首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
Some steps were taken recently for Hungary aiming at the determination of geoid heights with a cm-accuracy. The present HGTUB98 gravimetric solution was based on terrestrial gravity data, height data and the EGM96 geopotential model, and was computed with the 1D Spherical FFT method. The gravity data were used in the area 45.5 ° ≤ϑ ≤ 49 °, 16 ° ≤ λ ≤ 23 °, the resolution of the grid was 30″ × 50″. The DTM used had a resolution of 1 km × 1 km.Our solution was evaluated using GPS/levelling data at 340 and 308 points respectively and at 138 vertical deflection points. We have compared our solution to the European EGG97 geoid solution, the gravimetric solution HGR97B developed by A. Kenyeres and the litospheric geoid solution by G. Papp. We have correlated our recent HGTUB98 solution to the Moho model of Central Europe. The comparison with GPS/levelling yielded respectively an accuracy of ±8.7 cm and ±4.4 cm (in terms of standard deviation) when a linear trend was removed. The comparison of the 1D planar FFT solution for the deflections of the vertical with 138 astrogeodetic deflections yielded an accuracy (in terms of standard deviation) of ±0.62″ and ±0.52″ for ξ and η, respectively.  相似文献   

2.
According to the wide spread use of satellite-based positioning techniques, especially Global Navigation Satellite Systems (GNSS), a greater attention has been paid to the precise determination of geoid models. As it is known, leveling measurements require high cost and long time in observation process that make it not convenient for the practical geodetic purposes. Thus obtaining the orthometric heights by GNSS is the most conventional way of determining these heights. Verifying this goal was the main objective behind the current research. The current research introduces a numerical solution of geoid modeling by applying a surface fitting for a few sparse data points of geoid undulation using minimum curvature surface (MCS). The MCS is presented for deriving a system of linear equations from boundary integral equations. To emphasize the precise applicability of the MCS as a tool for modeling the geoid in an area using GPS/leveling data, a comparison study between EGM2008 and MCS geoid models, is performed. The obtained results showed that MCS technique is a precise tool for determining the geoid in Egypt either on regional and/or local scale with law distortion at check points.  相似文献   

3.
The Fast Fourier Transformation (FFT) has become a routine mathematical tool for the refinement of the Earth's gravity field, such as the computation of precise gravimetric geoid and terrain corrections, particularly over a large area. This paper presents ideas and methodologies to evaluate the accuracy of geoid undulation computations using FFT. A global geopotential model is used as a ‘ground truth’ gravity field model to assess the geoid determination precision by using FFT technique. It is demonstrated that special considerations must be given for a high precision FFT gravimetric geoid determination. A maximum of a few decimetres error could be introduced by the FFT algorithm if the gravity anomalies are not long wavelength filtered and/or no zero padding is applied.  相似文献   

4.
An improved hybrid gravimetric geoid model for Egypt, EGY-HGM2016, has been recently computed implementing the least-squares collocation (LSC) method through the remove-compute-restore (RCR) procedure. The computation of EGY-HGM2016 involves different datasets in terms of gravity anomalies determined from the GOCE (gravity field and steady-state ocean circulation explorer)-based global geopotential model (SPW-R4) up to d/o 200 and EGM2008 from d/o 201 to 720 combined with terrestrial gravity datasets in terms of 2140 gravity field anomalies and about 121,480 marine surface gravity anomalies. In addition, orthometric heights from 17 GPS/levelling measurements have been considered during the modelling process to improve the determination of the hybrid gravimetric geoid over the Egyptian region. The EGY-HGM2016 model estimated over Egypt provides geoid heights that are ranging from 7.677 to 21.095 m with a standard deviation (st. dev.) of about 2.534 m in the northwest of the country excluding the involvement of the orthometric heights from GPS/levelling measurements. When the later dataset is considered during the implementation of LSC process, hybrid residual height anomalies ranging from ?1.5 to +0.9 m, with a mean of 0.22 m and a st. dev. of 0.17 m, are obtained. Comparison of the predicted hybrid gravimetric geoid with the corresponding ones obtained from EGM2008, GOCE-based SPW R4 model, and GPS/levelling reveals considerable improvements of our EGY-HGM2016 model over Egypt.  相似文献   

