首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In many large estuaries there are significant variations in flow conditions due to the interaction between tide (with spring–neap changes) and river discharge (with wet–dry seasons), which is key to understanding the evolution of the morphology and the resultant equilibrium state. To explore whether there exists an equilibrium state, and what might control such a state in such a dynamic environment, both numerical and analytical methods have been used to investigate the relative importance of tide and river contributions to the work done locally and globally over a wide range of discharge conditions in the Yangtze estuary. In particular, we have quantified the contributions from the tidal flow, the river flow and the tide–river interaction in terms of energy and its dissipation under different river discharge conditions. Model results suggest that there is a state of minimum tidal work for the case representing the wet season, when river and tide are doing uniform work locally and minimum work globally, within the bi‐directional tidal reach for tide and along the whole estuary for river. We also observe that the system is not optimized for other conditions (peak discharge and low flows during the dry season), but the system would tend to do the minimum work possible given the constraints on the system (e.g. imposed forcing conditions and available sediment supply). Results, therefore, are consistent with the use of these two energetic optimization principles, and the proposed method could be applicable to other alluvial estuaries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The bacteriological quality of bathing waters is examined for two coastlines with very different environmental characteristics, namely Whitley Bay in the north east of England and the Bay of Naples in the Mediterranean. The Whitley Bay beach is contaminated by sea outfalls, but tidal action is vigorous, the water is cool and sunlight is not very strong. The water does not meet the EEC standards for bathing water quality at the present time, but a new sewerage system soon to be completed should effect a substantial improvement.In the Bay of Naples there is very little tide, the water is warm and sunlight is usually strong in the bathing season. The water quality meets the EEC standards for most of the authorized beaches and pollution is restricted to a few well defined zones in the Bay.  相似文献   

3.
A 2D depth-averaged numerical model is set up to simulate the macro-scale hydrodynamic characteristics, sediment transport patterns and morphological evolution in Hangzhou Bay, a large macro-tidal estuary on the eastern coast of China. By incorporating the shallow water equations, the suspended sediment transport equation and the mass-balance equation for sediment; short-term hydrodynamics, sediment transport and long-term morphological evolution for Hangzhou Bay are simulated and the underlying physical mechanisms are analyzed. The model reproduces the spatial distribution patterns of suspended sediment concentration (SSC) in Hangzhou Bay, characterized by three high SSC zones and two low SSC zones. It also correctly simulates the residual flow, the residual sediment transport and the sediment accumulation patterns in Hangzhou Bay. The model results are in agreement with previous studies based on field measurements. The residual flow and the residual sediment transport are landwards directed in the northern part of the bay and seawards directed in the southern part. Sediment accumulation takes place in most areas of the bay. Harmonic analysis revealed that the tide is flood-dominant in the northern part of the bay and ebb-dominant in the southern part of the bay. The strength of the flood-dominance increases landwards along the northern Hangzhou Bay. In turn sediment transport in Hangzhou Bay is controlled by this tidal asymmetry pattern. In addition, the direction of tidal propagation in the East China Sea, the presence of the archipelago in the southeast and the funnel-shaped geometry of the bay, play important roles for the patterns of sediment transport and sediment accumulation respectively.  相似文献   

4.
In the light of the regional physiography and its effect on clay mineral composition of cohesive sediment (d < 0.005 mm) the source area of cohesive sediment in the Yangtze Estuary can be identified as three supplying regions: the main stem of the Yangtze River, the deltaic region of the abandoned Yellow River including the northwest Huanghai Sea and the Hangzhou Bay. Based on the evaluation of clay mineral composition in the supplying regions and the converging region, a computational model is established. More than 89.6% of cohesive sediment comes from the Yangtze River, a considerable amount is replenished from the deltaic region of the abandoned Yellow River while some part of the cohesive sediment load is transported from the Yangtze Estuary to the Hangzhou Bay. Computation results reveal that the annual deposit of cohesive sediment in the Yangtze Estuary amounts to 45.54 x 106 t. The annual cohesive sediment load replenished from the deltaic region of the abandoned Yellow River is 27.30 x 106t, while the annual cohesive sediment load transported to the Hangzhou Bay is 22.47 x 106 t. The amount of deposit in the Yangtze Estuary has been checked against the value obtained by comparing bathemetry of the Yangtze Estuary in 1915 and 1963.  相似文献   

