首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2p (L 2,3) X-ray absorption spectra are presented for a range of minerals to demonstrate the usefulness of L-edge spectroscopy as a symmetry- and valenceselective probe. 2p XAS provides a sensitive fingerprint of the electronic states of 3 d transition metals and can be applied to phases containing mixtures of such elements. Calculated spectra for 3d n → 2p 5 3d n+1 transitions provide a basis for the interpretation of the measured spectra. Thus, in principle, multiple valence states of a particular 3 d metal can be precisely characterized from a single L-edge spectrum. Examples of vanadium L-edge spectra are presented for a range of minerals; these complex spectra hold information concerning the presence of vanadium in multiple valence states. The Cu L-edge spectrum of sulvanite (Cu3 VS4) indicates the presence of both Cu+ and Cu2+; the V L-edge spectrum of the same sample shows that both V2+ and V5+ are present. Spectral simulations representing mixtures of Fe d 5 and Fe d 6 states are used to quantify Fe3+/Fe in a spinel, a glass, and an amphibole, all of which contain Fe as a major component. To illustrate the sensitivity of 2p XAS in a dilute system, the Fe L-edge spectrum of amethyst (α-SiO2: Fe) has been recorded; this spectrum shows that ~68% of the Fe in amethyst is Fe2+, and ~32% is Fe3+. Although previous studies on amethyst using other spectroscopic methods cite evidence for Fe4+, there is no indication in the L-edge spectrum for Fe4+ in amethyst. Comparison of theoretical and experimental spectra not only allows the valence states of 3 d ions to be recognised, but also provides site-symmetry information and crystal field parameters for each ion site.  相似文献   

2.
Fracture surfaces of a natural carrollite specimen have been characterised by synchrotron and conventional X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy. For the synchrotron X-ray measurements, the mineral surfaces were prepared under clean ultra high vacuum and were unoxidised. The characterisation was undertaken primarily to establish unequivocally the oxidation state of the Cu in the mineral, but also to obtain information on the electronic environments of the Co and S, and on the surface species. Experimental and simulated Cu L2,3-edge absorption spectra confirmed an oxidation state of CuI, while Co 2p photoelectron and Co L2,3 absorption spectra were largely consistent with the CoIII established previously by nuclear magnetic resonance spectroscopy. S 2p photoelectron spectra provided no evidence for S to be present in the bulk in more than one state, and were consistent with an oxidation state slightly less negative than S-II. Therefore it was concluded that carrollite can be best represented by CuICoIII2(S4)-VII. The CuI oxidation state is in agreement with that expected for Cu tetrahedrally coordinated by S, but is in disagreement with the CuII deduced previously from some magnetic, magnetic resonance and Cu L-edge X-ray absorption spectroscopic measurements. A significant concentration of S species with core electron binding energies both lower and higher than the bulk value were formed at fracture surfaces, and these entities were assigned to monomeric and oligomeric surface S species. The density of Cu d states calculated for carrollite differed from that previously reported but was consistent with the observed Cu L3 X-ray absorption spectrum. The initial oxidation of carrollite in air under ambient conditions was confirmed to be congruent, unlike the incongruent reaction undergone by a number of non-thiospinel sulfide minerals.  相似文献   