5.
In this paper two different methods of how to handle topography in geoid determination is investigated. First method employs the Residual Terrain Model (RTM) remove-restore technique and yields the quasigeoid, whereas the second method is the classical Helmert condensation method, yielding the geoid. Both methods were used with the Earth Gravity Model (1996) (EGM96) geopotential model as reference, and results are compared to precise Global Positioning System (GPS) levelling networks in Scandinavia, especially an accurate GPS data set from the very rugged Sognefjord region, where the topography was represented by either a detailed (100 m) or a coarse (1000 m) digital terrain model. The inclusion of bathymetry in the terrain model was also investigated.Even if two different methods were used, they produced almost identical results at the 5 cm level in the mountains, but small systematic differences exist. Results show the importance of comparing the right types of geoid (classical geoid or quasigeoid), since differences in residuals are significant.  相似文献   

6.
The topographic surface is a measure of static equilibrium from the actual density distribution within the outmost Earth's lithosphere. The natural height reference of this surface, known as geoid, reflects the mixed mass-density effects, caused by the same sources, without the contribution of topographic mass. Geoid undulation and topography are output signals, which carry in common a large part of the contribution from the causal “sources”. This contribution appears in both types of signal. Comparisons between the signals depict the geographical location and an estimation of the depth occurrence of areas with geophysical and tectonic formations depending on their correlation rate. We present results from the Greek region, known for its complex diversity in topography, tectonics and dynamics. The tests are in point and “surface” concept, from local and global signals of geoid and topography. Local geoid is represented at 91 GPS points and EGM 96 coefficients compute its global representation. The topography is point values within the area, and the ETOPO5 5′X5′ data within the geographical frame.  相似文献   

7.
In this paper an estimator for geoid is presented and applied for geoid computation which considers the topographic and atmospheric effects on the geoid. The total atmospheric effect is mathematically developed in terms of spherical harmonics to degree and order 2,160 based on a recent static atmospheric density model. Also the contribution of its higher degrees is formulated. Another idea of this paper is to combine one of the recent Earth gravity models (EGMs) of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission with EGM08 and the terrestrial gravimetric data of Fennoscandia in an optimum way. To do so, the GOCE EGMs are compared with the Global Positioning System (GPS)/levelling data over the area for finding the most suited one. This comparison is done in two different ways: with and without considering the errors of the EGMs. Comparison of the computed geoids with the GPS/levelling data shows that a) considering the total atmospheric effect will improve the geoid by about 5 mm, b) GOCO03S is the most suited GOCE EGM for Fennoscandia, c) the errors of some of the GOCE EGMs are optimistic and far from reality. Combination of GOCO03S from degree 120 to 210 and EGM08 for the rest of degrees shows its good quality in these frequencies.  相似文献   

8.
区域大地水准面的确定是GPS测量常需解决的问题。目前确定大地水准面的方法主要包括重力法、GPS水准几何法及组合法,其中组合法因其精度和可靠性都较高,常用于计算高精度区域大地水准面。高精度的大地水准面模型是组合法确定区域大地水准面的关键。在我国,EGM2008全球重力场模型精度和分辨率均高于此前的所有模型,研究基于该模型的组合法大地水准面精化具有重要的实践意义。笔者以吉林大学兴城教学实习基地物探实验区为例,基于实测重力数据、EGM2008重力场模型和GPS水准数据,采用组合法精化了区域大地水准面,比较了组合法大地水准面模型和无重力实测数据的几何法大地水准面模型的精度差异,分析了该方法在物探测量中的适用性。结果表明,实验区组合法大地水准面模型精度最高达到1.2 cm,并且误差分布区间较小,总体上精度和可靠性高于对比的几何方法,并且组合法和几何法获取的两种大地水准面模型均能满足大比例尺物探测量要求。EGM2008模型精度较高,故平坦地区使用组合法时,高密度的实测重力数据可能带来高频扰动,有可能降低EGM2008重力场模型本身的精度,所以重力数据采集过程中要顾及重力点的密度和空间分布。本文方法更适用于地形复杂的地区。  相似文献   

