首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Ion chemistry of mine pit lake water reveals dominance of alkaline earths (Ca2+ and Mg2+) over total cation strength, while SO4 2? and Cl? constitute the majority of total anion load. Higher value of Ca2+?+?Mg2+/Na+?+?K+ (pre-monsoon 5.986, monsoon 8.866, post-monsoon 7.09) and Ca2+?+?Mg2+/HCO3 ??+?SO 4 2 (pre-monsoon 7.14, monsoon 9.57, post-monsoon 8.29) is explained by weathering of Ca?CMg silicates and dissolution of Ca2+-bearing minerals present in parent rocks and overburden materials. Silicate weathering supposed to be the major geological contributor, in contrast to bicarbonate weathering does a little. Distribution coefficient for dissolved metals and sorbed to surface sediments is in the order of Cd?>?Pb?>?Fe?>?Zn?>?Cu?>?Cr?>?Mn. Speciation study of monitored metals in surface sediments shows that Fe and Mn are dominantly fractionated in exchangeable-acid reducible form, whereas rest of the metals (Cr, Pb, Cd, Zn, and Cu) mostly in residual form. Cd, Pb, and Zn show relatively higher recalcitrant factor that indicates their higher retention in lake sediments. Factor loading of monitored physico-chemical parameters resembles contribution/influences from geological weathering, anthropogenic inputs as well as natural temporal factors. Ionic load/strength of lake water accounted for geochemical process and natural factors, while pollutant load (viz BOD, COD and metals, etc.) is associated with anthropogenic inputs through industrial discharge.  相似文献   

2.
This paper deals with the mechanism of dissolution reaction kinetics of minerals in aqueous solution based on the theory of surface chemistry.Surface chemical catalysis would lead to an obvous decrease in active energy of dissolution reaction of minerals.The dissolution rate of minerals is controlled by suface adsorption,surface exchange reaction and desorption,depending on pH of the solution and is directly proportional to δH^n0 ,When controlled by surface adsorption,i.e.,nθ=1,the dissolution rate will decrease with increasing pH;when controlled by surface exchane reaction,i.e.,nθ=0,the dissolution rate is independent of pH;when controlled by desorption,nθis a positive decimal between 0 and 1 in acidic solution and a negative decimal between-1 and 0 in alkaline solution.Dissolution of many minerals is controlled by surface adsorption and/or surface exchange reactions under acid conditions and by desorption under alkaline conditions.  相似文献   

3.
4.
The Begnas Lake in the Pokhara Valley is one of the threatened habitats in Nepal. The major ion chemistry explains the status of most of the inorganic nutrients and their possible sources. However, the earlier studies mostly cover limnological investigations, and phytoplankton and zooplankton diversity. Thus, the present study has been conducted to investigate the geochemical processes and to examine the seasonal variation of chemical composition within Begnas Lake. The results showed that SO 4 2- , PO 4 3- , and NO 3 - increased compared with the previous values. The domination of Ca2+, Mg2+, and HCO 3 - explains the influence of carbonate weathering on the major ion concentration. In general, pH and dissolved oxygen decreased with the depth of water-column, while electric conductivity, total dissolved solids, HCO 3 - , Cl-, H4SiO4, K+, Mg2+, Ca2+, Mn2+, and Fe increased. Among the cations, the predominance of Ca2+ and Mg2+ as characterized by high (>0.6) (Ca2+ + Mg2+)/(Tz+) and (>0.8) (Ca2+ + Mg2+)/(Na+ + K+) equivalent ratios, also suggests prevalence of carbonate weathering. The low value of (Na+ + K+)/Tz+ ratio shows deficiency of Na+ and K+, suggesting low contribution of cations via aluminosilicate weathering. The C-ratio suggests a proton source derived both from oxidation of sulfide and dissolution and dissociation of atmospheric CO2 during different seasons. Though the major hydro-chemical parameters are within permissible limit, the increase in trophic state of the lake suggests that inherent biogeochemical processes make the limiting nutrients available, rendering eutrophic effect. Therefore, further comprehensive studies incorporating sediment–water interaction ought to be carried out to explain the ongoing phenomena and curb the eutrophication process in the lake.  相似文献   