5.
This study investigates the longitudinal variation of lateral entrapment of suspended sediment, as is observed in some tidal estuaries. In particular, field data from the Yangtze Estuary are analysed, which reveal that in one cross-section, two maxima of suspended sediment concentration (SSC) occur close to the south and north sides, while in a cross-section 2 km down-estuary, only one SSC maximum on the south side is present. This pattern is found during both spring tide and neap tide, which are characterised by different intensities of turbulence. To understand longitudinal variation in lateral trapping of sediment, results of a new three-dimensional exploratory model are analysed. The hydrodynamic part contains residual flow due to fresh water input, density gradients and Coriolis force and due to channel curvature-induced leakage. Moreover, the model includes a spatially varying eddy viscosity that accounts for variation of intensity of turbulence over the spring-neap cycle. By imposing morphodynamic equilibrium, the two-dimensional distribution of sediment in the domain is obtained analytically by a novel procedure. Results reveal that the occurrence of the SSC maxima near the south side of both cross-sections is due to sediment entrapment by lateral density gradients, while the second SSC maximum near the north side of the first cross-section is by sediment transport due to curvature-induced leakage. Coriolis deflection of longitudinal flow also contributes the trapping of sediment near the north side. This mechanism is important in the upper estuary, where the flow due to lateral density gradients is weak.  相似文献   

6.
The occurrence and concentration of the fuel additive methyl-tert-butyl ether (MTBE) were measured in dry weather runoff, municipal wastewater and industrial effluents, and coastal receiving waters in southern California. Combined, refineries and sewage treatment plants release approximately 214 kg day(-1) of MTBE into the marine environment, with Santa Monica Bay receiving most (98%) of this discharge. Dry weather urban runoff was analysed for samples collected from 25 streams and rivers, and accounted for less than 0.5% of the mass of MTBE discharged to coastal waters. Receiving water samples were collected from 23 stations in Santa Monica Bay, Los Angeles Harbour and Mission Bay or San Diego Bay. MTBE was detected at low concentrations near effluent discharges, however there was no evidence of baywide MTBE contamination related to these outfalls. Marinas and areas used intensively for recreational boating had the highest average MTBE concentration (8.8 microg l(-1)). Surface water contamination was most widespread in San Diego Bay and Mission Bay, areas with no refinery or sewage treatment plant inputs.  相似文献   

7.
Based upon the long-term observation of field data, a two-dimensional numerical model is applied to simulating the tidal flow covering from the neap tide to spring tide in the radial sandbank area in the southern Yellow Sea. From the development of tidal current ridges under the hydrodynamic action, multi-purpose analysis and study are carried out, which include the propagation process of tidal wave, the distributions of tidal wave energy rate and tidal range, the tidal ellipses and traces. It is shown that the tidal current is the major dynamic factor for the formation and development of the radial sandbanks, and the differences of tidal wave energy rate and current strength determine the distinct plane shapes of ridges and troughs in this region.  相似文献   

8.
In many coastal cities around the world, marine outfalls are used for disposal of partially treated wastewater effluent. The combined use of land-based treatment and marine discharge can be a cost-effective and environmentally acceptable sewage strategy. Before 2001, screened sewage was discharged into Victoria Harbour through many small outfalls. After 2001, the Hong Kong Harbour Area Treatment Scheme (HATS) was implemented to improve the water quality in Victoria Harbour and surrounding waters. Stage I of HATS involved the construction of a 24 km long deep tunnel sewerage system to collect sewage from the densely populated urban areas of Hong Kong to a centralized sewage treatment plant at Stonecutters Island. A sewage flow of 1.4 million m3 d−1 receives Chemically Enhanced Primary Treatment (CEPT) followed by discharge via a 1.2 km long outfall 2 km west of the harbor. The ecosystem recovery in Victoria Harbour and the environmental response to sewage abatement after the implementation of HATS was studied using a 21-year data set from long term monthly water quality monitoring. Overall, the pollution control scheme has achieved the intended objectives. The sewage abatement has resulted in improved water quality in terms of a significant reduction in nutrients and an increase in bottom DO levels. Furthermore, due to the efficient tidal mixing and flushing, the impact of the HATS discharge on water quality in the vicinity of the outfall location is relatively limited. However, Chl a concentrations have not been reduced in Victoria Harbour where algal growth is limited by hydrodynamic mixing and water clarity rather than nutrient concentrations. Phosphorus removal in the summer is suggested to reduce the risk of algal blooms in the more weakly-flushed and stratified southern waters, while nutrient removal is less important in other seasons due to the pronounced role played by hydrodynamic mixing. The need for disinfection of the effluent to reduce bacterial (E. coli) concentrations to acceptable levels is also confirmed and has recently been implemented.  相似文献   

