首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to (1) explain the worldwide association between epithermal gold-copper-molybdenum deposits and arc magmas and (2) test the hypothesis that adakitic magmas would be Au-specialized, we have determined the solubility of Au at 4 kbar and 1000 °C for three intermediate magmas (two adakites and one calc-alkaline composition) from the Philippines. The experiments were performed over a fO2 range corresponding to reducing (∼NNO−1), moderately oxidizing (∼NNO+1.5) and strongly oxidizing (∼NNO+3) conditions as measured by solid Ni-Pd-O sensors. They were carried out in gold containers, the latter serving also as the source of gold, in presence of variable amounts of H2O and, in a few additional experiments, of S. Concentrations of Au in glasses were determined by LA-ICPMS. Gold solubility in melt is very low (30-240 ppb) but increases with fO2 in a way consistent with the dissolution of gold as both Au1+ and Au3+ species. In the S-bearing experiments performed at ∼NNO−1, gold solubility reaches much higher values, from ∼1200 to 4300 ppb, and seems to correlate with melt S content. No systematic difference in gold solubility is observed between the adakitic and the non-adakitic compositions investigated. Oxygen fugacity and the sulfur concentration in melt are the main parameters controlling the incorporation and concentration of gold in magmas. Certain adakitic and non-adakitic magmas have high fO2 and magmatic S concentrations favorable to the incorporation and transport of gold. Therefore, the cause of a particular association between some arc magmas and Au-Cu-Mo deposits needs to be searched in the origin of those specialized magmas by involvement of Au- and S-rich protoliths. The subducted slab, which contains metal-rich massive sulfides, may constitute a potentially favorable protolith for the genesis of magmas specialized with respect to gold.  相似文献   

2.
Experiments characterizing the kinetics of anorthosite dissolution in lunar picritic magmas (very low-Ti, low-Ti, and high-Ti picritic glasses) were conducted at 0.6 GPa and 1250-1400 °C using the dissolution couple method. Reaction between the anorthosite and lunar picritic magmas at 1250-1300 °C produced a spinel + melt layer. Reaction between the anorthosite and an olivine-saturated low-Ti magma at 1250-1300 °C produced a crystal-free region between the spinel + melt layer and the olivine-saturated magma. The anorthosite dissolution experiments conducted at 1400 °C simply dissolved anorthosite and did not result in a crystal-bearing region. The rate of anorthosite dissolution strongly depends on temperature and composition of the reacting melt. Concentration profiles that develop during anorthosite dissolution are nonlinear and extend from the picritic glass compositions to anorthite. These profiles feature a large and continuous variation in melt density and viscosity from the anorthosite-melt interface to the initial picritic magmas. In both the low-Ti and high-Ti magmas the diffusive fluxes of TiO2, Al2O3, and SiO2 are strongly coupled to the concentration gradients of CaO and FeO. Anorthosite dissolution may play an important role in producing the chemical variability of the lunar picritic magmas, the origin of spinel in the lunar basalts and picritic glasses, and the petrogenesis of the high-Al basalts.  相似文献   

3.
The solubility of water in melts in the NaAlSi3O8–H2O system at high P and T was deduced from the appearance of quenched products and from water concentrations in the quenched glasses measured by ion probe, calibrated by hydrogen manometry. Starting materials were gels with sufficient water added to ensure saturation of the melts under the run conditions. Experiments were carried out for 10–30 h in an internally heated argon pressure vessel (eight at 1400° C and 0.2–0.73 GPa and three at 0.5 GPa and 900–1200° C) and for 1 h in a piston-cylinder apparatus (three at 1200° C, 1–1.3 GPa). No bubbles were observed in the glasses quenched at P<0.5 GPa or from T<1300° C at 0.5 GPa. Bubble concentration in glasses quenched from 1400° C was low at 0.5, moderate at 0.55 GPa and very high at 0.73 GPa and still higher in glasses quenched in the piston cylinder. Water concentration was measured in all glasses, except for the one at 0.55 GPa, for which it was only estimated, and for those at 0.73 GPa because bubble concentration was too high. Inferred water solubilities in the melt increase strongly with increasing P at 1400° C (from 6.0 wt% at 0.2 GPa to 15 at 0.55 GPa) and also with increasing T at 0.5 GPa (from 9.0 wt% at 900° C to 12.9 at 1400° C). The T variation of water solubility is fundamental for understanding the behaviour of melts on quenching. If the solubility decreases with T at constant P (retrograde solubility), bubbles cannot form by exsolution on isobaric quenching, whereas if the solubility is prograde they may do so if the cooling rate is not too fast. It is inferred from observed bubble concentrations and from our and previous solubility data that water solubility is retrograde at low P and prograde at and above 0.45 GPa; it probably changes with T from retrograde below to prograde above 900° C at 0.5 GPa. Moreover, the solubility is very large at higher pressures (possibly>30 wt% at 1.3 GPa and 1200° C) and critical behaviour is approached at 1.3 GPa and 1200° C. The critical curve rises to slightly higher P at lower T and intersects the three-phase or melting curve at a critical end point near 670° C and 1.5 GPa, above which albite coexists only with a supercritical fluid.  相似文献   

