首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.  相似文献   

2.
Kerogen from terrestrial plant debris (type III) has commonly been considered to be a good source for hydrocarbon gas, but not for oil, compared with types I and II kerogen from marine and lacustrine sediments. The Gippsland Basin, Australia, contains giant oil fields producing from organic matter of land plant origin. Clearly some terrestrial paleodepositional environments have produced organic matter of land plant origin with the potential to generate large volumes of oil. An attempt has been made here to identify some environments that contain organic matter of terrestrial origin with the potential to generate oil.The dispersed organic matter (DOM) in sediments from various paleodepositional environments in the Northern Carnarvon, Clarence-Moreton, Simpson Desert, Bowen and Gunnedah Basins of Australia has been analysed petrographically. To reduce variations in organic matter type due to differences in geological age, examples of Triassic age only have been compared. DOM with relatively high contents of liptinite, which is widely accepted as having a better potential to generate oil than vitrinite and inertinite, was found in the following environments: fluvio-deltaic (Bowen Basin), proximal lacustrine (Gunnedah Basin) and fluvio-deltaic (Northern Carnarvon).Relationships between Triassic DOM types and paleodepositional environments found in one basin did not necessarily hold true for other basins. It is not valid to infer a unique paleodepositional environment from DOM type, but within a given basin, DOM type may be predicted from environment.  相似文献   

3.
The dominant phosphorus compound classes were characterized in marine samples using a new, high recovery method for isolating and concentrating bulk dissolved organic matter (DOM) called combined electrodialysis + reverse osmosis (ED/RO). In contrast to earlier studies that use ultrafiltration (UF) to recover only the high molecular weight DOM, ED/RO is capable of isolating both low molecular weight (LMW) and high molecular weight (HMW) DOM. Samples were collected from a broad range of marine environments: along a transect incorporating coastal and offshore waters off the Southeastern United States, in Effingham Inlet, a Pacific fjord located on Vancouver Island, British Columbia and in the Amundsen Sea, Antarctica. Results from phosphorus nuclear magnetic resonance (31P NMR) analysis reveal a similar abundance of P compound classes among samples, phosphate esters (80–85%), phosphonates (5–10%) and polyphosphates (8–13%). These samples contain significantly higher proportions of polyphosphate P and P esters and lower proportions of phosphonates than measured in previous studies using the UF method. The much higher levels of polyphosphate detected in our samples suggests that polyphosphate is present mainly in the LMW dissolved matter fraction. Polyphosphates in dissolved matter may be present as (or derived from) dissolved nucleotides or organismal polyphosphate bodies, or both. Low molecular weight P esters are possibly composed of phosphoamino acids and small carbohydrates, like simple sugar phosphates and/or dissolved nucleotides. Phosphonates in DOM are more prevalent as HMW phosphonate compounds, which suggests that LMW phosphonates are more readily utilized in marine ecosystems. Overall, the investigation of DOM across a size spectrum that includes both the HMW and the LMW fractions reveals a new picture of phosphorus distribution, cycling and bioavailability.  相似文献   

4.
5.
近岸沉积物再悬浮期间所释放溶解有机物的荧光特征   总被引:9,自引:0,他引:9  
对采自厦门湾九龙江人海河口的4个沉积物样品进行了室内再悬浮模拟实验,利用荧光激发-发射矩阵光谱(EEMs)研究了再悬浮过程中从沉积物中释放出的有色溶解有机物(CDOM)的荧光特征,同时通过与相应站位沉积物间隙水和底层水的对比分析,探讨了河口近岸海域的沉积物再悬浮作用作为水体中溶解有机物来源之一的可能性.结果表明,对给定站位,CDOM相对荧光强度和溶解有机碳(DOC)含量分布变化非常一致,均为间隙水最高,再悬浮次之,底层水最低;站位之间,底层水和再悬浮水样中CDOM相对荧光强度随盐度的降低而增加,从海端向河端增加的趋势明显.EEMs分析表明,各样品中均存在类腐殖质荧光与类蛋白质荧光团,且模拟实验也表明再悬浮作用可释放类腐殖质与类蛋白质荧光物质到底层水中,表明底质再悬浮将是近岸水体中CDOM的一个重要来源.与相应的底层水相比,间隙水的荧光峰(如峰A/C)的位置发生红移.再悬浮样品中EEMs的荧光团同时表现出相应底层水和间隙水的特征,但是荧光峰(峰A和峰C)的最大激发和发射波长更接近底层水中相应荧光团,与间隙水相比,则发生谱峰位置的蓝移.近海端样品中荧光峰M明显,随着盐度的降低,底层水和再悬浮水样的γ(M/C)值逐渐降低,且海源的峰M由海端向河端逐渐消失,表明峰M属于海洋自生来源.本研究区域DOM的荧光指数在1.61~1.93之间,表明近海端样品DOM主要为生物来源,而近河端样品DOM主要为陆源输入,或者为陆源与生物活动共同作用的结果.  相似文献   