9.
In this article, separation between the geoid and the quasigeoid was calculated using ground gravity data and the data extracted from two Global Geopotential Models (GGMs). The calculated results were compared together. To do so, the authors used the terrestrial gravity data in a vast region of Iran, comprising 8,245 stations which are kindly put in our disposal by the National Cartographic Center of Iran, as well as two GGMs, namely EGM96 and EGM2008 for comparison. The calculation of the separation for GGMs was performed by iteration method. The results showed that the geoid–quasigeoid separations obtained from the terrestrial data versus the orthometric heights are nonlinear in mountainous areas, whereas they are almost linear in flat regions due to decreasing the values of the topographic potential of the masses between the earth surface and the geoid. On the other hand, in case of GGMs, a positive correlation was observed between the separations and the orthometric heights in both mountainous and flat areas. As the difference between the separations extracted by two methods in mountainous areas—especially in the regions with ragged topography—differs strongly, it is recommended to use the dense gravity and height networks for accurate determination of the geoid–quasigeoid separation in these regions. Finally, we can conclude that the mean values of separation by two global geopotential models (EGM96 and EGM2008) are 21.87 and 21.23 cm, respectively, values which did not differ strongly, whereas this mean value obtained from ground gravity data is 16.10 cm, which differs from the GGMs’ results with approximately 5 cm.  相似文献   

10.
Since the creation of the Sub-Commission for the Geoid in South America (SCGSA) in 1993, many efforts have been carried out in the different countries in order to improve the geoid computations. The validation of the gravity data in Brazil, Uruguay, Argentina and Chile has improved many of the gravity surveys in those countries. GPS observations carried out on benchmarks of the geometric levelling have been facilitated by the SIRGAS (Geocentric Reference System for South America) project and can contribute for testing the gravimetric determination of the geoid. Several countries made available GPS data for SCGSA like Brazil, Argentina, Venezuela and Chile. The Digital Terrain Model (DTM) has been improved considerably in Brazil and Argentina. A great number of topographic maps has been digitized to generate a DTM grid of 3′ resolution (DTM3). New gravity surveys in the Amazonas region have been in progress along Rio Negro and its tributaries. Many different organizations in most of the countries in South America have been involved with local or national geoid computations. This fact has brought attention to the data in several countries facilitating the efforts for a continental geoid. All these activities are strongly supported by Geophysical Exploration Technology (GETECH) — University of Leeds. The objective envisaged at the moment is to produce a 10′ resolution geoid for South America using FFT and to compare the result with that of the numerical integration of the modified Stokes integral.  相似文献   

11.
以吉林大学兴城物探教学实习测网为例,基于EGM2008重力场模型,采用二次曲面、移动曲线、最小二乘配置、三次样条和反距离加权改正插值法,计算了不同GPS水准点密度情况下的水准面模型,并利用二等水准测量方法验证了计算精度,分析了该模型的适定性。结果表明,三次样条插值法的精度和稳定性最高,其次是移动曲线法和最小二乘配置法;二次曲面拟合的精度最低,反距离加权改正法稳定性最差。所有算法都表明,在研究区,当GPS水准点间隔20 km时,基于EGM2008模型确定的大地水准面精度在0.1 m以内;而采用单独GPS水准点的区域大地水准面模型能达到14cm,完全满足各种比例尺情况下的石油物探测量要求。  相似文献   

12.
青藏高原及邻区大地水准面异常场源结构   总被引:1,自引:0,他引:1  
方剑 《地学前缘》2001,8(4):449-452
以青藏高原及邻区地形、地震层析成像、沉积层底面、Moho面及岩石层底面资料为基础 ,讨论了由地形起伏、地球内部各界面以及物质密度不均匀引起的大地水准面异常的计算方法 ,正演计算出青藏高原及邻区岩石圈内部物质不均匀产生的大地水准面异常 ,并把从全阶大地水准面异常中扣除正演模拟得到的岩石圈大地水准面异常与不同阶次波段的大地水准面进行比较 ,以寻求表示青藏高原及邻区地幔物质不均匀的大地水准面异常球谐函数的最佳阶次。结合地震层析成像资料分析结果得出 ,表示青藏高原及邻区下地幔、上地幔及岩石圈物质不均匀的大地水准面异常球谐函数的阶次范围分别为 2 6阶 ,7 60阶和 61 3 60阶。  相似文献   

13.
New geoid computations for the Hellenic area are carried out using (a) gravity anomalies for the land area available from old and new data bases, and gravity data for the sea area derived from altimetry and a recent digitization of sea gravity maps, and (b) a 1km × 1km digital terrain model. The EGM96 geopotential model is used as the reference field. In order to assess the quality of the computed geoid heights in the continental area comparisons were carried out with GPS/leveling heights and the recently available European Gravimetric Geoid EGG97. In the sea area the geoid heights were compared with sea surface heights of the recent and more accurate TOPEX/POSEIDON (T/P) altimetry mission. At the end of this article the improvement of the data bases is discussed and some plans for further development in the methodological schedule are pointed out.  相似文献   