3.
Metal L2,3, sulfur K and oxygen K near-edge X-ray absorption fine structure (NEXAFS) spectra for chalcopyrite, bornite, chalcocite, covellite, pyrrhotite and pyrite have been determined from single-piece natural mineral specimens in order to assess claims that chalcopyrite should be regarded as CuIIFeIIS2 rather than CuIFeIIIS2, and that copper oxide species are the principal initial oxidation products on chalcopyrite and bornite exposed to air. Spectra were obtained using both fluorescence and electron yields to obtain information representative of the bulk as well as the surface. Where appropriate, NEXAFS spectra have been interpreted by comparison with the densities of unfilled states and simulated spectra derived from ab initio calculations using primarily the FEFF8 code and to a lesser extent WIEN2k. Metal 2p and S 2p photoelectron spectra excited by monochromatised Al Kα X-rays were determined for each of the surfaces characterised by NEXAFS spectroscopy. The X-ray excited Cu LMM Auger spectrum was also determined for each copper-containing sulfide. FEFF8 calculations were able to simulate the experimental NEXAFS spectra quite well in most cases. For covellite and chalcocite, it was found that FEFF8 did not provide a good simulation of the Cu L3-edge spectra, but WIEN2k simulations were in close agreement with the experimental spectra. Largely on the basis of these simulations, it was concluded that there was no convincing evidence for chalcopyrite to be represented as CuIIFeIIS2, and no strong argument for some of the Cu in either bornite or covellite to be regarded as Cu(II). The ab initio calculations for chalcopyrite and bornite indicated that the density of Cu d-states immediately above the Fermi level was sufficient to account for the Cu L3-edge absorption spectrum, however these incompletely filled Cu d-states should not be interpreted as indicating some Cu(II) in the sulfide structure. It was also concluded that the X-ray absorption spectra were quite consistent with the initial oxidation products on chalcopyrite and bornite surfaces being iron oxide species, and inconsistent with the concomitant formation of copper-oxygen species.  相似文献   

4.
The Fe L 2,3-edge spectra for a range of natural minerals and synthetic solid solutions have been measured using the technique of parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM). The Fe L 2,3 -edges of the minerals are characterised by two white-line features and exhibit electron energy-loss near-edge structure (ELNES) characteristic of Fe valence state. For divalent iron, the Fe L 3 -edge spectra are dominated by a sharp peak (white-line) at ca. 707.8 eV, followed by a broader and less intense peak at ca. 710.5 eV. The ELNES on the Fe L 3 -edge of trivalent iron consists of a white-line with its maximum at ca. 709.5 eV and a preceeding peak at ca. 708.0 eV. Mineral solid solutions that contain both Fe2+ and Fe3+ exhibit an Fe L 3 -edge shape that is composed of Fe L 3 -edges from the respective Fe2+- and Fe3+-bearing end members. The integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) show clear differences for Fe2+ and Fe3+. We demonstrate the feasibility of quantification of the ferrous/ferric ratio in minerals by determining the integral Fe L 2,3 -edge white-line intensity ratios I(L 3 )/I(L 2 ) as a function of the ferric iron concentration resulting in an universal curve within the experimental errors. The application of the universal curve combined with the high spatial resolution using the PEELS/TEM allows the quantification of the ferric iron concentration on a scale down to 10 nm, which is illustrated from a sample of ilmenite containing hematite exsolution lamellae that shows different Fe L 2,3 -edge shapes consistent with variations in the Fe2+-Fe3+ ratio over distances of ca. 100 nm. Received: 30 July 1997 / Revised, accepted: 26 October 1997  相似文献   

5.
Estimation of Fe3+/ΣFe ratios in materials at the submicrometre scale has been a long-standing challenge in the Earth and environmental sciences because of the usefulness of this ratio in estimating redox conditions as well as for geothermometry. To date, few quantitative methods with submicrometric resolution have been developed for this purpose, and most of them have used electron energy-loss spectroscopy carried out in the ultra-high vacuum environment of a transmission electron microscope (TEM). Scanning transmission X-ray microscopy (STXM) is a relatively new technique complementary to TEM and is increasingly being used in the Earth sciences. Here, we detail an analytical procedure to quantify the Fe3+/ΣFe ratio in silicates using Fe L2,3-edge X-ray absorption near edge structure (XANES) spectra obtained by STXM, and we discuss its advantages and limitations. Two different methods for retrieving Fe3+/ΣFe ratios from XANES spectra are calibrated using reference samples with known Fe3+ content by independent approaches. The first method uses the intensity ratio of the two major peaks at the L3-edge. This method allows mapping of Fe3+/ΣFe ratios at a spatial scale better than 50 nm by the acquisition of 5 images only. The second method employs a 2-eV-wide integration window centred on the L2 maximum for Fe3+, which is compared to the total integral intensity of the Fe L2-edge. These two approaches are applied to metapelites from the Glarus massif (Switzerland), containing micrometre-sized chlorite and illite grains and prepared as ultrathin foils by focused ion beam milling. Nanometre-scale mapping of iron redox in these samples is presented and shows evidence of compositional zonation. The existence of such zonation has crucial implications for geothermometry and illustrates the importance of being able to measure Fe3+/ΣFe ratios at the submicrometre scale in geological samples.  相似文献   