6.
The high molecular weight fraction of dissolved organic matter in a suite of lakes, rivers, seawater, and marine sediment interstitial water samples was collected by ultrafiltration and characterized by molecular level and spectroscopic techniques. Proton nuclear magnetic resonance spectra of all samples show a high degree of similarity, with major contributions from carbohydrates, bound acetate, and lipids. Molecular level analyses of neutral sugars show seven monosaccharides, rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose, to be abundant, and to occur in comparable relative amounts in each sample. Previous studies have emphasized the distinctive composition of dissolved humic substances in fresh and marine waters, and have attributed these differences to sources and transformations of organic matter unique to each environment. In contrast we find a large fraction of freshwater high molecular weight dissolved organic matter (HMWDOM; > 1kD) to be indistinguishable from marine HMWDOM in bulk and molecular-level chemical properties. Aquatic HMWDOM is similar in chemical composition to biologically derived acylated heteropolysaccharides isolated from marine algal cultures, suggesting a biological source for some fraction of persistent HMWDOM. High molecular weight DOC contributes 51 ± 26% of the total DOC, and monosaccharides 18 ± 8% of the total HMWDOC in our freshwater samples. These contributions are on average higher and more variable, but not significantly different than for surface seawater (30% and 16% respectively). Biogeochemical processes that produce, accumulate, and recycle DOM may therefore share important similarities and be broadly comparable across a range of environmental settings.  相似文献   

7.
Humic acids from Recent lacustrine and marine sediments were divided into five components by extractions with organic solvents and characterized by elementary composition, ultraviolet, visible and infrared absorption spectra and n.m.r. spectra. The results suggest that sedimentary humic acids have a cyclic structure (40–50% of the total carbon), which is considered to be alicyclic rather than aromatic. No marked differences except for an absorption near 410 mμ were observed between humic acids from lake and marine sediments.  相似文献   

8.
A multi-method approach was applied to study changes in dissolved organic matter (DOM) at three estuarine sites with varying salinity, as well as changes resulting from experimental photodegradation. Following measurement of ultraviolet and visible absorption spectra of bulk samples, DOM was isolated using C18 solid phase extraction. The extract was characterized using high performance size exclusion chromatography (HP-SEC) and molecular level characterization was conducted via direct temperature-resolved mass spectrometry (DT-MS) and electrospray ionization mass spectrometry (ESI-MS). The molecular weight distribution of DOM as determined from HP-SEC and ESI-MS varied between techniques, but generally decreased down estuary and with photodegradation for both approaches. Relative differences in molecular weight were significantly correlated with the ratio of absorption coefficients at 254/365 nm. Additionally, photobleaching was significantly correlated with mass spectral characteristics from both DT-MS and ESI-MS. Principal component analysis of DT-MS spectra showed that photoexposure removed different mass spectral characteristics depending on sampling site; however, upon photodegradation, the mass spectral characteristics of both marine DOM and terrestrially dominated DOM approached a common spectrum. We interpret this spectrum, characterized by fragments from aromatic and carbohydrate-like precursors, as photochemically refractory DOM. Our results show that multiple approaches that characterize different aspects of DOM can provide complementary information about its sources and transformation. More specifically, photobleaching results in decreased light absorbance, decreased molecular weight and shifts in the relative abundance of classes of compounds (and broad shifts in m/z values); moreover, these transformations result in photodegraded samples from a low-salinity site which are compositionally similar to samples collected from a mid-salinity site further downstream.  相似文献   

9.
The abundance and structural diversity of bacteriohopanepolyols (BHPs) was examined in three marine pelagic environments that are characterized by strong vertical redox gradients and water column suboxia or anoxia. The abundance and, in most instances, structural diversity of BHPs was highest at depths where conditions were suboxic or anoxic. However, the majority of the BHP structures that were identified are environmentally cosmopolitan and their biological sources are presently not well constrained. An isomer of bacteriohopanetetrol (denoted BHT II) was observed at all three study sites in association with anoxic and suboxic conditions within the water column. Based on the absence of BHT II from terrigenous and oxic marine environments studied to date, and its strong association with suboxic and anoxic marine pelagic environments, we propose that BHT II is a promising candidate biomarker for water column suboxia and anoxia in the marine geologic record. The molecular fingerprint of BHPs in suspended and sinking particles and core-top sediments indicates that hopanoids produced within the water column are exported to marine sediments and that their biological source is most likely associated with settling particles and not the free-water phase. Based on our observations, BHPs likely represent an important input to the sedimentary hopanoid inventory, particularly in upwelling environments characterized by pelagic oxygen minimum zones (OMZ) and anoxic marine basins.  相似文献   