5.
The study on the competitive adsorption shows that the magnitude order of metal ions adsorbed onto oxide and silicate minerals in near-neutral solution with low ionic strength is in mole/nm2 as follows: CaCO3 > quarte > hydromuscovite > kaolinite > Ca-montmorillonite > goethite > gibbsite. These minerals can be divided into three groups according to their surface equilibrium constantsK M of the adsorption reactions, which are the function of the dielectric constants ε of the absorbent minerals. The relationships between constantsK M and mineral dielectric constants ε are described as follows: lgK M 1 = 7.813-26.15/ε lgK M 2 = 9.030-26.15/ε lgK M 3 =11.63-26.15/ε for the adsorption reaction: >SO- + Mn+≥SOMn-1)+ (n = 1, 2, 3) The first group of minerals include quartz, goethite, 1:1 phyllosilicates and other oxide minerals; the second: gibbsite, brucite and 2:1 phyllosilicates; the third: carbonate, sulphate and phosphorate minerals. The appearance reaction constants have a variation of magnitude ±0.5 for different metal ions with the same mineral. This project was financially supported by the National Natural Science Foundation of China (No. 49572091).  相似文献   

6.
Investigations were undertaken into the quality of surface water and groundwater bodies within the Upper Tigris Basin in Turkey to determine their suitability for potable and agricultural use. In the study area, the majority of the groundwater and surface water samples belong to the calcium–magnesium–bicarbonate type (Ca–Mg–HCO3) or magnesium–calcium–bicarbonate type (Mg–Ca–HCO3). Chemical analysis of all water samples shows that the mean cation concentrations (in mg/L) were in the order Ca2+ > Mg2+ > Na+ > K+ and that of anions are in the order \( \text{HCO}_{3}^{ - } \) > \( \text{SO}_{4}^{2 - } \) > Cl? > \( \text{CO}_{3}^{ - } \) for all groundwater and surface water samples. The Mg2+/Ca2+ ratio ranges from 0.21 to 1.30 with most of the values greater than 0.5, indicating that weathering of dolomites is dominant in groundwater. The analysis reveals that all of the samples are neutral to slightly alkaline (pH 7.0–8.7). Groundwater and surface water suitability for drinking usage was evaluated according to the World Health Organization and Turkish Standards (TSE-266) and suggests that most of the samples are suitable for drinking. Various determinants such as sodium absorption ratio, percent sodium (Na %), residual sodium carbonate and soluble sodium percentage revealed that most of the samples are suitable for irrigation. According to MH values, all of the well water samples were suitable for irrigation purposes, but 80 and 81.82% of Zillek springs and surface water samples were unsuitable. As per the PI values, the water samples from the study area are classified as Class I and Class II and are considered to be suitable for irrigation.  相似文献   

7.
An investigation on quality of groundwater has been carried out in the river basin of Varaha located in Visakhapatnam District, Andhra Pradesh to find out the factors that are responsible for spatial variations of water vulnerability. The study area is underlain by the Precambrian rocks of Eastern Ghats over which the Recent Formations occur. Groundwater is a prime source for drinking and irrigation. The quality of groundwater is fresh and brackish with dominance of the latter. Groundwater samples are categorized into two major clusters A and B, using the dendrogram of cluster analyses. Out of these two major clusters, five sub-clusters I to V in the pre-monsoon season and six sub-clusters I to VI in the post-monsoon season are identified. The sub-clusters I to IV of pre-monsoon and I to V of post-monsoon seasons of the cluster A are characterized by less mineralized groundwater compared to those of V of pre-monsoon and VI of post-monsoon seasons of the cluster B, which represent highly mineralized groundwater. The low to high mineral content follows gradually from upstream to the downstream area, being higher in post-monsoon season in both the clusters A and B, depending upon the source, mineral dissolution, and precipitation, solubility and leaching of ions, ion exchange and adsorption processes. Spatial distributions of the sub-clusters give clues to understand the factors that cause variations of groundwater vulnerability at a specific site, vis-a-vis local and regional lithological and non-lithological influences. As a result, the quality of groundwater on a regional scale changes from Na+ > Mg2+ >Ca2+ > K+: HCO 3 ? > Cl? > SO 4 2? > NO 3 ? > F? in the cluster A to Na+ > Mg2+ >Ca2+ > K+: Cl? > HCO 3 ? > SO 4 2? > NO 3 ? > F? in the cluster B, following the topography. The classification of the area into the zones of relative groundwater vulnerability with respect to drinking water quality of the chemical composition of the sub-clusters helps the planners to identify the specific locations, where the inferior quality of groundwater can occur, for taking the remedial measures.  相似文献   