6.
Chalcopyrite bio-dissolution plays an important role in the processing of copper sulfide ores. However, due to the slow dissolution rates of CuFeS2, bio-dissolution processes have not yet found widespread application. In order to enhance the dissolution of chalcopyrite, a novel method for enhancing the dissolution using ozone was proposed and verified. The generated products in chalcopyrite dissolution process in the presence of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans was studied. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicate that a surface layer mainly consisting of jarosite and polysulfide (Snn−/S0) might be formed during biotic stage, which can be eliminated with the introduction of ozone. Electrochemical results show that ozone significantly increased the electrochemical reactivity of bioleached chalcopyrite, further proving that ozone enhanced the dissolution through destroying the surface layer. Hence, a bi-stage method for dissolution of chalcopyrite can be proposed.  相似文献   

7.
Parallel electron energy-loss spectroscopy (PEELS) in a scanning transmission electron microscope (STEM) was used to record the Mn L2,3-edges from a range of natural and synthetic manganese containing materials, covering valences 0, II, III, IV and VII, with an energy resolution of ca. 0.5 eV. The Mn L2,3 electron-loss near-edge structure (ELNES) of these edges provided a sensitive fingerprint of its valence. The Mn2+ L2,3-edges show little sensitivity to the local site symmetry of the ligands surrounding the manganese. This is illustrated by comparing the Mn L2,3-edges from 4-, 6- and 8-fold coordinated Mn2+. In contrast, the Mn L3-edges from Mn3+ and Mn4+ containing minerals exhibited ELNES that are interpreted in terms of a crystal-field splitting of the 3d electrons, governed by the symmetry of the surrounding ligands. The Mn L3-edges for octahedrally coordinated Mn2+, Mn3+ and Mn4+ showed variations in their ELNES that were sensitive to the crystal-field strength. The crystal-field strength (10Dq) was measured from these edges and compared very well with published optically determined values. The magnitude of 10Dq measured from the Mn L3-edges and their O K-edge prepeaks of the manganese oxides were almost identical. This further confirms that the value of 10Dq measured at the Mn L3-edge is correct. Selected spectra are compared with theoretical 2p atomic multiplet spectra and the differences and similarities are explained in terms of the covalency and site symmetry of the manganese. The Mn L3-edges allow the valence of the manganese to be ascertained, even in multivalent state materials, and can also be used to determine 10Dq.  相似文献   

8.
The molecular environment of iodine in reference inorganic and organic compounds, and in dry humic and fulvic acids (HAs and FAs) extracted from subsurface and deep aquifers was probed by iodine L3-edge X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) of iodine spectra from HAs and FAs resembled those of organic references and displayed structural features consistent with iodine forming covalent bonds with organic molecules. Simulation of XANES spectra by linear combination of reference spectra suggested the predominance of iodine forming covalent bonds to aromatic rings (aromatic-bound iodine). Comparison of extended X-ray absorption fine structure (EXAFS) spectra of reference and samples further showed that iodine was surrounded by carbon shells at distances comparables to those for references containing aromatic-bound iodine. Quantitative analysis of EXAFS spectra indicated that iodine was bound to about one carbon at a distance d (I-C) of 2.01(4)-2.04(9) Å, which was comparable to the distances observed for aromatic-bound iodine in references (1.99(1)-2.07(6) Å), and significantly shorter than that observed for aliphatic-bound iodine (2.15(2)-2.16(2) Å). These results are in agreement with previous conclusions from X-ray photoelectron spectroscopy and from electrospray ionization mass spectrometry. These results collectively suggest that the aromatic-bound iodine is stable in the various aquifers of this study.  相似文献   