10.
《Applied Geochemistry》2007,22(8):1636-1645
The ecological roles of dissolved organic matter (DOM) in seawater have not been well understood. One definite function of DOM stems from its complexation ability with trace metals under the conditions of seawater. A chemical complexation model of the marine system was introduced in order to clarify the ecological roles of strong organic ligands in DOM related to the acquisition of bioactive metals (Cu, Fe and Zn) by phytoplankton, assuming that two types of strong organic ligands coexist in oceanic DOM and complexes with bioactive metals. The results reveal that the weaker organic ligand, rather than the stronger one, plays a significant role in the reduction of Cu toxicity for phytoplankton growth. It is suggested that the presence of reactions with Cu that are competitive to the strong organic ligand causes extremely low Fe concentrations in seawater and leads to Fe deficiency for phytoplankton growth. Therefore, it is concluded that the strong ligands in DOM play a chemical role in controlling free ion concentration levels of bioactive metals in the marine environment.  相似文献   

11.
The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr)oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content.  相似文献   

12.
Forty-nine samples from Mesozoic rocks of Northern Bulgaria and from recent marine muds of the Black Sea have been analyzed for fatty acids (FA), using extraction, treatment with ion exchange resin and gas chromatography. There is a higher concentration of normal (n) FA in the recent marine sediments, as well as in their bitumen extracts than in the rocks as a whole. There is twice as much n-FA in the rocks containing dispersed organic matter (DOM) formed mainly by benthonic organisms as compared to ancient sediments with planktonic DOM. The content of n-FA has decreased nine and five times, respectively in planktonic DOM in the sequence: limestones-marls-argillites and clayey siltstones, while the amount of organic carbon has risen four and two times. The n-FA are chiefly represented by C16 and C18 and in the recent sediments also by C22 molecules. However when the level of maturity of DOM corresponds to the katagenetic degrees of MK3 and MK4, maximum is in n-FA with 19 and 20 carbon atoms. A gradual decrease in the amount of the n-FA with even-numbered carbon atoms was noted as maturity of the planktonic DOM increases from early diagenesis in recent marine sediments to the katagenetic degrees of MK3 and MK4 in ancient rocks. The ratios FAHC and FAHC + FA have also decreased when the katagenetic maturity of DOM changes from PK3 degree to MK4 degree. These geochemical features may be used as an additional criterion in determining the principal phase of oil formation.  相似文献   

13.
Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C)wa) and hydrogen to carbon ((H/C)wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C)wa 0.52) and contained less hydrogen ((H/C)wa 1.15) than marine pore water DOM (mean (O/C)wa 0.50, mean (H/C)wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.  相似文献   

14.
Properties of fluorescent dissolved organic matter in the Gironde Estuary   总被引:5,自引:0,他引:5  
The isolation, characterization and study of the properties of aquatic dissolved organic matter (DOM) still represent a challenge because of the heterogeneity, complexity and low concentration of organic material in natural waters. Based on its ability to interact with contaminants and thus to modify their transport and bioavailability, DOM is of interest for environmental purposes. The objective of this work was to better characterize DOM in the Gironde Estuary (southwestern France). The estuary represents an exchange zone between the continent and the Atlantic Ocean and conditions the transfer of organic and inorganic substances from the continental to the oceanic environment. Several samples were collected along the estuary during three cruises in 2002 and 2006. They were analysed using excitation–emission matrix (EEM) spectroscopy, a sensitive technique that allows direct analysis of water samples. Fluorescent DOM and dissolved organic carbon (DOC) did not behave conservatively in this estuarine system, i.e. the organic material did not undergo simple dilution from the upstream to the downstream part of the estuary. A seasonal variability in DOC content was pointed out, whereas few seasonal variations in DOM fluorescence were observed. DOM sources and processing in the estuary were further evaluated by determining two fluorescence indices – the humification index (HIX) and the index of recent autochthonous contribution (BIX). By applying these indices, the relative degree of humification (HIX) and autotrophic productivity (BIX) could be assessed. Based on the fluorescence and DOC results, the estuary was divided into three zones depending on salinity (S) and characterized by specific DOM: (i) A turbid zone of low salinity (S < 5) and high suspended particulate matter concentration with increase in the intensities of the α′ and α fluorophores, characteristic of humic-like compounds. (ii) A mid-estuarine zone (5 < S < 25) characterized by low autotrophic productivity and containing strongly degraded organic material, as shown by the low values of BIX and high values of HIX. (iii) A higher salinity area (S > 25) characterized by increased autotrophic productivity and a marked marine influence, and associated with high and low values of BIX and HIX, respectively. The HIX and BIX indices were shown as useful tools for readily defining and classifying DOM characteristics in estuarine waters.  相似文献   