4.
We have experimentally studied the process of bubble coalescence in rhyolite and phonolite melts of natural composition. The experiments involved decompression of water-saturated melts equilibrated at pressures and temperatures from 100 to 150 MPa and 775 to 840 °C in vertically oriented, rapid-quench capable, cold seal pressure vessels. One type of experiments (rhyolite MCR-100, 120, 150 and phonolite LSP-120 series') approximates a “static” bubble coalescence case, where we held the decompressed samples for ∼5 seconds to 4320 minutes (3 days) before quenching. The second type (rhyolite LPC-100 series) replicates an “expanding” bubble coalescence environment, where we continually decompressed the experiments at a rate of 0.5 MPa/s, examining samples quenched at ending pressures between 10 and 80 MPa. Our “static” case (MCR-100, 120, and 150, and LSP-120) results show significant increases in the modal bubble sizes and in the sizes of the largest bubbles, corresponding to measurable broadening in the size distributions. Their bubble number densities (NV) decrease as a function of hold time at their final pressures (PF), and can be fit well by power law functions. Our “expanding” case experiments (LPC-100) show a significant drop in NV during the duration of the experiments that can be fit by an exponential equation as NV vs. either time or PF. Average estimates of bulk coalescence rates indicate a ∼1 order of magnitude drop in NV for “static” case rhyolites in a 2-3 day period, and ∼2 orders of magnitude for phonolites within a 3 day period. Despite a ∼2 order of magnitude difference in viscosity, coalescene in the phonolite is only slightly faster than the rhyolite. The “expanding” case experiments show a ∼1 order of magnitude drop in NV over 180 seconds. Thus, NV's decrease 4 orders of magnitude faster in expanding vs. static bubbly rhyolite melts. Our results imply that significant bubble coalescence can occur in rhyolite magmas at relatively fast (∼20 m/s) ascent rates in the conduit. Thus, bubble interconnectivity, leading to high permeability, is possible during ascent. Bubble coalescence may occur during second boiling in magma bodies that are stalled in the crust. The timescales over which this occurs is much faster than the estimated rise rates for bubbles to reach the top of the magma chamber.  相似文献   

5.
The nucleation of H2O bubbles in magmas has been proposed as a trigger for volcanic eruptions. To determine how bubbles nucleate heterogeneously in silicate melts, experiments were carried out in which high-silica rhyolitic melts were hydrated at 740-800°C and 50-175 MPa, decompressed by 20-70 MPa, and held at the lower pressures for ≥10 s before being quenched. The hydration conditions were subliquidus, and all samples contain blocky magnetite + needle-shaped hematite ± plagioclase. Magnetite is abundant at 800°C and high pressures, whereas hematite becomes more abundant at lower temperatures and pressures. Bubbles nucleated in a single event in all samples, with the number density (NT) of bubbles varying between 2 × 107 and 1 × 109 cm−3. At low degrees of supersaturation, one to a few bubbles nucleate on faces of magnetite, but at medium to high degrees of supersaturation, multiple bubbles nucleate on single magnetite grains. On hematite, one to a few bubbles nucleated at the ends of the needle-shaped crystals at medium supersaturations, but formed along their entire lengths at high supersaturations. NT increases as water diffusivity decreases, indicating that the number of bubbles nucleated is influenced by their growth, which depletes the melt with respect to H2O and lowers supersaturation. If volcanic eruptions are triggered by bubble formation in magmas stored in shallow-level magma chambers, then the supersaturations needed for heterogeneous nucleation suggest that only small amounts of crystallization are needed, whereas homogeneous nucleation is unlikely to trigger eruptions.  相似文献   