9.
The solubility of nantokite (CuCl(s)) and the structure of the predominant copper species in supercritical water (290-400 bar at 420 °C; 350-450 °C at 290 bar; 500 °C at 350 bar; density = 0.14-0.65 g/cm3) were investigated concurrently using synchrotron X-ray absorption spectroscopy (XAS) techniques. These conditions were chosen as they represent single phase solutions near the critical isochore, where the fluid density is intermediate of typical values for vapour and brine and is highly sensitive to even small changes in pressure. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption spectroscopy (EXAFS) analyses show that aqueous copper occurs in a slightly distorted linear coordination in the solutions studied, with an average of 1.35(±0.3) Cl and 0.65(±0.3) O neighbours. The solubility of CuCl(s) decreases exponentially with decreasing water density (i.e., decreasing pressure at constant temperature), in a manner similar to the solubility behaviour of salts such as NaCl in water vapour. Based on this similarity, an apparent equilibrium constant for the dissolution reaction of 0.5 ± 0.4 was calculated from a regression of the data at 420 °C, and it was determined that each Cu atom is solvated by approximately three water molecules. This indicates that under these conditions, copper solubility is controlled mainly by the structure of the second-shell hydration, which is essentially invisible to the XAS techniques used in this study.These results demonstrate that for a supercritical fluid near the critical isochore, decreasing pressure may initiate precipitation of copper even before boiling or phase separation. Such a process could be responsible for near-surface ore deposition in seafloor hydrothermal systems, where supercritical fluids experience rapid pressure changes during the transition between lithostatic and hydrostatic domains.  相似文献   

10.
Fe L-, S L-, and O K-edge X-ray absorption spectra of natural monoclinic and hexagonal pyrrhotites, Fe1-xS, and arsenopyrite, FeAsS, have been measured and compared with the spectra of minerals oxidized in air and treated in aqueous acidic solutions, as well as with the previous XPS studies. The Fe L-edge X-ray absorption near-edge structure (XANES) of vacuum-cleaved pyrrhotites showed the presence of, aside from high-spin Fe2+, small quantity of Fe3+, which was higher for a monoclinic mineral. The spectra of the essentially metal-depleted surfaces produced by the non-oxidative and oxidative acidic leaching of pyrrhotites exhibit substantially enhanced contributions of Fe3+ and a form of high-spin Fe2+ with the energy of the 3d orbitals increased by 0.3–0.8 eV; low-spin Fe2+ was not confidently distinguished, owing probably to its rapid oxidation. The changes in the S L-edge spectra reflect the emergence of Fe3+ and reduced density of S s–Fe 4s antibonding states. The Fe L-edge XANES of arsenopyrite shows almost unsplit eg band of singlet Fe2+ along with minor contributions attributable to high-spin Fe2+ and Fe3+. Iron retains the low-spin state in the sulphur-excessive layer formed by the oxidative leaching in 0.4 M ferric chloride and ferric sulphate acidic solutions. The S L-edge XANES of arsenopyrite leached in the ferric chloride, but not ferric sulphate, solution has considerably decreased pre-edge maxima, indicating the lesser admixture of S s states to Fe 3d orbitals in the reacted surface layer. The ferric nitrate treatment produces Fe3+ species and sulphur in oxidation state between +2 and +4.  相似文献   

11.
Energy gaps and electrical conductivities in the ferrous silicates, Fe2SiO4 and FeSiO3, depend primarily on Fe-O bonding and may be studied by ultraviolet and soft X-ray spectroscopy. We have measured FeLII–III X-ray band spectra under conditions of “minimal” (I4, at 4.0 keV) and “high” (I10, at 10.0 keV) self absorption to determine 3d orbital energy levels, to delineate d states in the valence band, and to construct band gap models. Absorption spectra, I4/I10, were computed to determine vacant orbital levels in the gap. A difference function (I4–I10) has been proposed to identify X-radiation at photon energies above the measured LIII absorption edge, including high-energy, double-vacancy satellites and radiative transitions involving the anti-parallel (spin-down) d 6 electron in the ground state. The proposed band gap model for Fe2SiO4 is consistent with that of Nitsan and Shankland (1976), including an intrinsic transition of 6.5 eV and an energy gap of 7.8 eV. The 3d orbital energy level electronic structures are in general agreement with levels computed by Tossell et al. (1974) for [FeO6]10? in FeO using an SCF Xα cluster MO method. A high-energy, double-vacancy satellite was found at ~710.7 eV, and is presumed to originate from an LIIIMII,III initial state. The intensity of these satellites for the ferrous silicates and other iron compounds, and corresponding Fe LII/LIII intensity ratios are correlated with differences in band gap magnitudes and gap structure. Fe LII/LIII intensity ratios are not well correlated with iron oxidation state.  相似文献   