15.
In this work, we use Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (13C NMR) data to quantify the changes of major chemical compound classes (carboxylic acid, amide, ester, aliphatic, aromatic and carbohydrate) in high molecular weight (HMW, >1 kDa) dissolved organic matter (DOM) isolated along a transect through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA. Results show that carboxylic acids and aromatic compounds are lost along the transect, while HMW DOC becomes enriched in carbohydrate moieties that could have a mid-transect source, perhaps the intensive red tide bloom (Choclodinium polykrikoides) which occurred during our sampling period. Taking the second derivative of the FTIR spectra resolved three pools of de-protonated carboxylic acids at our Dismal Swamp site (used to represent terrestrial organic matter in this area): one carboxylic acid pool, complexed with iron, seems to be lost between the Dismal Swamp and river sites; the second appears biogeochemically active throughout the riverine transect, disappearing in the coastal ocean sample; the third seems refractory, with the potential to be transported to and to accumulate within the open ocean. Five-member ring esters (γ-lactones) were the major ester form in the Dismal Swamp; aliphatic and acetate esters were the dominant esters in the estuary/marine DOM. No amide groups were detectable in Dismal Swamp DOM; secondary amides were present at the estuarine/marine sites. Coupling FTIR with 13C NMR provides new insights into the biogeochemical roles of carboxylic acid, amide and ester compounds in aquatic ecosystems.  相似文献   

16.
Aureococcus anophagefferens, the pelagophyte responsible for brown tide blooms, occurs in coastal bays along the northeast coast of the United States. This species was identified in Chincoteague Bay, Maryland, in 1997 and has bloomed there since at least 1998. Time series of dissolved organic matter (DOM) concentrations and characteristics are presented for two sites in Chincoteague Bay: one that experienced a brown tide bloom in 2002 and one that did not. Characteristics of the bulk DOM pool were obtained using dissolved organic carbon (DOC) and ultraviolet-visible (UV-Vis) measurements (spectral slope and specific UV absorbance). High molecular weight DOM (HMW-DOM) was characterized in terms of DOC concentration, carbon: nitrogen (C:N) ratio, isotopic signature, and molecular-level characteristics as determined by direct temperature resolved mass spectrometry (DT-MS). Compositional changes in the DOM pool are associated with brown tide blooms, although a direct relationship between DOM characteristics and bloom development could not be confirmed. DOC measurements suggest that during the brown tide bloom, HMW-DOM was released into the surface water. UV-Vis analysis on the bulk DOM and molecular-level characterization of the HMW-DOM using DT-MS show that this material was optically active and more aromatic in nature. Based upon C:N ratio and HMW-DOC measurements, it appears that this HMW-DOM was more nitrogen enriched. Whether this material was released as exudates or was due to lysis ofA. anophagefferens could not be determined.  相似文献   

17.
The phosphorus content of marine humic acids (HA) is in the range of 0.1–0.2%. The C/P ratios of the HA are 300 to 400. Marine fulvic acids (FA) contain 0.4–0.8% P and have C/P ratios of 80 to 100. High molecular weight organic matter dissolved in pore waters (DOM) contains 0.5% P and has C/P of 90. The data suggest that during the formation sequence: Plankton → DOM → FA → HA → Kerogen, phosphorus is lost, mainly in the FA → HA (and possibly also in the HA → Kerogen) step. Diagenesis of sedimentary humic acids is accompanied by loss of phosphorus (as well as of nitrogen) to form HA with C/P ratios of 1000.Soil humic substances resemble marine humates in P content (0.3%) and soil FA's are about three to fivefold enriched in P relative to HA. C/P ratios are lower in soil HA (ca. 200) as compared with marine HA. Humic acids from diagenetic products such as peat and lignite are highly depleted in P. Rough calculations indicate that humate bound P may account for 20–50% of the organic phosphorus reservoir in sediments. The chemical speciation of this P is unknown, but lack of correlation with ash, Fe, Ca or Al content (in marine humates, at least) indicates that it is organically bound.  相似文献   