9.
This paper summarizes the results of a large-scale ‘beyond BACI’ designed assessment of the influences of effluent discharges from Sydney's deepwater sewage outfalls on assemblages of larval fishes. Larval fishes were sampled at three outfalls and at multiple control locations three times before and three times after the deepwater outfalls were commissioned. Sampling was stratified to account for time of year, oceanography and plume behaviour. Large numbers of fish larvae were caught near the outfalls and were thus exposed to sewage plumes. Results indicated that some larvae that normally occur at depth were displaced upwards by rising plumes, particularly when plumes surfaced. No predictable positive or negative numerical responses of larvae to outfalls were evident. Rather responses varied depending on the taxa, outfall and season. The large inherent level of natural spatial and temporal variability in abundances of larvae swamped the detection of possible impacts for many taxa. Future field based studies need to track larvae through plumes to assess changes in numbers, but also to test effects on the health and condition of larvae.  相似文献   

10.
The impact of sewage and stormwater effluents on phytoplankton is investigated by comparing organic-walled dinoflagellate cyst abundance and diversity from 38 surface sediment samples, flanking southern Vancouver Island. Site locations include those directly adjacent to wastewater outfall at Clover and Macaulay Points and Saanich Peninsula, as well as from a variety of near-shore environments with differing tidal flow influences. Excellently preserved dinoflagellate cyst assemblages have been recovered and 36 cyst taxa were identified. Local assemblages are characterized by a high relative proportion (average 56%) of cysts produced by heterotrophic dinoflagellates, which is typical for regions of high primary production. Relative proportional increases of cysts from heterotrophic species with particular increases of Polykrikos kofoidii/schwartzii and Dubridinium species, known to reflect areas affected by eutrophication, occur directly adjacent to all three sewage outfalls, as well as in the more stagnant waters of Esquimalt and Victoria Harbours and at the mouth of Cadboro Bay. Further effects of an anthropogenic effluent can be seen in the relatively higher concentrations of organic carbon and the diatom production proxy, biogenic opal. Results from this study clearly indicate a much larger impact zone than predicted by a sewage effluent plume model or trends found in monitored benthic biota and sediment chemistry that evidence primary outfall affects <800 m eastward of Macaulay Point and about 200 m eastward of the Clover Point. Enhanced production of cysts from potentially toxic Alexandrium species is also observed near locations of sewage outfalls.  相似文献   

11.
Numerical modelling of morphodynamics—Vilaine Estuary   总被引:1,自引:0,他引:1  
The main objective of this paper is to develop a method to simulate long-term morphodynamics of estuaries dominated by fine sediments, which are subject to both tidal flow and meteorologically induced variations in freshwater run-off and wave conditions. The method is tested on the Vilaine Estuary located in South Brittany, France. The estuary is subject to a meso–macrotidal regime. The semi-diurnal tidal range varies from around 2.5 to 5 m at neap and spring, respectively. The freshwater input is controlled by a dam located approximately 8 km from the mouth of the estuary. Sediments are characterised as mostly fines, but more sandy areas are also found. The morphology of the estuary is highly influenced by the dam. It is very dynamic and changes in a complicated manner with the run-off from the dam, the tide and the wave forcing at the mouth of the estuary. Extensive hydrodynamic and sediment field data have been collected in the past and provide a solid scientific basis for studying the estuary. Based on a conceptual understanding of the morphodynamics, a numerical morphological model with coupled hydrodynamic, surface wave and sediment transport models is formulated. The numerical models are calibrated to reproduce sediment concentrations, tidal flat altimetry and overall sediment fluxes. Scaling factors are applied to a reference year to form quasi-realistic hydrodynamic forcing and river run-off, which allow for the simulations to be extended to other years. The simulation results are compared with observed bathymetric changes in the estuary during the period 1998–2005. The models and scaling factors are applied to predict the morphological development over a time scale of up to 10 years. The influence of the initial conditions and the sequence of external hydrodynamic forcing, with respect to the morphodynamic response of the estuary, are discussed.  相似文献   

12.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

13.
The southeastern portion of the Yangtze River Estuary (or Yangtze Estuary) was considered to be the deposition center and the mudbank of the Yangtze River Delta.As the fluvial sediment supply began to decline in the 1980s and the reduction accelerated after the completion of the Three Gorge Dam in 2003,more fluvial sediment was trapped decreasing the suspended sediment concentration (SSC) environment in the river mouth area.Moreover,the accretion rate of the mudbank has slowed down in recent dec...  相似文献   