8.
The enthalpy, Gibbs free energy, and entropies of aqueous radium species and radium solids have been evaluated from empirical data, or estimated when necessary for 25°C and 1 bar. Estimates were based on such approaches as extrapolation of the thermodynamic properties of Ca, Sr, and Ba complexes and solids plotted against cationic radii and charge to radius functions, and the use of the Fuoss or electrostatic mathematical models of ion pair formation (Langmuir, 1979). Resultant log K (assoc) and ΔH0 (assoc) (kcal/mol) values are: for RaOH+ 0.5 and 1.1; RaCl+ ?0.10 and 0.50; RaCO03 2.5 and 1.07; and RaSO04 2.75 and 1.3. Log Ksp and ΔH0 (dissoc) (kcal/mol) values for RaCO3(c) and RaSO4(c) are ?8.3 and ?2.8, and ?10.26 and ?9.4, respectively.Trace Ra solid solution in salts of Pb and of the lighter alkaline earths, has been appraised based on published distribution coefficient (D) data, where D ~- (mM2+)(NRaX)/(mRa2+)(NMX) (m and N are the aqueous molality and mole fraction of Ra and cation M in salt X, respectively. The empirical solid solution data have been used to derive both enthalpies and Gibbs free energies of solid solution of trace Ra in sulfate and carbonate minerals up to 100°C. Results show that in every case D values decrease with increasing temperature. Among the sulfate and carbonate minerals, D values decrease for the following minerals in the order: anhydrite > celestite > anglesite > barite > aragonite > strontianite > witherite > cerussite.  相似文献   

9.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

10.
Assessment of groundwater quality is essential to ensure sustainable use of it for drinking, agricultural, and industrial purposes. The chemical quality of groundwater of Gaya region has been studied in detail in this work to delineate the potable groundwater zones. A total of 30 groundwater samples and 2 surface water samples were collected in and around Gaya district of Bihar. The major cations follow the trend: Ca2+?>?Mg2+?>?Na+?>?K+. The domination of calcium ions in the groundwater is due to weathering of rocks. The K+ ranged between 0.2 and 47.95 ppm, suggesting its abundance the below desired limit; but some samples were found to be above permissible limit. K+ weathering of potash silicate and the use of potash fertilizer could be the source. The major anions abundance followed the order HCO 3 ? ?>?Cl??>?SO 4 2? ?>?NO 3 ? ?>?PO 4 3? . Dissolution of carbonates and reaction of silicates with carbonic acid accounts for the addition of HCO 3 ? to the groundwater and oxidation of sulphite may be the source of SO 4 2? . Principal component analysis was utilized to reflect those chemical data with the greatest correlation and seven major principal components (PCs) representing >80 % of cumulative variance were able to interpret the most information contained in the data. PC1, PC2 and PC3 reflect the hydrogeochemical processes like mineral dissolution, weathering and anthropogenic sources. PC4, PC5, PC6 and PC7 show monotonic, random and independent relationships.  相似文献   

11.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

12.
13.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

14.
Adsorption of divalent metal ions, including Cu2+, Pb2+, Zn2+, Cd2+ and Ni2+, on quartz surface was measured as a function of metal ion concentration at 30°C under conditions of solution pH= 6. 5 and ion strength I = 0. 1mol/L. Results of the experimental measurements can be described very well by adsorption isotherm equations of Freudlich. The correlation coefficients (r) of adsorption isotherm lines are > 0. 96. Moreover, the experimental data were interpreted on the basis of surface complexation model. The experimental results showed that the monodentate-coordinated metal ion surface complex species (SOM+) are predominant over the bidentate-coordinated metal ion surface complex species [(SO)2M] formed only by the ions Cu2+, Zn2+ and Ni2+. And the relevant apparent surface complexation constants are lgKM = 2.2–3.3 in order of KCd≥KPb > KZn > KNi≥KCu, and lgβM = 5.9-6.8 in order of βNi > βZn > βCu. Therefore, the reactive ability of the ions onto mineral surface of quartz follows the order of Cd > Pb > Zn > Ni> Cu under the above-mentioned solution conditions. The apparent surface complexation constants, influenced by the surface potential, surface species and hydrolysis of metal ions, depend mainly on the Born solvation coefficient of the metal ions. This project was financially supported by the National Natural Science Foundation of China (No. 49572091).  相似文献   