12.
The effect of pressure on titanium coordination in glasses, with composition K2TiSi4O11, quenched isobarically from liquids equilibrated at high pressure (5, 10, 15, 20, 25, 30 kbar respectively) and T=1600° C has been investigated by X-ray absorption spectroscopy (XAS). The XANES spectra collected at the Ti K-edge clearly show a variation with pressure that is related to changes in the geometrical environment around the Ti atoms. By comparison with spectra of standard materials, the XANES spectra of the glasses suggest a relatively low average coordination number (near 5) in samples quenched at low pressure and a higher coordination number (near 6) in samples quenched from the highest pressure. The combination of XANES data with density and compressibility measurements supports the idea that a mixture of 6- and lower coordinated (4- and/ or 5-coordinated) Ti geometries are present in the 1 bar glass, and an increasing proportion of 6-coordinated Ti occurs in the glasses synthesized at progressively higher pressures.  相似文献   

13.
Sulfur K-edge x-ray absorption spectra (XANES and EXAFS) and L-edge XANES of sphalerite (ZnS), chalcopyrite (CuFeS2) and stannite (Cu2FeSnS4) have been recorded using synchrotron radiation. The K- and L-edge XANES features are interpreted using a qualitative MO/energy band structure model. The densities of unoccupied states at the conduction bands of sphalerite, chalcopyrite and stannite are determined using S K- and L-edge XANES features (up to 15 eV above the edge), combined with published metal K-edge XANES. The SK- and L-edge XANES also indicate that, for sphalerite, the Fe2+ 3d band at the fundamental gap has little or no bonding hybridization with S 3p and S 3s orbitals; for chalcopyrite, the Cu+ 3d and Fe3+ 3d bands have strong mixing with S 3p and S 3s states, while for stannite the Cu+ 3d band strongly hybridizes with S 3p and S 3s orbitals, but the Fe2+ 3d band does not. The post-edge XANES features (15–50 eV above the edge) of sphalerite, chalcopyrite and stannite are similar. These features are related to the tetrahedral coordination of sulfur in all these structures, and interpreted by a multiple scattering model. The resonance energies from both the K-edge and L-edge XANES for these minerals are well correlated with reciprocal interatomic distances and lattice spaces. Sulfur K-edge EXAFS analyses using Fourier transform and curve fitting procedures are presented. Comparison of the structural parameters from EXAFS with x-ray structure data shows that the first shell bond distances (BD) from EXAFS are usually accurate to ±0.02 Å, and that coordination numbers (CN) are generally accurate to ±20 percent. For sphalerite, EXAFS analysis yields the structure parameters for the first three neighbour shells around a sulfur atom; the BD and CN even for the third shell are in close agreement with the x-ray structure, and the Debye-Waller term decreases from the first shell to the third shell. It is shown that sphalerite (ZnS) is a good model compound for EXAFS analysis of sulfur in chalcogenide glasses and metalloproteins.  相似文献   