6.
The gas and fluid transport in magmas via permeable flow through interconnected bubble networks controls the rate of outgassing from magmas ascending in volcanic conduits and the fluid transport in the mushy boundary layer of magma reservoirs. Hence, clarifying its mechanism and rate is crucial to understanding the explosivity of volcanic eruptions and the evolution and dynamics of a magma reservoir. Recent experimental studies have determined the gas permeabilities in crystal-free rhyolite and basalt. However, no experimental study has investigated the effect of the crystal contents on the permeable gas transport in magmas. In this study, we performed decompression experiments for hydrous rhyolitic melts having crystallinities of 30 and 50 vol% to examine the effect of crystals on the bubble microstructure and gas permeability during magma vesiculation. Size-controlled (100-meshed) corundum crystals were used as an analog of the phenocrysts in silicic magmas. Microstructural analyses using X-ray CT showed that bubbles coalesce and their connectivity increases with a decrease in the final pressure after the decompression, that is, an increase in the vesicularity. As long as the vesicularities of melt part in the crystal-free basis (melt vesicularity) were similar, no clear effect of the crystallinity on the degree of bubble coalescence and connectivity was observed at melt vesicularities <68 vol%. The corundum showed a large contact angle with aqueous fluid as well as plagioclase and alkaline feldspar; this failed to induce the efficient heterogeneous nucleation and coalescence of bubbles on its surface. The gas permeabilities of all the run products were lower than the detection limits of the present analysis (the order of 10−16 m2) at melt vesicularities <68 vol%. These results show that silicic magmas containing 30 and 50 vol% phenocrysts with a large contact angle have low gas permeabilities until the vesicularity becomes large (at least >68 vol%). This result indicates that the permeable fluid transport through a deep volcanic conduit, which has been proposed on the basis of the observations of volcanic gases and natural products, is so slow that other processes, like shear deformation or magma convection, may be needed to explain the observations.  相似文献   

7.
By using continuous helium flow during the crushing of calcite speleothem samples, we are able to recover liberated inclusion waters without isotopic fractionation. A paleotemperature record for the Jacklah Jill Cave locality, Vancouver Island, BC, was obtained from a 30-cm tall stalagmite that grew 10.3-6.3 Ka ago, using δ18O values of the crushed calcite and of the inclusion water as inferred from its δD. It is found that the locality experienced mean annual temperature variations up to 11 °C over a 4-Ka period in the early Holocene. At the beginning of the period, local temperature quickly increased from a minimum of ∼1 °C to around 10 °C, but this early climate optimum, about 3 °C warmer than today, only lasted for ∼1200 years. About 8.6 Ka ago, temperature had declined to ∼7 °C, approximately the same as the modern cave temperature. Since then, the study area has experienced only minor temperature fluctuations, but there was a brief fall to ∼4 °C at around 7 Ka ago, which might be caused by a short lived expansion of local alpine glaciers. The long-term T-dependence of δD was 1.47‰/°C, identical to the value in modern precipitation.  相似文献   