15.
Quantitative characterization of the development of proton surface charge on the surfaces of minerals is necessary for a fundamental understanding of reactions between minerals and aqueous electrolyte solutions. Despite many experimental studies of charge development, few attempts have been made to integrate the results of such studies with a theoretical framework that permits prediction. The present study builds on a theoretical framework to analyze a total of 55 sets of proton surface charge data referring to wide ranges of ionic strengths, and types of electrolyte and oxide. The resulting parameters were interpreted with the aid of crystal chemical, electrostatic, and thermodynamic theory, which enable a number of generalizations. Prediction of values of the pHZPC and ΔpKnθ reduces the number of triple-layer parameters to be estimated. New standard states for the equilibrium constants for electrolyte adsorption (KM+θ and KLθ) permit direct comparison of samples with a range of surface areas or site densities. Predicted cation binding on high dielectric constant solids (e.g., rutile) shows KM+θ, increasing in the sequence Cs+, Rb+, K+, Na+, Li+. In contrast, on low dielectric constant solids (e.g., amorphous silica), the predicted sequence is Li+, Na+, K+, Rb+, Cs+. The opposite sequences are attributable to the large solvation energy contribution opposing adsorption on low-dielectric constant solids. Cation and anion binding constants are in general different, which enables direct prediction of the point-of-zero-salt effect (pHPZSE) relative to the pristine point-of-zero charge. The inner and outer capacitances in the triple-layer model (C1 and C2) are predictable parameters consistent with physically reasonable distances and interfacial dielectric constants for water. In summary, all the parameters in the triple-layer model can be estimated with the revised equations of this study, which enables prediction of proton surface charge for any oxide in 1:1 electrolyte solutions independent of experiments. Such predictions can serve as a complement to the experimental study of new oxide/electrolyte systems, or more complex systems, where additional mechanisms of charge development are likely.  相似文献   

16.
The chemistry of soil solutions can be altered by human activities, due to the intense agricultural and husbandry, leading to leaching of nutrients and subsequently elevating ground water levels. Multivariate statistical and inverse geochemical modeling techniques were used to determine the main factors controlling soil solution chemistry of calcareous soils. In this research, a total of 21 calcareous soils was characterized and assessed for soil solution using soil column. The major cations in the studied soil solutions were in the decreasing order as Ca2+ > Mg2+ > Na+ > K+. The anions were also arranged in decreasing order as HCO $ _{3}^{ - } $  > Cl $ ^{ - } $  > SO $ _{4}^{2 - } $  > NO $ _{3}^{ - } $ . Concentrations of NO $ _{3}^{ - } $ , P, and K+ in soil solutions were in the range of 6.8–307.5 mg l?1 (mean 63.2 mg l?1), 5.0–10.4 mg l?1 (mean 5.9 mg l?1), and 2.8–54.6 mg l?1 (mean 11.3 mg l?1), respectively. Results suggest that the concentration of P in the soil solutions could be primarily controlled by the solubility of dicalcium phosphate dihydrate and dicalcium phosphate. Interactions between soil properties and observed solubility of nutrients were described, and put into empirical multivariate formulations. Obtained equations contained electrical conductivity (EC) as a key factor in determining nutrients solubility. Inverse geochemical modeling of soil solution using PHREEQC indicates the dissolution of calcite, anhydrite, halite, CO2 (g), N2 (g), and hydroxyapatite, and precipitation of sulfur. Cation exchange between Ca2+, Mg2+, K+ and Na+ occurred with Mg2+ and K+ into the solution, and Ca2+ and Na+ out of the solution. Determination of soil solution will improve soil management in the area, and preventing groundwater deterioration.  相似文献   

17.
One hundred forty-eight groundwater samples were collected from the lower part of Wadi Siham catchment area for hydrogeochemical investigations to understand the hydrogeochemical processes affecting groundwater chemistry and their relation with groundwater quality. Groundwater in the study area is abstracted from different aquifers. The study area is characterized by arid climate and extremely high relative humidity. The results indicate that groundwater in the study area is fresh to brackish in nature. The abundance of the major ions is as follows: Na+1?>?Ca+2?>?Mg+2?≥?K+1 and Cl?1?>?HCO 3 ?1 ?>?SO 4 ?2 ?>?NO 3 ?1 . Various graphical and ionic ration plots, statistical analyses, and saturation indices calculations have been carried out using chemical data to deduce a hydrochemical evaluation of the study area. The prevailing hydrogeochemical processes operating in the study area are dissolution, mixing, evaporation, ion exchange, and weathering of silicate minerals in the eastern part (recharge areas). The reverse ion exchange and seawater intrusion control the groundwater chemistry along the Red Sea coast areas and few parts of the study area. Deterioration in groundwater quality from anthropogenic activities has resulted from saltwater intrusion along the coastal areas due to groundwater overpumping and extensive use of fertilizers and infiltration of sewage water. Salinity and nitrate contamination are the two major problems in the area, which is alarming considering the use of this water for drinking.  相似文献   