14.
Based on field data of river discharge, tide, tidal bore, and riverbed topography, the characteristics of river discharge, the effect of river discharge on riverbed erosion and sedimentation, and the feedback effect of riverbed erosion and sedimentation on the tide and tidal bore in the Qiantang River are analyzed. The results show that the inter-annual and seasonal variation of river discharge in the Qiantang River is noticeable, while the seasonal distribution of river discharge tends to be un...  相似文献   

15.
Acoustic Doppler current profiles and current meter data are combined with wind observations to describe the transport of water leaving Florida Bay and moving onto the inner shelf on the Atlantic side of the Florida Keys. A 275-day study in the Long Key Channel reveals strong tidal exchanges, but the average ebb tide volume leaving Florida Bay is 19% greater than the average flood tide volume entering the bay. The long-term net outflow averages 472 m3 s−1. Two studies in shelf waters describe the response to wind forcing during spring and summer months in 2004 and during fall and winter months in 2004–2005. During the spring–summer study, southeasterly winds have a distinct shoreward component, and a two-layer pattern appears. Surface layers move shoreward while near-bottom layers move seaward. During the winter study, the resultant wind direction is parallel to the Keys and to the local isobaths. The entire water column moves in a nearly downwind direction, and across-shelf transport is relatively small. During the summer wet season, Florida Bay water should be warmer, fresher, and thus less dense than Atlantic shelf waters. Ebbing bay water should move onto the shelf as a buoyant plume and be held close to the Keys by southeasterly winds. During the winter dry season, colder and saltier Florida Bay water should leave the tidal channels with relatively high density and be concentrated in the near-bottom layers. But little across-shelf flow occurs with northeasterly winds. The study suggests that seasonally changing wind forcing and hydrographic conditions serve to insulate the reef tract from the impact of low-quality bay water.  相似文献   

16.
On the vertical structure of the Rhine region of freshwater influence   总被引:1,自引:0,他引:1  
An idealised three-dimensional numerical model of the Rhine region of fresh water influence (ROFI) was set up to explore the effect of stratification on the vertical structure of the tidal currents. Prandle’s dynamic Ekman layer model, in the case of zero-depth-averaged, cross-shore velocities, was first used to validate the response of the numerical model in the case of barotropic tidal flow. Prandle’s model predicted rectilinear tidal currents with an ellipse veering of up to 2%. The behaviour of the Rhine ROFI in response to both a neap and a spring tide was then investigated. For the given numerical specifications, the Rhine plume region was well mixed over the vertical on spring tide and stratified on neap tide. During spring conditions, rectilinear tidal surface currents were found along the Dutch coast. In contrast, during neap conditions, significant cross-shore currents and tidal straining were observed. Prandle’s model predicted ellipse veering of 50%, and was found to be a good indicator of ellipticity magnitude as a function of bulk vertical eddy viscosity. The modelled tidal ellipses showed that surface currents rotated anti-cyclonically whereas bottom currents rotated cyclonically. This caused a semi-diurnal cross-shore velocity shearing which was 90° out of phase with the alongshore currents. This cross-shore shear subsequently acted on the horizontal density gradient in the plume, thereby causing a semi-diurnal stratification pattern, with maximum stratification around high water. The same behaviour was exhibited in simulations of a complete spring–neap tidal cycle. This showed a pattern of recurring stratification on neaps and de-stratification on springs, in accordance with observations collected from field campaigns in the 1990’s. To understand the increase in ellipticities to 30% during neaps and the precise shape of the vertical ellipse structure, stratification has to be taken into account. Here, a full three-dimensional numerical model was employed, and was found to represent the effect of de-coupling of the upper and lower layers due to a reduction of mixing at the pycnocline.  相似文献   

17.
Observations of semidiurnal internal tidal currents from three moorings deployed on the continental shelf off central Chile during summer and winter of 2005 are reported. The spectra of the baroclinic currents showed large peaks at the semidiurnal band with a dominant counterclockwise rotation, which was consistent with internal wave activity. The amplitude of the barotropic tidal currents varied according to the spring–neap cycle following the sea level fluctuations. In contrast, the amplitudes of the internal tide showed high spatial-temporal variability not directly related to the spring–neap modulation. Near the middle of the continental shelf and near the coast (San Vicente Bay) the variance of the semidiurnal baroclinic current is larger than the variance of its barotropic counterpart. The vertical structure of the baroclinic tidal current fluctuations was similar to the structure of the first baroclinic internal wave mode. In general, in the three study sites the variance of the baroclinic current was larger near the surface and bottom and tended to show a minimum value at mid depths. Kinetic energy related to semidiurnal internal waves was larger in winter when stratification of the water column was stronger. During summer, upwelling and the decrease of freshwater input from nearby rivers reduced the vertical density stratification. The amplitude of the semidiurnal internal tide showed a tendency to be enhanced with increasing stratification as observed in other upwelling areas. The continental shelf break and submarine canyons, which limit the continental shelf in the alongshore direction, represent near-critical slopes for the semidiurnal period and are suggested to be the main internal tide generation sites in the study region.  相似文献   