8.
We investigate petrologic and physical aspects of melt extraction on the parent asteroid of the ureilite meteorites (UPB). We first develop a petrologic model for simultaneous melting and smelting (reduction of FeO by C) at various depths. For a model starting composition, determined from petrologic constraints to have been CV-like except for elevated Ca/Al (2.5 × CI), we determine (1) degree of melting, (2) the evolution of mg, (3) production of CO + CO2 gas and (4) the evolution of mineralogy in the residue as a function of temperature and pressure. We then use these relationships to examine implications of fractional vs. batch melt extraction.In the shallowest source regions (∼30 bars), melting and smelting begin simultaneously at ∼1050 °C, so that mg and the abundance of low-Ca pyroxene (initially pigeonite, ultimately pigeonite + orthopyroxene) begin to increase immediately. However, in the deepest source regions (∼100 bars), smelting does not begin until ∼1200 °C, so that mg begins to increase and low-Ca pyroxene (pigeonite) appears only after ∼21% melting. The final residues in these two cases, obtained just after the demise of augite, match the end-members of the ureilite mg range (∼94-76) in pyroxene abundance and type. In all source regions, production of CO + CO2 by smelting varies over the course of melting. The onset of smelting results in a burst of gas production and very high incremental gas/melt ratios (up to ∼2.5 by mass); after a few % (s)melting, however, these values drastically decline (to <0.05 in the final increments).Physical modelling based on these relationships indicates that melts would begin to migrate upwards after only ∼1-2% melting, and thereafter would migrate continuously (fractionally) and rapidly (reaching the surface in < a year) in a network of veins/dikes. All melts produced during the smelting stage in each source region have gas contents sufficient to cause them to erupt explosively and be lost. However, since in all but the shallowest source regions part of the melting sequence occurs without smelting, fractional melting implies that a significant fraction of UPB melts may have erupted more placidly to form a thin crust (∼3.3 km thick for a 100 km radius body).Our calculations suggest that melt extraction was so rapid that equilibrium trace element partitioning may not have been attained. We present a model for disequilibrium fractional melting (in which REE partitioning is limited by diffusion) on the UPB, and demonstrate that it produces a good match to the ureilite data. The disequilibrium model may also apply to trace siderophile elements, and might help explain the “overabundance” of these elements in ureilites relative to predictions from the smelting model.Our results suggest that melt extraction on the UPB was a rapid, fractional process, which can explain the preservation of a primitive oxygen isotopic signature on the UPB.  相似文献   

9.
We investigate the degassing of volatile heavy metals from natural basalt and dacite and synthetic rhyolite melts doped with Bi, Pb, Tl, Au, Re, Sb, Sn, Cd, Mo, As, Cu in Pt capsules over a range of temperatures (1200-1430 °C) exposed to air at 0.1 MPa. We also investigated the effects of ligands on degassing by adding known concentrations of Cl and S. During the experiments concentration gradients normal to the melt/gas interface arose for the trace metals Au, Tl, As, Cd, Re, Bi and Pb, as shown by measurements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the quenched glasses. In contrast, erratic concentration gradients occurred for Cu, Mo, Sn, Sb due to the development of compositional cords in the glass for those elements. The diffusivities for Au, Tl, As, Cd, Re, Bi and Pb (in decreasing order of volatility) followed an Arrhenius relationship with log D at 1260 °C varying from −12 to −17. The addition of Cl and S were shown to increase by two-to five-fold the volatilities of all metals, with S having a more profound effect. Diffusivities from the experiments were applied in a bubble growth model to examine the behavior of Tl and Pb in volcanic gases. The Tl/Pb ratio in gases shows much greater variation than can be explained by partitioning and magma composition alone, with diffusion serving to drastically enrich or deplete the Tl/Pb of gases to values significantly different from that of the melt.  相似文献   

10.
An experimental study of H2O exsolution, bubble growth and microlite crystallisation during ascent (decompression) of silicic magmas in the volcanic conduit is presented. Isobaric and decompression experiments were performed on a rhyolitic melt at 860 °C, NNO+1, H2O saturation, and pressures between 15 and 170 MPa. Two sets of decompression experiments were performed, with decompression rates varying between 0.001 and 960 MPa/min: (1) from 150 to 50 MPa (high-pressure decompression), and (2) from 50 to 15 MPa (low-pressure decompression). The experiments highlight incomplete H2O exsolution for decompression rates>100 MPa/min, incomplete bubble growth for decompression rates>0.1 MPa/min, crystal nucleation time lags, and incomplete chemical re-equilibration to final pressures. The observed crystallisation process, i.e. growth versus nucleation, depends on the decompression range. Indeed, decompression-induced crystallisation during high-pressure decompressions is dominated by growth of existing crystals, whereas during low-pressure decompressions crystal nucleation is the dominating process. This study provides a means to infer magma ascent rates in eruptions of silicic magmas through a combined petrologic and experimental approach.  相似文献   