14.
In geophysical applications, the interest in least-squares migration (LSM) as an imaging algorithm is increasing due to the demand for more accurate solutions and the development of high-performance computing. The computational engine of LSM in this work is the numerical solution of the 3D Helmholtz equation in the frequency domain. The Helmholtz solver is Bi-CGSTAB preconditioned with the shifted Laplace matrix-dependent multigrid method. In this paper, an efficient LSM algorithm is presented using several enhancements. First of all, a frequency decimation approach is introduced that makes use of redundant information present in the data. It leads to a speedup of LSM, whereas the impact on accuracy is kept minimal. Secondly, a new matrix storage format Very Compressed Row Storage (VCRS) is presented. It not only reduces the size of the stored matrix by a certain factor but also increases the efficiency of the matrix-vector computations. The effects of lossless and lossy compression with a proper choice of the compression parameters are positive. Thirdly, we accelerate the LSM engine by graphics cards (GPUs). A GPU is used as an accelerator, where the data is partially transferred to a GPU to execute a set of operations or as a replacement, where the complete data is stored in the GPU memory. We demonstrate that using the GPU as a replacement leads to higher speedups and allows us to solve larger problem sizes. Summarizing the effects of each improvement, the resulting speedup can be at least an order of magnitude compared to the original LSM method.  相似文献   

15.
深层搅拌桩复合地基沉降计算理论研究   总被引:19,自引:2,他引:19  
施建勇  邹坚 《岩土力学》2002,23(3):309-315,320
为了寻找深层搅拌桩复合地基沉降计算的简便方法,根据已有的研究成果,进行了桩与桩周土间摩擦力分布规律的假设和简化,运用单位元法推导了深层搅拌桩复合地基沉降计算公式和设计用曲线,同时采用轴对称有限元法,对一实际工程的实测成果进行了分析。计算结果表明:文中理论计算的中级荷载下的沉降量值介于分层总和法与有限元法计算值之间,但文中方法比有限元计算法简单,比分层总和法更合理。  相似文献   

16.
A local geoid solution for the northern part of Greece is presented based on a recent processing of newly available gravity data in the area 40.25 ≤ /o ≤ 41.00, 22.5 ≤λ ≤ 24.25. The derived gravimetric geoid heights are compared with geoid heights computed at recently measured GPS/ leveling benchmarks. A 4-parameter transformation model is applied to the differences between the two aforementioned geoid height sets, and a discussion is given on the current state of the leveling datum in the test area and the Greek territory. Regional and local transformation parameters are computed and some numerical tests are performed. A common adjustment of gravimetric geoid heights and corresponding GPS/leveling heights will be carried out in another study following an integrated procedure in order to study problems arising from the combination of different height data sets for geoid determination. Finally, some conclusions are drawn on the problems related to the optimization of a local geoid solution.  相似文献   

17.
This is a preliminary report of our on-going research on a global topographic-isostatic model. The model comes from a completely new idea — the geoid undulation is the responses of an elastic earth to the topographic mass load. Assuming the topography as a condensed surface mass load, we derive expressions for calculating the vertical displacement, potential and equipotential surface changes, based on the load theory proposed in Sun and Sjöberg (1996). The modeled geoid is composed of three parts: loading potential, surface displacement and mass redistribution. The mass redistribution of the earth compensates to some extent the topography. We mainly calculate and discuss the vertical displacements and equipotential surface changes for three depths: the earth's surface, d = 36 km and the core-mantle boundary. Numerical results show that the displacements at depth 36 km and the earth's surface have the same distribution pattern and magnitude, while the vertical movement of the core-mantle boundary appears much smoother and smaller. The modeled geoid undulations vary between −352 and +555 m. The comparison between the modeled and observed geoid undulations shows that there are strong positive correlations between them, but a compensation only by elastic deformations is not sufficient to explain the observed undulations because of the big difference in magnitude between the two geoids. More geodynamic effects should be considered to better explain the long-wavelength geoid features.  相似文献   