18.
In this study, the physicochemical parameters (Conductivity, pH, Cl?, HCO 3 ? , PO 4 3? , SO 4 2? , NO 3 ? , NO 2 ? , F?, TH, Ca2+, K+, Mg2+, Na+, and DS) were determined for 41 samples collected from fourteen places in Algeria. The temperature of the thermal water samples at collection sites varied from 26°C to 86°C. pH values varied from 6.5 to 8.5 (i.e., from slightly acidic to moderately alkaline); 90.24% of the samples exhibited relatively high salinity (DS?=?550–5,500 mg L?1). Total hardness measurements indicated these waters to be moderately hard. Forty-six percent of the samples are Na–Cl in character. The ratios Na+/Ca2+, Na+/Mg2+, and (Na+ + K+)/(Ca2+ + Mg2+) were high in 90.24% of the samples. This indicates the ion exchange process is important, which indicates that most of the Algerian thermal waters had developed over a long period at a depth sufficient to react with the rock. Statistical analyses of the physicochemical data gave positive correlation values, thereby enabling good interpretation of the results and revealing the composition of ions present in the thermal waters, as well as some information about their origin. The therapeutic properties associated with thermal waters encourage people at spas to drink the water they bathe in. Therefore, we examined the drinkability of these thermal waters. World Health Organization (WHO 1993) standards were used to evaluate the thermal water quality for drinking. With respect to hardness, the samples were classified as moderately hard (58.54% of the samples), very hard (36.58% of the samples), and soft (4.88% of the samples). The drinkability study shows that only 16 samples of the investigated waters were drinkable and thus could be consumed without special precaution.  相似文献   

19.
《Applied Geochemistry》2001,16(9-10):1067-1082
Thermodynamic data for all fate-determining processes are needed in order to predict the fate and transport of metals in natural systems. The surface complexation properties of a synthetic MnO2, δ-MnO2, have accordingly been investigated using glass electrode potentiometry. Experimental data were interpreted according to the surface complexation model in conjunction with the diffuse double layer model of the solid/solution interface. Adsorption constants were determined using the non-linear optimisation program FITEQL. Surface complexation parameters determined in this way were validated against results obtained from the literature. Best fits of alkalimetric titration data were obtained with a 2-site, 3 surface-species model of the δ-MnO2 surface. Site concentrations of 2.23×10−3 mol g−1 and 7.66×10−4 mol g−1 were obtained. Corresponding logarithms of formation constants for the postulated surface species are −1.27 (≡XO), −5.99 (≡YO) and 3.52 (≡YOH2+) at I=0.1 M. The surface speciation of δ-MnO2 is dominated by ≡XO over the pH range investigated. Metal adsorption was modelled with surface species of the type ≡XOM+, ≡XOMOH, ≡YOM+, ≡YOMOH (M=Cu, Ni, Zn, Cd and Pb) and ≡XOM2OH2+ (M=Pb). For Cu, Ni and Zn, titration data could be modelled with ≡XOM+, ≡XOMOH, ≡YOM+ and ≡YOMOH, whereas for Cd, ≡XOM+ and ≡YOM+ were sufficient. Lead data were best modelled by assuming the dinuclear species ≡XOM2OH2+ to be the only surface species to form. Adsorption constants determined for Ni, Cu and Zn follow the Irving-Williams sequence. The model suggests an adsorption order of (Pb, Cu) > (Ni, Zn) > Cd. The discrepancy between model predictions and published adsorption results is similar to the variability observed in experimental results from different laboratories.  相似文献   

20.
Groundwater is an important water source for agricultural irrigation in Penyang County. Some traditional methods such as irrigation coefficient, sodium adsorption ratio, total alkalinity, total salinity and total dissolved solids were employed to assess groundwater quality in this area. In addition, an improved technique for order preference by similarity to ideal solution model was applied for comprehensive assessment. The origin of major ions and groundwater hydrogeochemical evolution was also discussed. Groundwater in Penyang County contains relative concentrations of dominant constituents in the following order: Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3 ? > SO4 2? > Cl? > CO3 2? for anions. Groundwater quality is largely excellent and/or good, suggesting general suitability for agricultural use. Calcite and dolomite are found saturated in groundwater and thus tend to precipitate out, while halite, fluorite and gypsum are unsaturated and will dissolve into groundwater during flow. Groundwater in the study area is weathering-dominated, and mineral weathering (carbonate and silicate minerals) and ion exchange are the most important factors controlling groundwater chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号