11.
Two glassy refractory Al-rich chondrules in Semarkona (LL3.0), the most primitive unequilibrated ordinary chondrite, provide direct evidence for condensation of Si and Mg on melt droplets during cooling. The chondrules are completely rounded, rich in Ca and Al, and poor in Fe and alkalis. They have extraordinarily abundant glass (70-80 vol%) with a subordinate amount of forsterite as the only crystalline phase that occurs mostly rimming the chondrule edge. The groundmass glass is concentrically zoned in terms of Si with an outward increase, which is overlapped with local heterogeneity of Mg and Al induced by crystallization of forsterite. The outward increase of Si, mostly compensated by Al, cannot be formed solely by crystallization of forsterite from a homogeneous melt in a closed system. Combined with skeletal or dendritic morphology and sector zoning of forsterite, it is suggested that Si condensed onto totally molten droplets (“initial melts”) accompanied by nucleation and rapid growth of forsterite with lowering temperature. The “initial melts”, the compositions of which were estimated from the Ca contents of the first crystallized forsterite, are very similar to Type C CAI but are notably poorer in Mg and Si than the bulk chondrules, indicating condensation of Mg in addition to Si with an atomic ratio of Mg:Si ∼ 3:2. The condensation after the nucleation of forsterite took place below ∼1300 °C under cooling at ∼70 °C/h and amounted to 30 wt% of the current chondrule. This study suggests a model that a short-time and local shock heating event induced melting of Type C CAI and concomitant evaporation of dusts, ferromagnesian chondrules of earlier generation, and their fragments to generate Mg and Si-rich gas, which condensed onto the melt droplets upon cooling accompanying condensation of Type I chondrules.  相似文献   

12.
Dynamic crystallization experiments have been performed on synthetic glasses representative of shock-generated melts observed in Los Angeles, Sayh al Uhaymir 150 and Dar al Gani 476 martian basalts. On the basis of qualitative (texture) and quantitative (fractal analysis) results, we show that melt pockets in Los Angeles cooled at a rate of 1040-1560 °C/h. Sayh al Uhaymir 150 and Dar al Gani 476 melt pockets cooled at 780 °C/h. Conductive cooling models, for a range of meteoroid diameters (10-50 cm), indicate that the minimum meteoroid diameter was small, on the order of 10-15 cm and that melt pockets cooled from post-shock temperatures within minutes. Our results also have bearing on shock implanted martian atmospheric components because it is during cooling that the melt pockets have the potential to lose gases. Modeling of argon diffusion in a spherical melt pocket indicates that during cooling and quench crystallization ∼4-60% of trapped martian atmospheric argon may be lost from the melt pocket through diffusive transport.  相似文献   

13.
Bubble growth strongly affects the physical properties of degassing magmas and their eruption dynamics. Natural samples and products from quench experiments provide only a snapshot of the final state of volatile exsolution, leaving the processes occurring during its early stages unconstrained. In order to fill this gap, we present in situ high-temperature observations of bubble growth in magmas of different compositions (basalt, andesite and rhyodacite) at 1,100 to 1,240 °C and 0.1 MPa (1 bar), obtained using a moissanite cell apparatus. The data show that nucleation occurs at very small degrees of supersaturaturation (<60 MPa in basalt and andesite, 200 MPa in rhyodacite), probably due to heterogeneous nucleation of bubbles occurring simultaneously with the nucleation of crystals. During the early stages of exsolution, melt degassing is the driving mechanism of bubble growth, with coalescence becoming increasingly important as exsolution progresses. Ostwald ripening occurs only at the end of the process and only in basaltic melt. The average bubble growth rate (G R) ranges from 3.4 × 10?6 to 5.2 × 10?7 mm/s, with basalt and andesite showing faster growth rates than rhyodacite. The bubble number density (N B) at nucleation ranges from 7.9 × 104 mm?3 to 1.8 × 105 mm?3 and decreases exponentially over time. While the rhyodacite melt maintained a well-sorted bubble size distribution (BSD) through time, the BSDs of basalt and andesite are much more inhomogeneous. Our experimental observations demonstrate that bubble growth cannot be ascribed to a single mechanism but is rather a combination of many processes, which depend on the physical properties of the melt. Depending on coalescence rate, annealing of bubbles following a single nucleation event can produce complex bubble size distributions. In natural samples, such BSDs may be misinterpreted as resulting from several separate nucleation events. Incipient crystallization upon cooling of a magma may allow bubble nucleation already at very small degrees of supersaturation and could therefore be an important trigger for volatile release and explosive eruptions.  相似文献   