14.
We combined synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy and binding affinity studies to determine the coordination, geometry, and strength of methyl mercury, CH3Hg (II), bonding in soil and stream organic matter. Samples of organic soil (OS), potentially soluble organic substances (PSOS) from the soil, and organic substances from a stream (SOS) draining the soil were taken along a short “hydrological transect.” We determined the sum of concentrations of highly reduced organic S groups (designated Org-SRED), such as thiol (RSH), disulfane (RSSH), sulfide (RSR), and disulfide (RSSR), using sulfur K-edge XANES. Org-SRED varied between 27% and 64% of total S in our samples. Hg LIII-edge EXAFS analysis were determined on samples added CH3Hg (II) to yield CH3Hg (II)/Org-SRED ratios in the range 0.01-1.62. At low ratios, Hg was associated to one C atom (the methyl group) at an average distance of 2.03 ± 0.02 Å and to one S atom at an average distance of 2.34 ± 0.03 Å, in the first coordination shell. At calculated CH3Hg(II)/Org-SRED ratios above 0.37 in OS, 0.32 in PSOS, and 0.24 in SOS, the organic S sites were saturated by CH3Hg+, and O (and/or N) atoms were found in the first coordination shell of Hg at an average distance of 2.09 ± 0.01 Å. Based on the assumption that RSH (and possibly RSSH) groups take part in the complexation of CH3Hg+, whereas RSSR and RSR groups do not, approximately 17% of total organic S consisted of RSH (+ RSSH) functionalities in the organic soil. Corresponding figures for samples PSOS and SOS were 14% and 9%, respectively. Competitive complexation of CH3Hg+ by halide ions was used to determine the average binding strength of native concentrations of CH3Hg (II) in the OS sample. Using data for Org-SRED, calculated surface complexation constants were in the range from 1016.3 to 1016.7 for a model RSH site having an acidity constant of mercaptoacetic acid. These values compare favorably with identically defined stability constants (log K1) for the binding of methyl mercury to thiol groups in well-defined organic compounds.  相似文献   

15.
γ LiAlO2 doped with Fe3+ in the tetrahedral site has been examined by extended X-ray absorption fine structure (EXAFS) analysis, and Mössbauer and optical spectroscopy. The isomer shift (IS) is ?0.026 mm/s (Fe-Pd); the quadrupole splitting (QS) is 0.62 mm/s. Anisotropic optical absorption is prominent at ~391, 452, and 463 nm. The K-edge absorption spectrum shows a prominent absorption near 7,113 ev typical of tetrahedrally coordinated Fe3+.  相似文献   

16.
The Sb speciation in soil samples from Swiss shooting ranges was determined using Sb K-edge X-ray absorption spectroscopy (XAS) and advanced statistical data analysis methods (iterative transformation factor analysis, ITFA). The XAS analysis was supported by a spectral data set of 13 Sb minerals and 4 sorption complexes. In spite of a high variability in geology, soil pH (3.1-7.5), Sb concentrations (1000-17,000 mg/kg) and shooting-range history, only two Sb species were identified. In the first species, Sb is surrounded solely by other Sb atoms at radial distances of 2.90, 3.35, 4.30 and 4.51 Å, indicative of metallic Sb(0). While part of this Sb(0) may be hosted by unweathered bullet fragments consisting of PbSb alloy, Pb LIII-edge XAS of the soil with the highest fraction (0.75) of Sb(0) showed no metallic Pb, but only Pb2+ bound to soil organic matter. This suggests a preferential oxidation of Pb in the alloy, driven by the higher standard reduction potential of Sb. In the second species, Sb is coordinated to 6 O-atoms at a distance of 1.98 Å, indicative of Sb(V). This oxidation state is further supported by an edge energy of 30,496-30,497 eV for the soil samples with <10% Sb(0). Iron atoms at radial distances of 3.10 and 3.56 Å from Sb atoms are in line with edge-sharing and bidentate corner-sharing linkages between Sb(O,OH)6 and Fe(O,OH)6 octahedra. While similar structural units exist in tripuhyite, the absence of Sb neighbors contradicts formation of this Fe antimonate. Hence the second species most likely consists of inner-sphere sorption complexes on Fe oxides, with edge and corner-sharing configuration occurring simultaneously. This pentavalent Sb species was present in all samples, suggesting that it is the prevailing species after weathering of metallic Sb(0) in oxic soils. No indication of Sb(III) was found.  相似文献   

17.
X-ray photoelectron and absorption spectra have been obtained for natural specimens of cubanite and compared with the corresponding spectra for chalcopyrite. Synchrotron X-ray photoelectron spectra of surfaces prepared by fracture under ultra-high vacuum revealed some clear differences for the two minerals, most notably those reflecting their different structures. In particular, the concentration of the low binding energy S species formed at cubanite fracture surfaces was approximately double that produced at chalcopyrite surfaces. However, the core electron binding energies for the two S environments in cubanite were not significantly different, and were similar to the corresponding values for the single environment in chalcopyrite. High binding energy features in the S 2p and Cu 2p spectra were not related to surface species produced either by the fracture or by oxidation, and most probably arose from energy loss due to inter-band excitation. Differences relating to the Fe electronic environments were detectable, but were smaller than expected from some of the observed physical properties and Mössbauer spectroscopic parameters for the two minerals. X-ray absorption and photoelectron spectra together with the calculated densities of states for cubanite confirmed an oxidation state of CuI in the mineral. It was concluded that the best formal oxidation state representation for cubanite is CuI(Fe2)VS 3 ?II .  相似文献   

