments were higher than that of a CO_2 isotope measured by G2201i(CRDS) analyzer for a test cylinder with depleted carbon isotopic composition δ~(13)C =-36.828‰, whereas no obvious difference was found for other two test cylinders with δ~(13)C=-8.630‰ and δ~(13)C=-15.380‰, respectively. According to the theoretical and experimental results, we concluded that the total CO_2 mole fractions of samples with depleted isotopic compositions can be corrected on the basis of their 12CO_2 values calibrated by standard gases using Lo Flo and G1301 if the δ~(13)C and δ18O values are known.  相似文献   

13.
The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can serve as a relatively reliable indicator for terrestrial paleoclimatic and paleohydrological reconstructions.  相似文献   

14.
High-frequency metre-scale cycles are present within the Lower-Middle Ordovician carbonate successions in northern Tarim Basin, NW China. These metre-scale cycles were variably dolomitised from top to bottom. Three types of replacive dolomites were recognised, including dololaminite(very finely to finely crystalline, planar-s to nonplanar-a dolomite;type-1), patterned dolomite(finely crystalline, planar-s dolomite; type-2), and mottled dolomite(finely to medium crystalline,nonplanar-a(s) dolomite; type-3). Petrographic evidence indicate these dolomites were primarily deposited in supratidal to restricted subtidal environments, and formed in near-surface to shallow burial realms. Geochemically, all types of dolomites have similar δ13C and 87Sr/86 Sr ratios comparable to calcite precipitated in equilibrium with the Early-Middle Ordovician seawater. These geochemical attributes indicate that these dolomites were genetically associated and likely formed from connate seawater-derived brines. Of these, type-1 dolomite has δ18O values(.4.97‰ to.4.04‰ VPDB) slightly higher than those of normal seawater dolomite of the Early-Middle Ordovician age. Considering the absence of associated evaporites within type-1 dolomite, its parental fluids were likely represented by slightly evaporated(i.e., mesosaline to penesaline) seawater with salinity below that of gypsum precipitation. More depleted δ18O values(.7.74‰ to.5.20‰ VPDB) of type-2 dolomite and its stratigraphic position below type-1 dolomite indicate the generation of this dolomite from mesosaline to penesaline brines at higher temperatures in near-surface to shallow burial domains. Type-3 dolomite yields the most depleted δ18O values(–9.30‰to –7.28‰ VPDB), pointing to that it was most likely formed from coeval seawater-derived brines at highest temperatures in a shallow burial setting. There is a downward decreasing trend in δ18O values from type-1 through type-2 to type-3 dolomites, and in abundance of dolomites, indicating that the dolomitising fluids probably migrated downward from above and persisted into shallow burial conditions.  相似文献   

15.

Abundant natural gas inclusions were found in calcite veins filled in fractures of Central Fault Belt across the centre of Ordos Basin. Time of the calcite veins and characteristics of natural gas fluid inclusion were investigated by means of dating of thermolum luminescence (TL) and analyzing stable isotope of fluid inclusion. Results show that natural gas inclusion formed at 130–140°C with salinity of 5.5 wt%–6.0 wt% NaCl. It indicates that natural gas inclusion is a kind of thermal hydrocarbon fluid formed within the basin. Method of opening inclusion by heating was used to analyze composition of fluid inclusion online, of which the maximal hydrocarbon gas content of fluid inclusion contained in veins is 2.4219 m3/t rock and the maximal C1/ΣC i ratio is 91%. Laser Raman spectroscopy (LRS) was used to analyze chemistry of individual fluid inclusion in which the maximal hydrocarbon gas content is 91.6% compared with little inorganic composition. Isotope analysis results of calcite veins show that they were deposited in fresh water, in which the δ 13CPDB of calcite veins is from −5.75‰ to 15.23‰ and δ 18OSMOW of calcite veins is from 21.33‰ to 21.67‰. Isotope results show that δ 13C1 PDB of natural gas fluid inclusion is from −21.36‰ to −29.06‰ and δDSMOW of that is from −70.89‰ to −111.03‰. It indicates that the gas of fluid inclusion formed from coal source rocks and it is the same as that of natural gas of Mizhi gas reservoir. Results of TL dating show that time of calcite vein is (32.4±3.42)×104 a, which is thought to be formation time of gas inclusion. It indicated that natural gas inclusion contained in calcite veins recorded natural gas leakage from Mizhi gas reservoir through the Central Fault Belt due to Himalayan tectonic movement.

  相似文献   

16.
Organic carbon isotope(δ13Corg) data from two well-preserved sections across a shallow-to-deep water transect of the late Ediacaran-Early Cambrian Yangtze Platform in South China show significant temporal and spatial variations. In the shallow-water Jiulongwan-Jijiapo section, δ13Corg values of the late Ediacaran Dengying Formation range from -29‰ to -24‰. In the deep-water Longbizui section, δ13Corg values from time-equivalent strata of the Dengying Formation are mostly between –35‰ and -32‰. These new data, in combination with δ13Corg data reported from other sections in South China, reveal a 6‰–8‰ shallow-to-deep water δ13Corg gradient. High δ13Corg values(-30‰) occur mostly in shallow-water carbonate rocks, whereas low δ13Corg values(-32‰) dominate the deep-water black shale and chert. The large temporal and spatial δ13Corg variations imply limited buffering effect from a large dissolved organic carbon(DOC) reservoir that was inferred to have existed in Ediacaran-Early Cambrian oceans. Instead, δ13Corg variations between platform and basin sections are more likely caused by differential microbial biomass contribution to total organic matter. High δ13Corg values(-30‰) documented from shallow-water carbonates are within the range of typical Phanerozoic δ13Corg data and may record the isotope signature of organic matter from primary(photosynthetic) production. In contrast, low δ13Corg values(-32‰) from deep-water sections may have resulted from higher chemoautotrophic or methanotrophic biomass contribution to bulk organic matter in anoxic environments. The δ13Corg data provide indirect evidence for ocean stratification and episodic chemocline fluctuations in the Ediacaran-Early Cambrian Yangtze Platform.  相似文献   