18.
Dissolved organic matter (DOM) in groundwater and surface water samples from the Florida coastal Everglades were studied using excitation–emission matrix fluorescence modeled through parallel factor analysis (EEM-PARAFAC). DOM in both surface and groundwater from the eastern Everglades S332 basin reflected a terrestrial-derived fingerprint through dominantly higher abundances of humic-like PARAFAC components. In contrast, surface water DOM from northeastern Florida Bay featured a microbial-derived DOM signature based on the higher abundance of microbial humic-like and protein-like components consistent with its marine source. Surprisingly, groundwater DOM from northeastern Florida Bay reflected a terrestrial-derived source except for samples from central Florida Bay well, which mirrored a combination of terrestrial and marine end-member origin. Furthermore, surface water and groundwater displayed effects of different degradation pathways such as photodegradation and biodegradation as exemplified by two PARAFAC components seemingly indicative of such degradation processes. Finally, Principal Component Analysis of the EEM-PARAFAC data was able to distinguish and classify most of the samples according to DOM origins and degradation processes experienced, except for a small overlap of S332 surface water and groundwater, implying rather active surface-to-ground water interaction in some sites particularly during the rainy season. This study highlights that EEM-PARAFAC could be used successfully to trace and differentiate DOM from diverse sources across both horizontal and vertical flow profiles, and as such could be a convenient and useful tool for the better understanding of hydrological interactions and carbon biogeochemical cycling.  相似文献   

19.
溶解性有机物(dissolved organic matter, DOM)可以通过多种方式控制含水层中砷的迁移转化。贵德盆地承压含水层地下水砷含量显著高于潜水含水层。为查明承压水中溶解性有机物对砷浓度的影响,对研究区地表水、潜水以及承压水进行吸光度和三维荧光光谱的分析,利用平行因子分析法确定了水样中有机物成分及荧光特征。结果表明,贵德盆地水体中DOM包含陆源类腐殖质(C1)、受人为影响的腐殖质(C2)、类醌化合物(C3)和微生物来源的腐殖质(C4)4种组分。陆源类腐殖质C1可在地下水中富集,占总有机质的40%~55%。相比于地下水,C2和C3则在地表水中占据较高的比例。高砷承压水中C2、C3所占比例高于低砷潜水。其中,C1可以通过络合作用促进溶解性砷浓度的提高,C3作为电子穿梭体可以促进含砷铁氧化物或氢氧化物的还原性溶解从而释放砷。微生物降解有机质生成的HCO-3可以与砷竞争吸附,促进砷的解吸附。此外,还原性溶解产生的Fe(II)与HCO-3形成FeCO3固定一部分的砷。该研究表明,地下水中的天然有机物通过络合作用和作为电子穿梭体促进铁氧化物还原导致地下水砷的富集,为分析黄河上游地区高砷地下水的成因提供理论依据。  相似文献   

20.
A detailed analysis of sedimentary organic matter (or palynofacies) was carried out on thermally immature to early mature Upper Jurassic and Hauterivian condensed intervals in deep-sea carbonate–marl alternations outcropping in the Vocontian Basin (SE France). All the condensed sections studied are characterized by intense bioturbation and very low organic carbon content (< 0·25 wt.%), indicative of oxic depositional conditions. Oxic condensed sections display variable palynofacies signatures, which are best illustrated by: (1) the ratio of continental to marine constituents; (2) the ratio of opaque to translucent phytoclasts (i.e. woody debris) and (3) the preservation of palynomorphs (based on fluorescence intensity and morphological preservation state in transmitted light microscopy). Both of the ratios increase with the degree of palynomorph degradation, which shows that phytoclasts, especially the opaque ones, become relatively concentrated in the most degraded facies. These observations lead to the classification of oxic condensed sections into three organic facies types showing different degrees of preservation and palynofacies signatures. Type 1 organic facies display intense degradation and are characterized by high values of the ratio of continental to marine fraction. They record unfavourable depositional environments for preservation of organic matter. Type 2 organic facies are most common and are characterized by a decreasing value of the ratio of continental to marine fraction. Type 3 organic facies display the same trend of the ratio of continental to marine fraction as type 2, but the palynomorph assemblage is better preserved. Type 1 and type 3 organic facies are relatively rare. Recognizing these organic facies types is important when analysing the relationship between sedimentary organic matter and sequence stratigraphy, because it allows the use of the appropriate palynofacies parameters. In particular, the use of the ratio of continental to marine constituents, usually a very good indicator of regressive–transgressive trends, becomes questionable in highly degraded intervals. Moreover, distinguishing between well-preserved or highly degraded palynofacies in condensed intervals provides valuable information on the oxicity of the depositional environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号