14.
The sulfur concentration at pyrrhotite- and anhydrite-saturation in primitive hydrous basaltic melt of the 2001-2002 eruption of Mt. Etna was determined at 200 MPa, T = 1050-1250 °C and at log fO2 from FMQ to FMQ+2.2 (FMQ is Fayalite-Magnetite-Quartz oxygen buffer). At 1050 °C Au sample containers were used. A double-capsule technique, using a single crystal olivine sample container closed with an olivine piston, embedded in a sealed Au80Pd20 capsule, was developed to perform experiments in S-bearing hydrous basaltic systems at T > 1050 °C. Pyrrhotite is found to be a stable phase coexisting with melt at FMQ-FMQ+0.3, whereas anhydrite is stable at FMQ+1.4-FMQ+2.2. The S concentration in the melt increases almost linearly from 0.12 ± 0.01 to 0.39 ± 0.02 wt.% S at FeS-saturation and from 0.74 ± 0.01 to 1.08 ± 0.04 wt.% S at anhydrite-saturation with T ranging from 1050-1250 °C. The relationships between S concentration at pyrrhotite and/or anhydrite saturation, MgO content of the olivine-saturated melt, T, and log fO2 observed in this study and from previous data are used to develop an empirical model for estimating the magmatic T and fO2 from the S and MgO concentrations of H2O-bearing olivine-saturated basaltic melts. The model can also be used to determine maximum S concentrations, if fO2 and MgO content of the melt are known. The application of the model to compositions of melt inclusions in olivines from Mt. Etna indicates that the most primitive magmas trapped in inclusions might have been stored at log fO2 slightly higher than FMQ+1 and at T = 1100-1150 °C, whereas more evolved melts could have been trapped at T ? 1100 °C. These values are in a good agreement with the estimates obtained by other independent methods reported in the literature.  相似文献   

15.
Zircon was grown from trace-element doped hydrous peralkaline rhyolite melts with buffered oxygen fugacities in cold-seal experiments at 0.1 and 0.2 GPa and 800 °C and piston-cylinder experiments at 1.5 GPa and 900-1300 °C. Zircon and glass were present in all run products, and small monazite crystals were present in eight of the 12 experiments. Average diameters of zircon crystals ranged from 5 to 20 μm at 800 °C to 30-50 μm at 1300 °C. Zircon crystals have thin rims, and adjacent glass has a narrow (∼1 μm thick) compositional boundary layer. Concentrations obtained through in-situ analysis of cores of run product zircon crystals and melt pools were used to calculate trace-element partition coefficients Dzircon/melt for P, Sc, Ti, V, Y, La, Ce, Pr, Nd, Eu, Gd, Ho, Yb, Lu, Hf, Th, and U. In most cases Lu was the most (D 12-105) and La the least (0.06-0.95) compatible elements. D values from this study fall within the range of previously measured values for Rare Earth Elements (REE). However, D values measured experimentally show less fractionation than those recently measured using natural phenocryst/matrix pairs. For example, DLu/DLa measured experimentally in this study range between 27 and 206 compared to a value of 706,522 for a natural zircon/dacite pair [Sano, Y., Terada, K., and Fukuoka, T. 2002 High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol.184, 217-230]. Although D values from this study show good agreement with the lattice strain model, D values from natural phenocryst/matrix pairs combined with measured zircon compositions better reproduce host-rock (magma) compositions of igneous rocks. They also yield more reasonable estimates of magma compositions when combined with compositions of ‘‘out-of-context” zircons. For example, compositions of the Hadean detrital zircons from Jack Hills, Australia yield LREE-enriched magmas when combined with D values from phenocryst/matrix pairs yields, but yield LREE-depleted magmas when experimentally determined D values are used. We infer that experimentally measured Dzircon/melt values represent disequilibrium partitioning resulting from rapid zircon growth during short laboratory timescales. Rapid growth causes development of observed diffusive boundary layers in the melt adjacent to zircon crystals. D values from phenocryst/matrix pairs are therefore recommended for petrogenetic modeling.  相似文献   