18.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

19.
Structural Fe(II) has been shown to reduce several oxidized environmental contaminants, including NO3, chlorinated solvents, Cr(VI), and U(VI). Studies investigating reduction of U(VI) by soils and sediments, however, suggest that abiotic reduction of U(VI) by Fe(II) is not significant, and that direct enzymatic reduction of U(VI) by metal-reducing bacteria is required for U(VI) immobilization as U(IV). Here evidence is presented for abiotic reduction and immobilization of U(VI) by structural Fe(II) in a redoximorphic soil collected from a hillside spring in Iowa. Oxidation of Fe(II) in the soil after reaction with U(VI) was demonstrated by Mössbauer spectroscopy and reduction of U(VI) by the pasteurized soil using U LIII-edge X-ray absorption spectroscopy (XAS). XAS indicates that both reduced U(IV) and oxidized U(VI) or U(V) are present after U(VI) interaction with the Fe(II) containing soil. The EXAFS data show the presence of a non-uraninite U(IV) phase and evidence of the oxidized U(V) or U(VI) fraction being present as a non-uranyl species. Little U(VI) reduction is observed by soil that has been exposed to air and oxidation of Fe(II) to goethite has occurred. Soil characterization based on chemical extractions, Mössbauer spectroscopy, and Fe K-edge XAS indicate that the majority of Fe(II) in the soil is structural in nature, existing in clay minerals and possibly a green rust-like phase. These data provide compelling evidence for abiotic reduction of U(VI) by structural Fe(II) from soil near Fe-rich oxic–anoxic boundaries in natural environments. The work highlights the potential for abiotic reduction of U(VI) by Fe(II) in reduced, Fe-rich environments.  相似文献   

20.
 A series of titanium silicate glasses along the composition joins SiO2–TiO2, Na2SiO3–TiO2, K2SiO3–TiO2, and CaSiO3–TiO2 have been examined using titanium (Ti) L-edge X-ray absorption near-edge spectroscopy (XANES). XANES spectra were collected at the Canadian Synchrotron Radiation Facility (CSRF), University of Wisconsin, Madison, using the Spherical Grating Monochromator (SGM) beamline. Glass spectra were compared with spectra obtained from crystalline analogues with differing Ti coordination environments: βrBa2TiO4 ([4]Ti); fresnoite ([5]Ti); and rutile and anatase ([6]Ti). The Ti L-edge data indicate that for homogeneous TiO2–SiO2 glasses Ti coordination is [5]Ti at TiO2 contents below 3.6 wt% but predominantly [4]Ti with some [5]Ti present above this content. There is no evidence for [6]Ti. For the Na2 O-containing glasses the L-edge data indicate that Ti is [4]Ti with some [5]Ti at low TiO2 contents, becomes a mix of [4]Ti and [5]Ti with increasing TiO2 content, but is exclusively [5]Ti by 14.3 wt% TiO2. The K2O composition glasses exhibit similar behavior but contain a greater proportion of [4]Ti and less [5]Ti than the equivalent Na2O-bearing glasses. These findings are consistent with previous Raman and XANES pre-edge studies. Alkaline-earth-containing glasses behave somewhat differently, with [5]Ti occurring in low TiO2 content glasses, becoming a mix of [4]Ti and [5]Ti, and then gradually changing to predominantly [4]Ti at higher TiO2 compositions. Finally, we have obtained data for a fresnoite composition (Ba2TiSi2O8) glass. Previous pre-edge and Raman data had suggested that this composition glass contained [5]Ti; however, our Ti L-edge data indicate that Ti is almost exclusively [4]Ti, although some [5]Ti may also be present. Received: 20 December 2000 / Accepted: 10 July 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号