18.
Description and release of Australian gravity field model testing data   总被引:1,自引:0,他引:1  
Gravimetric geoid and/or quasigeoid models are routinely evaluated using co-located GPS-levelling and/or astrogeodetic vertical deflections, globally and regionally. This short note describes these ground-truth data for Australia as of August 2017, which are provided as Electronic Supplementary Material. We provide ~7500 GPS-derived ellipsoidal heights, normal-orthometric heights from the 1971 adjustment of the Australian Height Datum, normal heights from a readjustment of levelling constrained to a model of the ocean's mean dynamic topography, and ~1000 historical astrogeodetic vertical deflections. Updates to these data will be posted on the Intergovernmental Committee on Surveying and Mapping GitHub repository (https://github.com/icsm-au), together with a readme.txt file describing them.  相似文献   

19.
A new gravimetric geoid is computed for South Spain and the Gibraltar Strait area. This geoid is located just in the junction between two tectonic plates (Euro-Asiatic and African plates) and in the junction of two gravimetric geoids: IGG2005 (the Iberian Gravimetric Geoid obtained in 2005) and MORGEO (the MORoccan GEOid). IGG2005 is the Iberian geoid and MORGEO is the Moroccan geoid, both geoids have been previously obtained. The new geoid is the gravimetric geoid solution that connects the two above-mentioned geoids, getting a more accurate and reliable picture of this area than the other previous geoids. The method used is the Stokes integral in convolution form, which shows to be an efficient method to reach the proposed objective. The terrain correction and the indirect effect have been taken into account. The new geoid is obtained as a regular grid (with a mesh size of 1.5′ × 1.5′) in the GRS80 reference system, covering the study area from 34° to 40° of latitude and from −8° to 0° of longitude. This gravimetric geoid and the previous geoids: IGG2005 and MORGEO; are compared to the geoid undulations derived at the validation points located on the study area (four GPS/levelling points measured on Morocco and five points of the European vertical reference network (EUVN) measured on Iberia). As it is expected, the new geoid is a more precise and reliable model, fitting the geoidal heights of these validation points with more accuracy than the other previous geoids. This new model will be useful for orthometric height determination by GPS in the mountains and remote areas, where levelling has many logistic problems. Also, it can be interesting for other geophysical purposes different to the height measurements, because it can provide a constraint for the density distribution, the thermal state of Lithosphere and the viscosity in the mantle. Such details can be inferred from a geoid model and the seismic velocity structure.  相似文献   

20.
V. Corchete 《地学学报》2008,20(6):489-493
The gravimetric geoid computed in the northern part of Iberia, is presented in this paper. This computation has been performed considering two study windows fitted to the areas with higher density of gravity data, to reduce the computation errors associated to the scarcity of gravity data, as much as possible. The bad influence of a bathymetry with poorer resolution than the topography is also reduced considering the smallest marine area possible. Moreover, the computation of this gravimetric model is based on the most recent geopotential model: EIGEN‐GL04C (obtained in 2006). The method used in the computation of the new gravimetric geoid has been the Stokes integral in convolution form. The terrain correction has been applied to the gridded gravity anomalies, to obtain the corresponding reduced anomalies. Also the indirect effect has been taken into account. Thus, a new geoid model has been calculated and it is provided as a data grid in the Geodetic Reference System of 1980, distributed for the northern part of Iberia from 40 to 44 degrees of latitude and ?10 to 4 degrees of longitude, on a 161 × 561 regular grid with a mesh size of 1.5′ × 1.5′. This new geoid and the previous geoid Iberian Gravimetric Geoid 2005, are compared with the geoid undulations measured for eight points of the European Vertical Reference Network (EUVN) on Iberia. The new geoid shows an improvement in precision and reliability, fitting the geoidal heights of these EUVN points with more accuracy than the previous geoid. Moreover, this new geoid has a smaller standard deviation (12.6 cm) than that obtained by any previous geoid developed for the Iberian area up to date. This geoid obtained for the northern part of Iberia will complement the previously obtained geoid for South Spain and the Gibraltar Strait area; both geoids jointly will give a complete picture of the geoid for Spain and the Gibraltar Strait area. This new model will be useful for orthometric height determination by GPS over this study area, because it will allow orthometric height determination in the mountains and remote areas, in which levelling has many logistic problems. This new model contributes to our knowledge of the geoid, but the surrounding areas must be better known to constrain the lithospheric and mantle models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号