17.
Cement content of carbonate in tight sandstone near section is much higher than that of the normal sandstones far away from the fault of well Xia503,in the Huimin sag in Linnan sub-depression.In order to understand the origin and its impact on fault sealing,analyses of the whole-rock minerals,casting thin sections,cathodoluminescence,isotope and physical properties are conducted on cores from well Xia503.It is found that 13C varies from 0.1‰to 0.6‰with the average value of 0.42‰,18O varies from 13.5‰to 12.3‰with the average of 13.1‰,and C–O isotope plotting points are distributed in the low to moderate temperature area of the hydrothermal dolomite.According to the occupied relationship,cathodoluminescence,and C–O isotope feature,the carbonate cementation could be divided into four stages:calcites,dolomite,ankerite,and ferrocalcite.It is discovered that the carbonate cementation is negatively related to reservoir physical property,with the porosity of 4.8%,permeability of 0.37 mD,and displacement pressure of 1.97 MPa in the tight sandstone,which have increased by almost one order of magnitude compared to the porosity of 14.3%,permeability of 3.73 mD,and displacement pressure of 0.27 MPa in the normal sandstone,which is far away from the fault.Regardless of the lithology of the counterpart wall of the fault,only the displacement pressure difference caused by carbonate cementation between the tight sandstone and the normal sandstone could seal 41 m high oil column.  相似文献   

18.
Lower Cretaceous C-isotope records show intermittent negative/positive spikes, and consistent patterns of coeval chemostratigraphic curves thus document shifts that signal simultaneous responses of temporal changes in the global carbon reservoir. The standard pattern registered by the δ 13Corg and δ 13Ccarb in Lower Aptian sediments includes distinct isotope segments C1 to C8 (Menegatti et al., 1998). In the El Pui section, Organyà Basin, Spain, C-isotope segment C2 is the longest interval preceding segments C3–C6 associated with oceanic anoxic event 1a (OAE 1a), and reveals a distinct negative shift of ~1.8‰ to ~2.23‰ defining the C-isotope pattern within that interval. Total inorganic carbon (TIC), total organic carbon (TOC), δ 13Corg, microfacies, n-alkanes show no difference before, during, or after the negative inflection. The biomarkers indicate that organic matter (OM) mainly originates from algal/microbial sources because short-chain length homologues (≤nC19) dominate. nC20 through nC25 indicate some contribution from aquatic vegetation, but little from higher plants (>nC25), as also suggested by the terrestrial/aquatic ratio of n-alkanes or (TAR) = [(nC27+nC29+nC31)/(nC15+nC17+nC19)] (averages 0.085). We suggest that conjoint pulses of contemporaneous LIPs (Ontong Java) and massive explosive volcanism in northeast Asia, the Songliao Basin (SB-V), best conform to plausible causes of the negative intra-C2 carbon isotopic excursion (CIE) at that time. Because of its apparent common occurrence the intra-C2 inflection could be a useful marker harbinger to the more pronounced CIE C3, the hallmark of OAE1a.  相似文献   

19.
Stable isotope data on humid tropical hydrology are scarce and, at present, no such data exist for Borneo. Delta18O, δ2H and δ13C were analysed on 22 water samples from different parts of the Sungai (river) Niah basin (rain, cave drip, rainforest pool, tributary stream, river, estuary, sea) in north‐central Sarawak, Malaysian Borneo. This was done to improve understanding of the modern stable isotope systematics of the Sungai Niah basin, essential for the palaeoenvironmental interpretation of the Late Quaternary stable isotope proxies preserved in the Great Cave of Niah. The Niah hydrology data are put into a regional context using the meteoric water line for Southeast Asia, as derived from International Atomic Energy Agency/World Meteorological Organization isotopes in precipitation network data. Although the Niah hydrological data‐set is relatively small, spatial isotopic variability was found for the different subenvironments of the Sungai Niah basin. A progressive enrichment occurs towards the South China Sea (δ18O ?4·6‰; δ2H ?29·3‰; δ13C ?4·8‰) from the tributary stream (δ18O ?8·4‰; δ2H ?54·7‰; δ13C ?14·5‰) to up‐river (δ18O c. ?8‰; δ2H c. ?51‰; δ13C c. ?12‰) and down‐river values (δ18O c. ?7·5‰; δ2H c. ?45‰; δ13C c. ?11‰). This is thought to reflect differential evaporation and mixing of different components of the water cycle and a combination of depleted biogenic δ13C (plant respiration and decay) with enriched δ13C values (due to photosynthesis, atmospheric exchange, mixing with limestone and marine waters) downstream. Cave drip waters are relatively enriched in δ13C as compared to the surface waters. This may indicate rapid degassing of the cave drips as they enter the cave atmosphere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Individual vertical profiles and north-south sections for the distribution of theδ13C of total dissolved inorganic carbon are presented for the Atlantic stations of the GEOSECS program. In most cases theδ13C data parallel the distribution of dissolved O2. Differences are attributed to in-situ oxidation of organic matter and dissolution of particles of CaCO3. Antarctic Bottom and Intermediate Waters have aδ13C value of near 0.5‰ relative to the PDB isotopic standard. The lowest values in the Atlantic ocean were found in the Antarctic Circumpolar waters which haveδ13C values as low as 0.2‰. The core of the North Atlantic Deep Water has aδ13C value of 1.0‰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号