18.
枯水期咸潮入侵已经严重威胁到了感潮河流区域供水安全.本文通过构建避咸蓄淡供水模型,耦合了咸度预测、河库联合供水调度和供水安全分析模块,为依赖感潮河流为水源地的区域供水安全管理提供了一种整体思路和决策方法.以面向粤港澳大湾区珠海东部及澳门的珠江三角洲磨刀门水道取供水为例,基于潮汐、径流和风等因子及咸度实测数据,较好地拟合了基于BP神经网络的咸度预测模型,及含氯度与超标时间的曲线函数,建立了上游来水和咸度超标时间之间的联系,得到了避咸蓄淡取水时机.咸度预测与当地河库联合供水调度相结合,得到了上游枯水期来水过程的当地区域供需平衡状况.枯水期不考虑水库调蓄的资源性缺水临界需水量为3.22亿m3,水库参与调蓄的工程性缺水临界需水量为3.75亿m3.通过供水安全分析模块,基于设定的风险阈值和临界阈值识别出了不同需水规模的上游来水临界流量特征.对于当地规划的需水规模4.23亿m3,期望上游枯水期临界流量均值约为3372 m3/s.整体上来说,需水规模越大,对上游来水期望的临界流量越大,但同时还与枯水期流量分布有关.  相似文献   

19.
Observations of thermohaline properties and currents were undertaken in the Curimataú River estuary (6°18′S), Rio Grande do Norte state (RN), Brazil, during consecutive neap–spring tidal cycles in the austral autumn rainy season. Highly asymmetric neap tide along channel velocities (−0.4 to 0.9 m s−1) and highly stratified conditions were generated by an increase of the buoyancy energy from the freshwater input (R iE≈5.6). During the spring-tidal cycle the river discharge decreased and the longitudinal velocity components were higher, less asymmetrical (−0.8 to 1.1 m s−1) and semidiurnal, associated with moderately stratified conditions (R iE≈0.1) due to the increase of the kinetic tidal energy forcing mechanism. The overall salinity variation from surface to bottom during two tidal cycles was from 20.5 to 36.3 and 29 to 36.7 in the neap and spring tide experiments, respectively; in the last experiment, the tropical water (TW) mass intrusion was enhanced. The net salt transport reversed from down to up estuary during the neap and spring tide experiments, respectively, varied from 6.0 to –2.0 kg m−1 s−1, an indication of changes in the main forcing of the estuary dynamics. Evaluation of a classical steady analytical model, in comparison with nearly steady experimental vertical profiles of velocity, shows an agreement classifiable as reasonably fair.  相似文献   

20.
The Yangtze River Delta region is characterized by high density of population and rapidly developing economy. There are low lying coastal plain and deltaic plain in this region. Thus, the study area could be highly vulnerable to accelerated sea level rise caused by global warming. This paper deals with the scenarios of the relative sea level rise in the early half period of the 21st century in the study area. The authors suggested that relative sea level would rise 25 50 cm by the year 2050 in the study area, of which the magnitude of relative sea level rise in the Yangtze River Delta would double the perspective worldwide average. The impacts of sea level rise include: (i) exacerbation of coastline recession in several sections and vertical erosion of tidal flat, and increase in length of eroding coastline; (ii) decrease in area of tidal flat and coastal wetland due to erosion and inundation; (iii) increase in frequency and intensity of storm surge, which would threaten the coastal protection works; (iv) reduction of drainage capacity due to backwater effect in the Lixiahe lowland and the eastern lowland of Taihu Lake region, and exacerbation of flood and waterlogging disasters; and (v) increase in salt water intrusion into the Yangtze Estuary. Comprehensive evaluation of sea level rise impacts shows that the Yangtze River Delta and eastern lowland of Taihu Lake region, especially Shanghai Municipality, belong in the district in the extreme risk category and the next is the northern bank of Hangzhou Bay, the third is the abandoned Yellow River delta, and the district at low risk includes the central part of north Jiangsu coastal plain and Lixiahe lowland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号