16.
Hydrothermal experiments were conducted to determine the partitioning of Cl between rhyolitic to rhyodacitic melts, apatite, and aqueous fluid(s) and the partitioning of F between apatite and these melts at ca. 200 MPa and 900-924 °C. The number of fluid phases in our experiments is unknown; they may have involved a single fluid or vapor plus saline liquid. The partitioning behavior of Cl between apatite and melt is non-Nernstian and is a complex function of melt composition and the Cl concentration of the system. Values of DClapat/melt (wt. fraction of: Cl in apatite/Cl in melt) vary from 1 to 4.5 and are largest when the Cl concentrations of the melt are at or near the Cl-saturation value of the melt. The Cl-saturation concentrations of silicate melts are lowest in evolved, silica-rich melts, so with elevated Cl concentrations in a system and with all else equal, the maximum values of DClapat/melt occur with the most felsic melt. In contrast, values of DFapat/melt range from 11 to 40 for these felsic melts, and many of these are an order of magnitude greater than those applying to basaltic melts at 200 MPa and 1066-1150 °C. The Cl concentration of apatite is a simple and linear function of the concentration of Cl in fluid. Values of DClfluid/apat for these experiments range from 9 to 43, and some values are an order of magnitude greater than those determined in 200-MPa experiments involving basaltic melts at 1066-1150 °C.In order to determine the concentrations and interpret the behavior of volatile components in magmas, the experimental data have been applied to the halogen concentrations of apatite grains from chemically evolved rocks of Augustine volcano, Alaska; Krakatau volcano, Indonesia; Mt. Pinatubo, Philippines; Mt. St. Helens, Washington; Mt. Mazama, Oregon; Lascar volcano, Chile; Santorini volcano, Greece, and the Bishop Tuff, California. The F concentrations of these magmas estimated from apatite-melt equilibria range from 0.06 to 0.12 wt% and are generally equivalent to the concentrations of F determined in the melt inclusions. In contrast, the Cl concentrations of the magmas estimated from apatite-melt equilibria (e.g., ca. 0.3-0.9 wt%) greatly exceed those determined in the melt inclusions from all of these volcanic systems except for the Bishop Tuff where the agreement is good. This discrepancy in estimated Cl concentrations of melt could result from several processes, including the hypothesis that the composition of apatite represents a comparatively Cl-enriched stage of magma evolution that precedes melt inclusion entrapment prior to the sequestration of Cl by coexisting magmatic aqueous and/or saline fluid(s).  相似文献   

17.
High pressure experiments have been performed in the systems Mg2SiO4-C-O-H and Mg2SiO4-K2CO3-C at 6.3 GPa and 1200 to 1600 °C using a split-sphere multi-anvil apparatus. In the Mg2SiO4-C-O-H system the composition of fluid was modeled by adding different amounts of water and stearic acid. The fO2 was controlled by the Mo-MoO2 or Fe-FeO oxygen buffers. Several experiments in the Mg2SiO4-C-O-H system and all experiments in the Mg2SiO4-K2CO3-C system have been conducted without buffering the fO2. Forsterite in the system Mg2SiO4-K2CO3-C does not reveal OH absorption bands in the IR spectra, while forsterite coexisting with carbon-bearing fluid and silicate melt at logfO2 from FMQ-2 to FMQ-5 (from 2 to 5 log units below fayalite-magnetite-quartz oxygen buffer) contains 800-1850 wt. ppm H2O. The maximum concentrations were detected at 1400 °C and FMQ-3.5. We observed an increase in the solidus temperature in the system Mg2SiO4-C-O-H from 1200 to above 1600 °C with log fO2 decreasing from FMQ-2 to FMQ-5. The increase of the solidus temperature and the broadening of the stability field of the H2O-H2-CH4 subsolidus fluid phase at 1400-1600 °C explain the high H2O storage capacity of forsterite relative to that crystallized from carbon-free, oxidized, hydrous, silicic melt. At temperatures above 1400 °C liquidus forsterite precipitated along with diamond from oxidized (FMQ-1) carbonate-silicate melt and from silicate melt dissolving the moderately reduced C-O-H fluid (from FMQ-2 to FMQ-3.5). Formation of diamond was not detected under ultra-reduced conditions (FMQ-5) at 1200-1600 °C. Olivine co-precipitating with diamond from dry carbonate-silicate or hydrous-silicic fluid/melt can provide information on the H2O contents and speciation of the diamond-forming media in the mantle. The conditions for minimum post-crystallization alteration of olivine and its hydrogen content are discussed.  相似文献   

18.
The dacite pumice erupted from Mt. Pinatubo on June 15, 1991 (whole-rock, rhyolitic groundmass glasses and homogenized melt inclusions) has been analyzed using inductively coupled plasma-mass spectrometry (ICP-MS), nanosecond and femtosecond laser ablation ICP-MS and secondary ion mass spectrometry (SIMS) to evaluate its ore-forming potential. Data suggest that adakite magmas are metal-rich and concentrate ore metals during magmatic differentiation. Sulfides segregate in limited amounts under the hydrous, oxidizing conditions typical of adakitic magmas resulting in incompatible behavior for Au (6-22 ppb), Cu (26-77 ppm), and Pb, Mo, As, and Sb in melts of dacitic to rhyolitic compositions. Metal transfer from this adakite magma to the coexisting aqueous phase was favored by the peraluminous composition of the rhyolitic melt and high aqueous chloride concentrations. Mass balance calculations suggest that the pre-eruptive aqueous phase could have extracted a minimum of 100 t Au and 5 × 105 t Cu from the Mt. Pinatubo magma. Our data suggest that intrusives having adakitic signatures are genetically associated with Au-Cu and Cu-Mo mineralization, auriferous porphyry copper deposits, and epithermal gold veins. High H2O, Cl, Sr/Y, Pb/Ce, Mo/Ce, As/Ce and Sb/Ce in Mt. Pinatubo melts reflect the contribution of deep fluids derived from subducted sediments and altered MORBs in the dacite genesis. The slab-derived fluids carrying mobile elements are likely responsible for the enrichment of adakite magmas in gold, associated metals and H2O, and may explain the exceptional ore-forming potential of adakite magmatism.  相似文献   

19.
Generation of CO2-rich melts during basalt magma ascent and degassing   总被引:1,自引:0,他引:1  
To test mechanisms of basaltic magma degassing, continuous decompressions of volatile-bearing (2.7–3.8 wt% H2O, 600–1,300 ppm CO2) Stromboli melts were performed from 250–200 to 50–25 MPa at 1,180–1,140 °C. Ascent rates were varied from 0.25 to ~1.5 m/s. Glasses after decompression show a wide range of textures, from totally bubble-free to bubble-rich, the latter with bubble number densities from 104 to 106 cm?3, similar to Stromboli pumices. Vesicularities range from 0 to ~20 vol%. Final melt H2O concentrations are homogeneous and always close to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High vesicularity charges have glass CO2 concentrations that follow theoretical equilibrium degassing paths, whereas glasses from low vesicularity charges show marked deviations from equilibrium, with CO2 concentrations up to one order of magnitude higher than solubilities. FTIR profiles and maps reveal glass CO2 concentration gradients near the gas–melt interface. Our results stress the importance of bubble nucleation and growth, and of volatile diffusivities, for basaltic melt degassing. Two characteristic distances, the gas interface distance (distance either between bubbles or to gas–melt interfaces) and the volatile diffusion distance, control the degassing process. Melts containing numerous and large bubbles have gas interface distances shorter than volatile diffusion distances, and degassing proceeds by equilibrium partitioning of CO2 and H2O between melt and gas bubbles. For melts where either bubble nucleation is inhibited or bubble growth is limited, gas interface distances are longer than volatile diffusion distances. Degassing proceeds by diffusive volatile transfer at the gas–melt interface and is kinetically limited by the diffusivities of volatiles in the melt. Our experiments show that CO2-oversaturated melts can be generated as a result of magma decompression. They provide a new explanation for the occurrence of CO2-rich natural basaltic glasses and open new perspectives for understanding explosive basaltic volcanism.  相似文献   

20.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号